Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genes Dev ; 34(21-22): 1452-1473, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33060135

RESUMO

CDK7 associates with the 10-subunit TFIIH complex and regulates transcription by phosphorylating the C-terminal domain (CTD) of RNA polymerase II (RNAPII). Few additional CDK7 substrates are known. Here, using the covalent inhibitor SY-351 and quantitative phosphoproteomics, we identified CDK7 kinase substrates in human cells. Among hundreds of high-confidence targets, the vast majority are unique to CDK7 (i.e., distinct from other transcription-associated kinases), with a subset that suggest novel cellular functions. Transcription-associated factors were predominant CDK7 substrates, including SF3B1, U2AF2, and other splicing components. Accordingly, widespread and diverse splicing defects, such as alternative exon inclusion and intron retention, were characterized in CDK7-inhibited cells. Combined with biochemical assays, we establish that CDK7 directly activates other transcription-associated kinases CDK9, CDK12, and CDK13, invoking a "master regulator" role in transcription. We further demonstrate that TFIIH restricts CDK7 kinase function to the RNAPII CTD, whereas other substrates (e.g., SPT5 and SF3B1) are phosphorylated by the three-subunit CDK-activating kinase (CAK; CCNH, MAT1, and CDK7). These results suggest new models for CDK7 function in transcription and implicate CAK dissociation from TFIIH as essential for kinase activation. This straightforward regulatory strategy ensures CDK7 activation is spatially and temporally linked to transcription, and may apply toward other transcription-associated kinases.


Assuntos
Quinases Ciclina-Dependentes/metabolismo , Modelos Biológicos , Fator de Transcrição TFIIH/metabolismo , Transcrição Gênica/genética , Processamento Alternativo/genética , Sobrevivência Celular/efeitos dos fármacos , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/genética , Ativação Enzimática/genética , Células HL-60 , Humanos , Quinase Ativadora de Quinase Dependente de Ciclina
2.
J Biol Chem ; 300(1): 105501, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38016516

RESUMO

Inhibition of cyclin-dependent kinases (CDKs) has evolved as an emerging anticancer strategy. In addition to the cell cycle-regulating CDKs, the transcriptional kinases Cdk12 and Cdk13 have become the focus of interest as they mediate a variety of functions, including the transition from transcription initiation to elongation and termination, precursor mRNA splicing, and intronic polyadenylation. Here, we determine the crystal structure of the small molecular inhibitor SR-4835 bound to the Cdk12/cyclin K complex at 2.68 Å resolution. The compound's benzimidazole moiety is embedded in a unique hydrogen bond network mediated by the kinase hinge region with flanking hydroxy groups of the Y815 and D819 side chains. Whereas the SR-4835 head group targets the adenine-binding pocket, the kinase's glycine-rich loop is shifted down toward the activation loop. Additionally, the αC-helix adopts an inward conformation, and the phosphorylated T-loop threonine interacts with all three canonical arginines, a hallmark of CDK activation that is altered in Cdk12 and Cdk13. Dose-response inhibition measurements with recombinant CMGC kinases show that SR-4835 is highly specific for Cdk12 and Cdk13 following a 10-fold lower potency for Cdk10. Whereas other CDK-targeting compounds exhibit tighter binding affinities and higher potencies for kinase inhibition, SR-4835 can be considered a selective transcription elongation antagonist. Our results provide the basis for a rational improvement of SR-4835 toward Cdk12 inhibition and a gain in selectivity over other transcription regulating CDKs.


Assuntos
Quinases Ciclina-Dependentes , Ciclinas , Poliadenilação , Ciclinas/metabolismo , Conformação Molecular , Humanos , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/química
3.
BMC Biol ; 22(1): 132, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38835016

RESUMO

BACKGROUND: ARID1A, a subunit of the SWI/SNF chromatin remodeling complex, is thought to play a significant role both in tumor suppression and tumor initiation, which is highly dependent upon context. Previous studies have suggested that ARID1A deficiency may contribute to cancer development. The specific mechanisms of whether ARID1A loss affects tumorigenesis by RNA editing remain unclear. RESULTS: Our findings indicate that the deficiency of ARID1A leads to an increase in RNA editing levels and alterations in RNA editing categories mediated by adenosine deaminases acting on RNA 1 (ADAR1). ADAR1 edits the CDK13 gene at two previously unidentified sites, namely Q113R and K117R. Given the crucial role of CDK13 as a cyclin-dependent kinase, we further observed that ADAR1 deficiency results in changes in the cell cycle. Importantly, the sensitivity of ARID1A-deficient tumor cells to SR-4835, a CDK12/CDK13 inhibitor, suggests a promising therapeutic approach for individuals with ARID1A-mutant tumors. Knockdown of ADAR1 restored the sensitivity of ARID1A deficient cells to SR-4835 treatment. CONCLUSIONS: ARID1A deficiency promotes RNA editing of CDK13 by regulating ADAR1.


Assuntos
Adenosina Desaminase , Quinases Ciclina-Dependentes , Proteínas de Ligação a DNA , Edição de RNA , Proteínas de Ligação a RNA , Fatores de Transcrição , Adenosina Desaminase/metabolismo , Adenosina Desaminase/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Humanos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/genética , Linhagem Celular Tumoral , Proteína Quinase CDC2
4.
Adv Exp Med Biol ; 1441: 467-480, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884726

RESUMO

Although atrial septal defects (ASD) can be subdivided based on their anatomical location, an essential aspect of human genetics and genetic counseling is distinguishing between isolated and familiar cases without extracardiac features and syndromic cases with the co-occurrence of extracardiac abnormalities, such as developmental delay. Isolated or familial cases tend to show genetic alterations in genes related to important cardiac transcription factors and genes encoding for sarcomeric proteins. By contrast, the spectrum of genes with genetic alterations observed in syndromic cases is diverse. Currently, it points to different pathways and gene networks relevant to the dysregulation of cardiomyogenesis and ASD pathogenesis. Therefore, this chapter reflects the current knowledge and highlights stable associations observed in human genetics studies. It gives an overview of the different types of genetic alterations in these subtypes, including common associations based on genome-wide association studies (GWAS), and it highlights the most frequently observed syndromes associated with ASD pathogenesis.


Assuntos
Estudo de Associação Genômica Ampla , Comunicação Interatrial , Humanos , Comunicação Interatrial/genética , Predisposição Genética para Doença/genética , Mutação
5.
Stem Cells ; 40(4): 435-445, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35325240

RESUMO

Proper differentiation of the epidermis is essential to prevent water loss and to protect the body from the outside environment. Perturbations in this process can lead to a variety of skin diseases that impacts 1 in 5 people. While transcription factors that control epidermal differentiation have been well characterized, other aspects of transcription control such as elongation are poorly understood. Here we show that of the two cyclin-dependent kinases (CDK12 and CDK13), that are known to regulate transcription elongation, only CDK12 is necessary for epidermal differentiation. Depletion of CDK12 led to loss of differentiation gene expression and absence of skin barrier formation in regenerated human epidermis. CDK12 binds to genes that code for differentiation promoting transcription factors (GRHL3, KLF4, and OVOL1) and is necessary for their elongation. CDK12 is necessary for elongation by promoting Ser2 phosphorylation on the C-terminal domain of RNA polymerase II and the stabilization of binding of the elongation factor SPT6 to target genes. Our results suggest that control of transcription elongation by CDK12 plays a prominent role in adult cell fate decisions.


Assuntos
Quinases Ciclina-Dependentes , RNA Polimerase II , Diferenciação Celular/genética , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Humanos , Fosforilação , RNA Polimerase II/química , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Cell Biol Toxicol ; 39(2): 1-22, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35484432

RESUMO

OBJECTIVE: To investigate the effects of human bone marrow mesenchymal stem cells (hMSCs)-derived exosome circCDK13 on liver fibrosis and its mechanism. METHODS: Exosomes derived from hMSCs were extracted and identified by flow cytometry and osteogenic and adipogenic induction, and the expressions of marker proteins on the surface of exosomes were detected by western blot. Cell proliferation was measured by CCK8 assay, the expression of active markers of HSCs by immunofluorescence, and the expressions of fibrosis-related factors by western blot. A mouse model of liver fibrosis was established by intraperitoneal injection of thioacetamide (TAA). Fibrosis was detected by HE staining, Masson staining, and Sirius red staining. Western blot was utilized to test the expressions of PI3K/AKT and NF-κB pathway related proteins, dual-luciferase reporter assay and RIP assay to validate the binding between circCDK13 and miR-17-5p as well as between miR-17-5p and KAT2B, and ChIP to validate the effect of KAT2B on H3 acetylation and MFGE8 transcription. RESULTS: hMSCs-derived exosomes inhibited liver fibrosis mainly through circCDK13. Dual-luciferase reporter assay and RIP assay demonstrated the binding between circCDK13 and miR-17-5p as well as between miR-17-5p and KAT2B. Further experimental results indicated that circCDK13 mediated liver fibrosis by regulating the miR-17-5p/KAT2B axis, and KAT2B promoted MFGE8 transcription by H3 acetylation. Exo-circCDK13 inhibited PI3K/AKT and NF-κB signaling pathways activation through regulating the miR-17-5p/KAT2B axis. CONCLUSION: hMSCs-derived exosome circCDK13 inhibited liver fibrosis by regulating the expression of MFGE8 through miR-17-5p/KAT2B axis.


Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Camundongos , Animais , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , NF-kappa B/metabolismo , Exossomos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Células-Tronco Mesenquimais/metabolismo , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Fibrose , Antígenos de Superfície , Proteínas do Leite/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo
7.
Genet Med ; 24(5): 1096-1107, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35063350

RESUMO

PURPOSE: Rare genetic variants in CDK13 are responsible for CDK13-related disorder (CDK13-RD), with main clinical features being developmental delay or intellectual disability, facial features, behavioral problems, congenital heart defect, and seizures. In this paper, we report 18 novel individuals with CDK13-RD and provide characterization of genome-wide DNA methylation. METHODS: We obtained clinical phenotype and neuropsychological data for 18 and 10 individuals, respectively, and compared this series with the literature. We also compared peripheral blood DNA methylation profiles in individuals with CDK13-RD, controls, and other neurodevelopmental disorders episignatures. Finally, we developed a support vector machine-based classifier distinguishing CDK13-RD and non-CDK13-RD samples. RESULTS: We reported health and developmental parameters, clinical data, and neuropsychological profile of individuals with CDK13-RD. Genome-wide differential methylation analysis revealed a global hypomethylated profile in individuals with CDK13-RD in a highly sensitive and specific model that could aid in reclassifying variants of uncertain significance. CONCLUSION: We describe the novel features such as anxiety disorder, cryptorchidism, and disrupted sleep in CDK13-RD. We define a CDK13-RD DNA methylation episignature as a diagnostic tool and a defining functional feature of the evolving clinical presentation of this disorder. We also show overlap of the CDK13 DNA methylation profile in an individual with a functionally and clinically related CCNK-related disorder.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Proteína Quinase CDC2/genética , Metilação de DNA/genética , Epigênese Genética/genética , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Masculino , Transtornos do Neurodesenvolvimento/genética , Fenótipo
8.
Am J Med Genet A ; 188(5): 1368-1375, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35043535

RESUMO

Kabuki syndrome (KS) is a neurodevelopmental disorder characterized by hypotonia, intellectual disability, skeletal anomalies, and postnatal growth restriction. The characteristic facial appearance is not pathognomonic for KS as several other conditions demonstrate overlapping features. For 20-30% of children with a clinical diagnosis of KS, no causal variant is identified by conventional genetic testing of the two associated genes, KMT2D and KDM6A. Here, we describe two cases of suspected KS that met clinical diagnostic criteria and had a high gestalt match on the artificial intelligence platform Face2Gene. Although initial KS testing was negative, genome-wide DNA methylation (DNAm) was instrumental in guiding genome sequencing workflow to establish definitive molecular diagnoses. In one case, a positive DNAm signature for KMT2D led to the identification of a cryptic variant in KDM6A by genome sequencing; for the other case, a DNAm signature different from KS led to the detection of another diagnosis in the KS differential, CDK13-related disorder. This approach illustrates the clinical utility of DNAm signatures in the diagnostic workflow for the genome analyst or clinical geneticist-especially for disorders with overlapping clinical phenotypes.


Assuntos
Metilação de DNA , Doenças Vestibulares , Anormalidades Múltiplas , Inteligência Artificial , Proteína Quinase CDC2/genética , Metilação de DNA/genética , Face/anormalidades , Doenças Hematológicas , Histona Desmetilases/genética , Humanos , Mutação , Doenças Vestibulares/diagnóstico , Doenças Vestibulares/genética , Fluxo de Trabalho
9.
Mol Cancer ; 20(1): 115, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34496885

RESUMO

BACKGROUND: Adenosine deaminases acting on RNA (ADARs) modify many cellular RNAs by catalyzing the conversion of adenosine to inosine (A-to-I), and their deregulation is associated with several cancers. We recently showed that A-to-I editing is elevated in thyroid tumors and that ADAR1 is functionally important for thyroid cancer cell progression. The downstream effectors regulated or edited by ADAR1 and the significance of ADAR1 deregulation in thyroid cancer remain, however, poorly defined. METHODS: We performed whole transcriptome sequencing to determine the consequences of ADAR1 deregulation for global gene expression, RNA splicing and editing. The effects of gene silencing or RNA editing were investigated by analyzing cell viability, proliferation, invasion and subnuclear localization, and by protein and gene expression analysis. RESULTS: We report an oncogenic function for CDK13 in thyroid cancer and identify a new ADAR1-dependent RNA editing event that occurs in the coding region of its transcript. CDK13 was significantly over-edited (c.308A > G) in tumor samples and functional analysis revealed that this editing event promoted cancer cell hallmarks. Finally, we show that CDK13 editing increases the nucleolar abundance of the protein, and that this event might explain, at least partly, the global change in splicing produced by ADAR1 deregulation. CONCLUSIONS: Overall, our data support A-to-I editing as an important pathway in cancer progression and highlight novel mechanisms that might be used therapeutically in thyroid and other cancers.


Assuntos
Adenosina Desaminase/metabolismo , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Regulação Neoplásica da Expressão Gênica , Edição de RNA , Proteínas de Ligação a RNA/metabolismo , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Alelos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Sobrevivência Celular/genética , Progressão da Doença , Técnicas de Silenciamento de Genes , Inativação Gênica , Humanos , Transporte Proteico , Splicing de RNA , Neoplasias da Glândula Tireoide/patologia
10.
J Cell Biochem ; 120(11): 18816-18825, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31297882

RESUMO

Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in the world. Nevertheless, its underlying molecular mechanisms are largely unknown. LINC00152 are recently investigated in several cancer types. In our current investigation, we observed LINC00152 was obviously upregulated in HCC cells. LINC00152 was significantly downregulated by infecting LV-shLINC00152 in HepG2 and SNU449 cells. Loss of LINC00152 remarkably repressed HCC cell proliferation, cell colony formation, induced cell apoptosis, and restrained cell migration/invasion. Growing evidence has reported long noncoding RNAs can sponge microRNAs to modulate cancer process. Here, we indicated miR-215 was greatly decreased in HCC and LINC00152 regulated HCC development via sponging miR-215. For another, the binding association between LINC00152 and miR-215 was proved by a series of functional assays. CDK13 was predicted as the target of miR-215. Upregulation of miR-215 greatly depressed CDK13 in HCC cells. Subsequently, the in vivo results demonstrated that silence of LINC00152 restrained HCC development via modulating miR-215 to up-regulate CDK13. Therefore, it was revealed that LINC00152 contributed to the progression of HCC by the modulation of miR-215 and CDK13.


Assuntos
Proteína Quinase CDC2/metabolismo , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , MicroRNAs/metabolismo , Proteínas de Neoplasias/metabolismo , RNA Longo não Codificante/metabolismo , RNA Neoplásico/metabolismo , Transdução de Sinais , Animais , Proteína Quinase CDC2/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs/genética , Proteínas de Neoplasias/genética , RNA Longo não Codificante/genética , RNA Neoplásico/genética
11.
J Med Genet ; 55(1): 28-38, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29021403

RESUMO

INTRODUCTION: Recent evidence has emerged linking mutations in CDK13 to syndromic congenital heart disease. We present here genetic and phenotypic data pertaining to 16 individuals with CDK13 mutations. METHODS: Patients were investigated by exome sequencing, having presented with developmental delay and additional features suggestive of a syndromic cause. RESULTS: Our cohort comprised 16 individuals aged 4-16 years. All had developmental delay, including six with autism spectrum disorder. Common findings included feeding difficulties (15/16), structural cardiac anomalies (9/16), seizures (4/16) and abnormalities of the corpus callosum (4/11 patients who had undergone MRI). All had craniofacial dysmorphism, with common features including short, upslanting palpebral fissures, hypertelorism or telecanthus, medial epicanthic folds, low-set, posteriorly rotated ears and a small mouth with thin upper lip vermilion. Fifteen patients had predicted missense mutations, including five identical p.(Asn842Ser) substitutions and two p.(Gly717Arg) substitutions. One patient had a canonical splice acceptor site variant (c.2898-1G>A). All mutations were located within the protein kinase domain of CDK13. The affected amino acids are highly conserved, and in silico analyses including comparative protein modelling predict that they will interfere with protein function. The location of the missense mutations in a key catalytic domain suggests that they are likely to cause loss of catalytic activity but retention of cyclin K binding, resulting in a dominant negative mode of action. Although the splice-site mutation was predicted to produce a stable internally deleted protein, this was not supported by expression studies in lymphoblastoid cells. A loss of function contribution to the underlying pathological mechanism therefore cannot be excluded, and the clinical significance of this variant remains uncertain. CONCLUSIONS: These patients demonstrate that heterozygous, likely dominant negative mutations affecting the protein kinase domain of the CDK13 gene result in a recognisable, syndromic form of intellectual disability, with or without congenital heart disease.


Assuntos
Proteína Quinase CDC2/química , Proteína Quinase CDC2/genética , Deficiências do Desenvolvimento/genética , Deficiência Intelectual/genética , Mutação/genética , Adolescente , Criança , Sequência Conservada , Feminino , Heterozigoto , Humanos , Masculino , Modelos Moleculares , Mutação de Sentido Incorreto/genética , Domínios Proteicos , Síndrome , Termodinâmica
12.
Clin Genet ; 93(5): 1000-1007, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29393965

RESUMO

De novo variants in the gene encoding cyclin-dependent kinase 13 (CDK13) have been associated with congenital heart defects and intellectual disability (ID). Here, we present the clinical assessment of 15 individuals and report novel de novo missense variants within the kinase domain of CDK13. Furthermore, we describe 2 nonsense variants and a recurrent frame-shift variant. We demonstrate the synthesis of 2 aberrant CDK13 transcripts in lymphoblastoid cells from an individual with a splice-site variant. Clinical characteristics of the individuals include mild to severe ID, developmental delay, behavioral problems, (neonatal) hypotonia and a variety of facial dysmorphism. Congenital heart defects were present in 2 individuals of the current cohort, but in at least 42% of all known individuals. An overview of all published cases is provided and does not demonstrate an obvious genotype-phenotype correlation, although 2 individuals harboring a stop codons at the end of the kinase domain might have a milder phenotype. Overall, there seems not to be a clinically recognizable facial appearance. The variability in the phenotypes impedes an à vue diagnosis of this syndrome and therefore genome-wide or gene-panel driven genetic testing is needed. Based on this overview, we provide suggestions for clinical work-up and management of this recently described ID syndrome.


Assuntos
Proteína Quinase CDC2/genética , Deficiências do Desenvolvimento/genética , Cardiopatias Congênitas/genética , Deficiência Intelectual/genética , Adolescente , Adulto , Criança , Pré-Escolar , Códon sem Sentido , Deficiências do Desenvolvimento/fisiopatologia , Exoma/genética , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Cardiopatias Congênitas/fisiopatologia , Humanos , Deficiência Intelectual/fisiopatologia , Masculino , Pessoa de Meia-Idade , Mutação , Fenótipo , Sítios de Splice de RNA/genética , Adulto Jovem
13.
Dis Model Mech ; 17(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38511331

RESUMO

CDK13-related disorder, also known as congenital heart defects, dysmorphic facial features and intellectual developmental disorder (CHDFIDD) is associated with mutations in the CDK13 gene encoding transcription-regulating cyclin-dependent kinase 13 (CDK13). Here, we focused on the development of craniofacial structures and analyzed early embryonic stages in CHDFIDD mouse models, with one model comprising a hypomorphic mutation in Cdk13 and exhibiting cleft lip/palate, and another model comprising knockout of Cdk13, featuring a stronger phenotype including midfacial cleft. Cdk13 was found to be physiologically expressed at high levels in the mouse embryonic craniofacial structures, namely in the forebrain, nasal epithelium and maxillary mesenchyme. We also uncovered that Cdk13 deficiency leads to development of hypoplastic branches of the trigeminal nerve including the maxillary branch. Additionally, we detected significant changes in the expression levels of genes involved in neurogenesis (Ache, Dcx, Mef2c, Neurog1, Ntn1, Pou4f1) within the developing palatal shelves. These results, together with changes in the expression pattern of other key face-specific genes (Fgf8, Foxd1, Msx1, Meis2 and Shh) at early stages in Cdk13 mutant embryos, demonstrate a key role of CDK13 in the regulation of craniofacial morphogenesis.


Assuntos
Modelos Animais de Doenças , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Neurogênese , Animais , Neurogênese/genética , Desenvolvimento Embrionário/genética , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/genética , Crânio/embriologia , Crânio/patologia , Camundongos , Fissura Palatina/genética , Fissura Palatina/patologia , Fissura Palatina/embriologia , Fenda Labial/genética , Fenda Labial/patologia , Fenda Labial/embriologia , Nervo Trigêmeo/embriologia , Embrião de Mamíferos/metabolismo , Face/embriologia , Face/anormalidades , Fenótipo , Deficiência Intelectual/genética , Mutação/genética , Proteína Duplacortina
14.
Cureus ; 16(5): e60970, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38910624

RESUMO

Cyclin-dependent kinase 13 (CDK13)-related disorder is a rare autosomal dominant disease caused by pathogenic variants in the CDK13 gene. This disorder was found to be related to several clinical features, including structural cardiac anomalies, developmental delay, anomalies of the corpus callosum, and a variety of facial dysmorphisms. In addition, feeding difficulties and neonatal hypotonia might also present. The diagnosis of this disorder is based on molecular genetic testing to detect the causative pathogenic variants. Here, we report a case of a one-year-old girl from Yemen, residing in Bahrain, with a CDK13-related disorder who was found to have an unusual association of abdominal situs inversus along with multiple structural cardiac anomalies, including atrial septal defect, ventricular septal defect, patent ductus arteriosus, interrupted inferior vena cava, bilateral superior vena cava, mild coarctation of the aorta, dilated coronary sinuses, and mild regurgitation in the tricuspid valve. Moreover, facial dysmorphism including medial epicanthal folds, posteriorly rotated ears, and a depressed nasal bridge was also noted. Further assessment showed a delay in reaching developmental milestones, including speech and motor delay. The patient also presented with recurrent episodes of upper respiratory tract infections, acute bronchiolitis, and lobar pneumonia which required admission to the intensive care unit and ventilation. The last infection episode was at the age of one year. Thereafter, the patient underwent cardiac repair of the ventricular septal defect followed by no more infection episodes until the age of one year and two months. The diagnosis of CDK13 was confirmed by a whole exome sequencing test which demonstrated a novel missense variant in exon 14 of the CDK13 gene as a variant of uncertain significance in a heterozygous state.

15.
bioRxiv ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38562774

RESUMO

Biallelic loss of cyclin-dependent kinase 12 (CDK12) defines a unique molecular subtype of metastatic castration-resistant prostate cancer (mCRPC). It remains unclear, however, whether CDK12 loss per se is sufficient to drive prostate cancer development-either alone, or in the context of other genetic alterations-and whether CDK12-mutant tumors exhibit sensitivity to specific pharmacotherapies. Here, we demonstrate that tissue-specific Cdk12 ablation is sufficient to induce preneoplastic lesions and robust T cell infiltration in the mouse prostate. Allograft-based CRISPR screening demonstrated that Cdk12 loss is positively associated with Trp53 inactivation but negatively associated with Pten inactivation-akin to what is observed in human mCRPC. Consistent with this, ablation of Cdk12 in prostate organoids with concurrent Trp53 loss promotes their proliferation and ability to form tumors in mice, while Cdk12 knockout in the Pten-null prostate cancer mouse model abrogates tumor growth. Bigenic Cdk12 and Trp53 loss allografts represent a new syngeneic model for the study of androgen receptor (AR)-positive, luminal prostate cancer. Notably, Cdk12/Trp53 loss prostate tumors are sensitive to immune checkpoint blockade. Cdk12-null organoids (either with or without Trp53 co-ablation) and patient-derived xenografts from tumors with CDK12 inactivation are highly sensitive to inhibition or degradation of its paralog kinase, CDK13. Together, these data identify CDK12 as a bona fide tumor suppressor gene with impact on tumor progression and lends support to paralog-based synthetic lethality as a promising strategy for treating CDK12-mutant mCRPC.

16.
Ann Agric Environ Med ; 31(1): 147-150, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38549490

RESUMO

There are 21 human cyclin-dependent kinases which are involved in regulation of the cell cycle, transcription, RNA splicing, apoptosis and neurogenesis. Five of them: CDK4, CDK5, CDK6, CDK10 and CDK13 are associated with human phenotypes. To date, only 62 patients have been presented with mutated CDK13 gene. Those patients had developmental delay, dysmorphic facial features, feeding difficulties, different structural heart and brain defects. 36 of them had missense mutation affecting the protein kinase domain of CDK13. Our patient is the first person reported so far with a frameshift mutation which introduce premature stop codon in the first exon of the CDK13 gene. She has symptoms characteristic for congenital heart defects, facial dysmorphism and intellectual developmental disorder (CHDFIDD).


Assuntos
Deficiências do Desenvolvimento , Cardiopatias Congênitas , Deficiência Intelectual , Criança , Feminino , Humanos , Proteína Quinase CDC2/genética , Quinases Ciclina-Dependentes/genética , Deficiências do Desenvolvimento/genética , Cardiopatias Congênitas/genética , Deficiência Intelectual/genética , Mutação de Sentido Incorreto , Fenótipo
17.
J Thorac Dis ; 15(4): 2167-2183, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37197505

RESUMO

Background: Cyclin O (CCNO) is a novel cyclin family protein containing a cyclin-like domain, which plays a role in cell cycle regulation. Recent research suggests that inhibition of CCNO leads to cell apoptosis in gastric cancer, cervical squamous cell carcinoma, and post-operative lung cancer. Methods: The protein expression and signal transduction were detected by Western blot (WB) and immunohistochemistry (IHC). Overexpression or lacking CCNO stable cell lines were transfected with lentiviruses and selected with puromycin. The tumor behaviors of lung adenocarcinoma (LUAD) cells were assessed: cell proliferation by 5-Ethynyl-2'-deoxyuridine (EdU) staining and Cell Counting Kit-8 (CCK8) assay, cell cycle and by flow cytometry analysis, and migration and invasion using wound healing and Transwell system. Co-immunoprecipitation was used to detect protein-protein interactions. Xenograft models for evaluating tumor growth and anti-tumor drug efficacy. Results: A higher expression of CCNO was observed in LUAD cancer tissues and predicted the overall survival of LUAD patients. Moreover, CCNO expression was negatively correlated with cancer cell proliferation, migration, and invasion. Co-immunoprecipitation and western blot indicated that CCNO interacted with CDK13 to promote cancer cell proliferation signaling activation. Furthermore, CCNO promoted tumor cell growth and cetuximab resistance in vivo, and a CDK13 inhibitor effectively inhibited the oncological effect of CCNO. Conclusions: The current study suggests that CCNO may be a driver in the development of LUAD and that its function is related to CDK13 interaction that promotes proliferation signaling activation.

18.
Genes (Basel) ; 14(10)2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37895297

RESUMO

Axenfeld-Rieger anomaly (ARA) is a specific ocular disorder that is frequently associated with other systemic abnormalities. PITX2 and FOXC1 variants explain the majority of individuals with Axenfeld-Rieger syndrome (ARS) but leave ~30% unsolved. Here, we present pathogenic/likely pathogenic variants in nine families with ARA/ARS or similar phenotypes affecting five different genes/regions. USP9X and JAG1 explained three families each. USP9X was recently linked with syndromic cognitive impairment that includes hearing loss, dental defects, ventriculomegaly, Dandy-Walker malformation, skeletal anomalies (hip dysplasia), and other features showing a significant overlap with FOXC1-ARS. Anterior segment anomalies are not currently associated with USP9X, yet our cases demonstrate ARA, congenital glaucoma, corneal neovascularization, and cataracts. The identification of JAG1 variants, linked with Alagille syndrome, in three separate families with a clinical diagnosis of ARA/ARS highlights the overlapping features and high variability of these two phenotypes. Finally, intragenic variants in CDK13, BCOR, and an X chromosome deletion encompassing HCCS and AMELX (linked with ocular and dental anomalies, correspondingly) were identified in three additional cases with ARS. Accurate diagnosis has important implications for clinical management. We suggest that broad testing such as exome sequencing be applied as a second-tier test for individuals with ARS with normal results for PITX2/FOXC1 sequencing and copy number analysis, with attention to the described genes/regions.


Assuntos
Anormalidades do Olho , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Proteínas de Homeodomínio/genética , Segmento Anterior do Olho/anormalidades , Anormalidades do Olho/diagnóstico , Anormalidades do Olho/genética , Anormalidades do Olho/patologia , Ubiquitina Tiolesterase
19.
Cancers (Basel) ; 15(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37190191

RESUMO

Osimertinib is a third-generation epidermal growth factor receptor and tyrosine kinase inhibitor (EGFR-TKI) approved for the treatment of lung adenocarcinoma patients harboring EGFR mutations. However, acquired resistance to this targeted therapy is inevitable, leading to disease relapse within a few years. Therefore, understanding the molecular mechanisms of osimertinib resistance and identifying novel targets to overcome such resistance are unmet needs of cancer patients. Here, we investigated the efficacy of two novel CDK12/13 inhibitors, AU-15506 and AU-16770, in osimertinib-resistant EGFR mutant lung adenocarcinoma cells in culture and xenograft models in vivo. We demonstrate that these drugs, either alone or in combination with osimertinib, are potent inhibitors of osimertinib-resistant as well as -sensitive lung adenocarcinoma cells in culture. Interestingly, only the CDK12/13 inhibitor in combination with osimertinib, although not as monotherapy, suppresses the growth of resistant tumors in xenograft models in vivo. Taken together, the results of this study suggest that inhibition of CDK12/13 in combination with osimertinib has the potential to overcome osimertinib resistance in EGFR mutant lung adenocarcinoma patients.

20.
J Invest Surg ; 35(2): 442-447, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33292020

RESUMO

OBJECTIVE: To investigate role and clinical significance of CDK13 in breast cancer patients. METHODS: A total of 189 cases of breast cancer were enrolled during March 2013 to March 2015. Immunohistochemistry (IHC) was used for measurement of CDK13, HIF-1α and beclin1. Clinical characteristics of age, BMI, TNM stage, pathological types, and tumor diameter, were recorded. Patients' 5-year overall survival and recurrence were followed up. All patients were followed up for 5 years or to the last follow-up. RESULTS: The expression levels of CDK13 and HIF-1αin breast cancer tissues were up-regulated and beclin1 was down-regulated than in the paracancerous non-tumor tissues. CDK13 was positively correlated with HIF-1α and negatively correlated with beclin1 in breast cancer tissues. The patients with higher expression of CDK13 showed significantly higher rates of TNM III-IV, higher rates of lymph node metastasis, distant metastasis and larger tumor size. The mortality and recurrence rates were higher in high expression CDK13 patients than in low CDK13 expression patients, however with no significant difference. K-M curve showed patients with higher CDK13 showed lower 5-year overall survival and lower disease-free survival time, however with no significant difference. CONCLUSION: CDK13 was overexpressed in breast cancer tissues, and patients with higher CDK13 had poorer clinical outcomes. Further studies are still needed to reveal the clinical significance of CDK13 in breast cancer.


Assuntos
Proteína Beclina-1 , Neoplasias da Mama , Proteína Quinase CDC2/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia , Proteína Beclina-1/genética , Biomarcadores Tumorais , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Intervalo Livre de Doença , Feminino , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Metástase Linfática , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA