Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Meta Gene ; 31: 100990, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34722158

RESUMO

BACKGROUND: Coronavirus disease 2019 is characterized by the elevation of a broad spectrum of inflammatory mediators associated with poor disease outcomes. We aimed at an in-silico analysis of regulatory microRNA and their transcription factors (TF) for these inflammatory genes that may help to devise potential therapeutic strategies in the future. METHODS: The cytokine regulating immune-expressed genes (CRIEG) were sorted from literature and the GEO microarray dataset. Their co-differentially expressed miRNA and transcription factors were predicted from publicly available databases. Enrichment analysis was done through mienturnet, MiEAA, Gene Ontology, and pathways predicted by KEGG and Reactome pathways. Finally, the functional and regulatory features were analyzed and visualized through Cytoscape. RESULTS: Sixteen CRIEG were observed to have a significant protein-protein interaction network. The ontological analysis revealed significantly enriched pathways for biological processes, molecular functions, and cellular components. The search performed in the miRNA database yielded ten miRNAs that are significantly involved in regulating these genes and their transcription factors. CONCLUSION: An in-silico representation of a network involving miRNAs, CRIEGs, and TF, which take part in the inflammatory response in COVID-19, has been elucidated. Thus, these regulatory factors may have potentially critical roles in the inflammatory response in COVID-19 and may be explored further to develop targeted therapeutic strategies and mechanistic validation.

2.
JHEP Rep ; 3(4): 100318, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34377970

RESUMO

BACKGROUND & AIMS: Virus-specific T cell dysfunction is a common feature of HBV-related hepatocellular carcinoma (HBV-HCC). Conventional T (ConT) cells can be redirected towards viral antigens in HBV-HCC when they express an HBV-specific receptor; however, their efficacy can be impaired by liver-specific physical and metabolic features. Mucosal-associated invariant T (MAIT) cells are the most abundant innate-like T cells in the liver and can elicit potent intrahepatic effector functions. Here, we engineered ConT and MAIT cells to kill HBV expressing hepatoma cells and compared their functional properties. METHODS: Donor-matched ConT and MAIT cells were engineered to express an HBV-specific T cell receptor (TCR). Cytotoxicity and hepatocyte homing potential were investigated using flow cytometry, real-time killing assays, and confocal microscopy in 2D and 3D HBV-HCC cell models. Major histocompatibility complex (MHC) class I-related molecule (MR1)-dependent and MR1-independent activation was evaluated in an Escherichia coli THP-1 cell model and by IL-12/IL-18 stimulation, respectively. RESULTS: HBV TCR-MAIT cells demonstrated polyfunctional properties (CD107a, interferon [IFN] γ, tumour necrosis factor [TNF], and IL-17A) with strong HBV target sensitivity and liver-homing chemokine receptor expression when compared with HBV TCR-ConT cells. TCR-mediated lysis of hepatoma cells was comparable between the cell types and augmented in the presence of inflammation. Coculturing with HBV+ target cells in a 3D microdevice mimicking aspects of the liver microenvironment demonstrated that TCR-MAIT cells migrate readily towards hepatoma targets. Expression of an ectopic TCR did not affect the ability of the MAIT cells to be activated via MR1-presented bacterial antigens or IL-12/IL-18 stimulation. CONCLUSIONS: HBV TCR-MAIT cells demonstrate anti-HBV functions without losing their endogenous antimicrobial mechanisms or hepatotropic features. Our results support future exploitations of MAIT cells for liver-directed immunotherapies. LAY SUMMARY: Chronic HBV infection is a leading cause of liver cancer. T cell receptor (TCR)-engineered T cells are patients' immune cells that have been modified to recognise virus-infected and/or cancer cells. Herein, we evaluated whether mucosal-associated invariant T cells, a large population of unconventional T cells in the liver, could recognise and kill HBV infected hepatocytes when engineered with an HBV-specific TCR. We show that their effector functions may exceed those of conventional T cells currently used in the clinic, including antimicrobial properties and chemokine receptor profiles better suited for targeting liver tumours.

3.
J Bone Oncol ; 17: 100253, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31372333

RESUMO

CXCR4 is a pleiotropic chemokine receptor which acts through its ligand CXCL12 to regulate diverse physiological processes. CXCR4/CXCL12 axis plays a pivotal role in proliferation, invasion, dissemination and drug resistance in multiple myeloma (MM). Apart from its role in homing, CXCR4 also affects MM cell mobilization and egression out of the bone marrow (BM) which is correlated with distant organ metastasis. Aberrant CXCR4 expression pattern is associated with osteoclastogenesis and tumor growth in MM through its cross talk with various important cell signalling pathways. A deeper insight into understanding of CXCR4 mediated signalling pathways and its role in MM is essential to identify potential therapeutic interventions. The current therapeutic focus is on disrupting the interaction of MM cells with its protective tumor microenvironment where CXCR4 axis plays an essential role. There are still multiple challenges that need to be overcome to target CXCR4 axis more efficiently and to identify novel combination therapies with existing strategies. This review highlights the role of CXCR4 along with its significant interacting partners as a mediator of MM pathogenesis and summarizes the targeted therapies carried out so far.

4.
Gut Microbes ; 5(5): 652-62, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25483334

RESUMO

The intestinal mucosa harbors the largest population of antibody (Ab)-secreting plasma cells (PC) in the human body, producing daily several grams of immunoglobulin A (IgA). IgA has many functions, serving as a first-line barrier that protects the mucosal epithelium from pathogens, toxins and food antigens (Ag), shaping the intestinal microbiota, and regulating host-commensal homeostasis. Signals induced by commensal colonization are central for regulating IgA induction, maintenance, positioning and function and the number of IgA(+) PC is dramatically reduced in neonates and germ-free (GF) animals. Recent evidence demonstrates that the innate immune effector molecules tumor necrosis factor α (TNFα) and inducible nitric oxide synthase (iNOS) are required for IgA(+) PC homeostasis during the steady state and infection. Moreover, new functions ascribed to PC independent of Ab secretion continue to emerge, suggesting that PC, including IgA(+) PC, should be re-examined in the context of inflammation and infection. Here, we outline mechanisms of IgA(+) PC generation and survival, reviewing their functions in health and disease.


Assuntos
Imunoglobulina A/imunologia , Mucosa Intestinal/imunologia , Plasmócitos/imunologia , Imunidade Adaptativa , Animais , Humanos , Imunidade Inata
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA