Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO Rep ; 23(2): e54022, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34866326

RESUMO

PfCDPK7 is an atypical member of the calcium-dependent protein kinase (CDPK) family and is crucial for the development of Plasmodium falciparum. However, the mechanisms whereby PfCDPK7 regulates parasite development remain unknown. Here, we perform quantitative phosphoproteomics and phospholipid analysis and find that PfCDPK7 promotes phosphatidylcholine (PC) synthesis by regulating two key enzymes involved in PC synthesis, phosphoethanolamine-N-methyltransferase (PMT) and ethanolamine kinase (EK). In the absence of PfCDPK7, both enzymes are hypophosphorylated and PMT is degraded. We further find that PfCDPK7 interacts with 4'-phosphorylated phosphoinositides (PIPs) generated by PI4-kinase. Inhibition of PI4K activity disrupts the vesicular localization PfCDPK7. P. falciparum PI4-kinase, PfPI4K is a prominent drug target and one of its inhibitors, MMV39048, has reached Phase I clinical trials. Using this inhibitor, we demonstrate that PfPI4K controls phospholipid biosynthesis and may act in part by regulating PfCDPK7 localization and activity. These studies not only unravel a signaling pathway involving PfPI4K/4'-PIPs and PfCDPK7 but also provide novel insights into the mechanism of action of a promising series of candidate anti-malarial drugs.


Assuntos
Malária Falciparum , Plasmodium falciparum , Humanos , Fosfolipídeos/metabolismo , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Transdução de Sinais
2.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33941701

RESUMO

Calcium (Ca2+)-dependent protein kinases (CDPKs or CPKs) are a unique family of Ca2+ sensor/kinase-effector proteins with diverse functions in plants. In Arabidopsis thaliana, CPK28 contributes to immune homeostasis by promoting degradation of the key immune signaling receptor-like cytoplasmic kinase BOTRYTIS-INDUCED KINASE 1 (BIK1) and additionally functions in vegetative-to-reproductive stage transition. How CPK28 controls these seemingly disparate pathways is unknown. Here, we identify a single phosphorylation site in the kinase domain of CPK28 (Ser318) that is differentially required for its function in immune homeostasis and stem elongation. We show that CPK28 undergoes intermolecular autophosphorylation on Ser318 and can additionally be transphosphorylated on this residue by BIK1. Analysis of several other phosphorylation sites demonstrates that Ser318 phosphorylation is uniquely required to prime CPK28 for Ca2+ activation at physiological concentrations of Ca2+, possibly through stabilization of the Ca2+-bound active state as indicated by intrinsic fluorescence experiments. Together, our data indicate that phosphorylation of Ser318 is required for the activation of CPK28 at low intracellular [Ca2+] to prevent initiation of an immune response in the absence of infection. By comparison, phosphorylation of Ser318 is not required for stem elongation, indicating pathway-specific requirements for phosphorylation-based Ca2+-sensitivity priming. We additionally provide evidence for a conserved function for Ser318 phosphorylation in related group IV CDPKs, which holds promise for biotechnological applications by generating CDPK alleles that enhance resistance to microbial pathogens without consequences to yield.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cálcio/metabolismo , Proteínas Quinases/metabolismo , Serina/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Immunoblotting , Microscopia Confocal , Mutação , Fosforilação , Filogenia , Proteínas Quinases/classificação , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Serina/genética
3.
J Integr Plant Biol ; 66(7): 1313-1333, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38751035

RESUMO

Calcium oscillations are induced by different stresses. Calcium-dependent protein kinases (CDPKs/CPKs) are one major group of the plant calcium decoders that are involved in various processes including drought response. Some CPKs are calcium-independent. Here, we identified ZmCPK2 as a negative regulator of drought resistance by screening an overexpression transgenic maize pool. We found that ZmCPK2 does not bind calcium, and its activity is mainly inhibited during short term abscisic acid (ABA) treatment, and dynamically changed in prolonged treatment. Interestingly, ZmCPK2 interacts with and is inhibited by calcium-dependent ZmCPK17, a positive regulator of drought resistance, which is activated by ABA. ZmCPK17 could prevent the nuclear localization of ZmCPK2 through phosphorylation of ZmCPK2T60. ZmCPK2 interacts with and phosphorylates and activates ZmYAB15, a negative transcriptional factor for drought resistance. Our results suggest that drought stress-induced Ca2+ can be decoded directly by ZmCPK17 that inhibits ZmCPK2, thereby promoting plant adaptation to water deficit.


Assuntos
Ácido Abscísico , Cálcio , Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Proteínas Quinases , Zea mays , Zea mays/efeitos dos fármacos , Zea mays/metabolismo , Zea mays/genética , Zea mays/fisiologia , Cálcio/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Fosforilação , Proteínas Quinases/metabolismo , Plantas Geneticamente Modificadas , Estresse Fisiológico/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos
4.
J Exp Bot ; 74(6): 1836-1852, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36630268

RESUMO

Cotton fiber elongation is a critical growth phase that affects final fiber length. Morphological analysis indicated an asynchronous fiber elongation pattern between two cotton varieties, J7-1 and J14-1. Through phosphoproteomic analysis, a total of 89 differentially-phosphorylated proteins (DPPs) were identified in elongating fibers between J7-1 and J14-1. Gene ontology (GO) analysis showed that these DPPs were mainly enriched in sucrose synthase activity, transferase activity, and UDP-glycosyltransferase activity. In J14-1, the phosphorylation level of GhSUS2, a key sucrose synthase in the sucrose metabolism pathway, was significantly higher than that in J7-1. We further revealed that GhSUS2 positively regulates fiber elongation, and GhSUS2-silenced transgenic cotton displayed the phenotype of 'short fibers' compared with the controls. During fiber development, the residue Ser11 in the GhSUS2 protein is phosphorylated by the Ca2+-dependent protein kinases GhCPK84 and GhCPK93. Phosphorylated GhSUS2 is localized in the cytoplasm, whereas unphosphorylated GhSUS2 is localized in the plasma membrane. Moreover, abscisic acid (ABA) could promote the transcription and translation of GhCPK84 and GhCPK93, thereby enhancing the phosphorylation of GhSUS2 to impede fiber elongation. Thus, our data demonstrates that GhSUS2 plays a positive role in fiber development, but its phosphorylation by GhCPK84 and GhCPK93 hinders fiber elongation of cotton.


Assuntos
Cálcio , Proteínas Quinases , Proteínas Quinases/genética , Fosforilação , Fibra de Algodão , Gossypium/genética , Regulação da Expressão Gênica de Plantas
5.
Environ Sci Technol ; 57(50): 21405-21415, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38061893

RESUMO

The ubiquitous occurrence of benzotriazole ultraviolet stabilizers (BUVSs) in the environment and organisms has warned of their potential ecological and health risks. Studies showed that some BUVSs exerted immune and chronic toxicities to animals by disturbing signaling transduction, yet limited research has investigated the toxic effects on crop plants and the underlying mechanisms of signaling regulation. Herein, a laboratory-controlled hydroponic experiment was conducted on rice to explore the phytotoxicity of BUVSs by integrating conventional biochemical experiments, transcriptomic analysis, competitive sorption assays, and computational studies. The results showed that BUVSs inhibited the growth of rice by 6.30-20.4% by excessively opening the leaf stomas, resulting in increased transpiration. BUVSs interrupted the transduction of abscisic acid (ABA) signal through competitively binding to Ca2+-dependent protein kinase (CDPK), weakening the CDPK phosphorylation and further inhibiting the downstream signaling. As structural analogues of ATP, BUVSs acted as potential ABA signaling antagonists, leading to physiological dysfunction in mediating stomatal closure under stresses. This is the first comprehensive study elucidating the effects of BUVSs on the function of key proteins and the associated signaling transduction in plants and providing insightful information for the risk evaluation and control of BUVSs.


Assuntos
Oryza , Animais , Proteínas Quinases , Raios Ultravioleta , Triazóis/farmacologia , Triazóis/análise , Plantas
6.
Environ Sci Technol ; 57(23): 8739-8749, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37252902

RESUMO

Per- and polyfluoroalkyl substances (PFASs) have potential to accumulate in crops and pose health risks to humans, but it is unclear how the widely present organic matters in soil, such as humic acid (HA), affect their uptake and translocation in plants. In this study, hydroponic experiments were conducted to systematically disclose the impacts of HA on the uptake, translocation, and transmembrane transport at the subcellular level of four PFASs, including perfluorooctane sulfonic acid, perfluorooctanoic acid, perfluorohexane sulfonic acid, and 6:2 chlorinated polyfluoroalkyl ether sulfonate in wheat (Triticum aestivum L.). The results of the uptake and depuration experiments indicated that HA depressed the adsorption and absorption of PFASs in wheat roots by reducing the bioavailability of PFASs, and HA did not affect the long-range transport of PFASs to be eliminated via the phloem of wheat. However, HA facilitated their transmembrane transport in wheat roots, while the contrary effect was observed in the shoots. The inhibitor experiments coupled with transcriptomics analysis uncover that the increased transmembrane transport of PFASs stimulated by HA is mainly driven by the slow-type anion channel pathways interacting with Ca2+-dependent protein kinases (Ca2+-CDPK-SLAC1). The promoted transmembrane transport of PFASs might cause adverse effects on the plant cell wall, which causes further concerns.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Humanos , Substâncias Húmicas/análise , Triticum , Ácidos Alcanossulfônicos/análise , Ácidos Alcanossulfônicos/metabolismo , Solo , Alcanossulfonatos/análise , Fluorocarbonos/análise , China
7.
Int J Mol Sci ; 24(20)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37894740

RESUMO

Taproot cracking, a severe and common physiological disorder, markedly reduces radish yield and commercial value. Calcium-dependent protein kinase (CDPK) plays a pivotal role in various plant developmental processes; however, its function in radish taproot cracking remains largely unknown. Here, 37 RsCDPK gene members were identified from the long-read radish genome "QZ-16". Phylogenetic analysis revealed that the CDPK members in radish, tomato, and Arabidopsis were clustered into four groups. Additionally, synteny analysis identified 13 segmental duplication events in the RsCDPK genes. Analysis of paraffin-embedded sections showed that the density and arrangement of fleshy taproot cortex cells are important factors that affect radish cracking. Transcriptome sequencing of the fleshy taproot cortex revealed 5755 differentially expressed genes (DEGs) (3252 upregulated and 2503 downregulated) between non-cracking radish "HongYun" and cracking radish "505". These DEGs were significantly enriched in plant hormone signal transduction, phenylpropanoid biosynthesis, and plant-pathogen interaction KEGG pathways. Furthermore, when comparing the 37 RsCDPK gene family members and RNA-seq DEGs, we identified six RsCDPK genes related to taproot cracking in radish. Soybean hairy root transformation experiments showed that RsCDPK21 significantly and positively regulates root length development. These findings provide valuable insights into the relationship between radish taproot cracking and RsCDPK gene function.


Assuntos
Arabidopsis , Raphanus , Raphanus/metabolismo , Filogenia , Genes de Plantas , Sintenia/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
Plant Biotechnol J ; 20(12): 2258-2271, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35984919

RESUMO

Plants have evolved complex signalling networks to regulate growth and defence responses under an ever-changing environment. However, the molecular mechanisms underlying the growth-defence tradeoff are largely unclear. We previously reported that rice CALCIUM-DEPENDENT PROTEIN KINASE 18 (OsCPK18) and MITOGEN-ACTIVATED PROTEIN KINASE 5 (OsMPK5) mutually phosphorylate each other and that OsCPK18 phosphorylates and positively regulates OsMPK5 to suppress rice immunity. In this study, we found that OsCPK18 and its paralog OsCPK4 positively regulate plant height and yield-related traits. Further analysis reveals that OsCPK18 and OsMPK5 synergistically regulate defence-related genes but differentially regulate development-related genes. In vitro and in vivo kinase assays demonstrated that OsMPK5 phosphorylates C-terminal threonine (T505) and serine (S512) residues of OsCPK18 and OsCPK4, respectively. The kinase activity of OsCPK18T505D , in which T505 was replaced by aspartic acid to mimic T505 phosphorylation, displayed less calcium sensitivity than that of wild-type OsCPK18. Interestingly, editing the MAPK phosphorylation motif in OsCPK18 and its paralog OsCPK4, which deprives OsMPK5-mediated phosphorylation but retains calcium-dependent activation of kinase activity, simultaneously increases rice yields and immunity. This editing event also changed the last seven amino acid residues of OsCPK18 and attenuated its binding with OsMPK5. This study presents a new regulatory circuit that fine tunes the growth-defence tradeoff by modulating OsCPK18/4 activity and suggests that CRISPR/Cas9-mediated engineering phosphorylation pathways could simultaneously improve crop yield and immunity.


Assuntos
Edição de Genes , Oryza , Oryza/genética , Fosforilação , Cálcio , Proteínas Quinases Ativadas por Mitógeno
9.
New Phytol ; 233(4): 1843-1863, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34854082

RESUMO

CaWRKY40 in pepper (Capsicum annuum) promotes immune responses to Ralstonia solanacearum infection (RSI) and to high-temperature, high-humidity (HTHH) stress, but how it interacts with upstream signalling components remains poorly understood. Here, using approaches of reverse genetics, biochemical and molecular biology we functionally characterised the relationships among the WRKYGMK-containing WRKY protein CaWRKY27b, the calcium-dependent protein kinase CaCDPK29, and CaWRKY40 during pepper response to RSI or HTHH. Our data indicate that CaWRKY27b is upregulated and translocated from the cytoplasm to the nucleus upon phosphorylation of Ser137 in the nuclear localisation signal by CaCDPK29. Using electrophoretic mobility shift assays and microscale thermophoresis, we observed that, due to the replacement of Q by M in the conserved WRKYGQK, CaWRKY27b in the nucleus failed to bind to W-boxes in the promoters of immunity- and thermotolerance-related marker genes. Instead, CaWRKY27b interacted with CaWRKY40 and promoted its binding and positive regulation of the tested marker genes including CaNPR1, CaDEF1 and CaHSP24. Notably, mutation of the WRKYGMK motif in CaWRKY27b to WRKYGQK restored the W-box binding ability. Our data therefore suggest that CaWRKY27b is phosphorylated by CaCDPK29 and acts as a transcriptional activator of CaWRKY40 during the pepper response to RSI and HTHH.


Assuntos
Capsicum , Ralstonia solanacearum , Termotolerância , Capsicum/genética , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Imunidade Vegetal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
10.
Mol Biol Rep ; 49(6): 5577-5583, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35616758

RESUMO

BACKGROUND: Banana is largely grown in tropical and subtropical climates. It is rich in various food components and has quite a high economic value. Unavailable ecological and agricultural conditions cause quantitative and qualitative losses in banana cultivation. Along with global climate change, drought stress is becoming prominent day by day. METHODS AND RESULTS: Micropropagation and rooting performance of Azman and Grand Naine banana cultivars were investigated under in vitro drought stress conditions. The expression levels of four different genes of CDPK gene family in leaf and root tissues of the rooted plants were determined with the use of qRT-PCR. Greater expression levels of four MaCDPK genes were seen in Azman cultivar than in Grand Naine cultivar. MaCDPK9 and MaCDPK21 had greater expression levels in root tissue and MaCDPK1 and MaCDPK40 genes in leaf tissues. CONCLUSIONS: Response of different banana cultivars to in vitro drought stress was determined in this study. The expression levels of the genes of CDPK gene family with a significant role in drought stress had significant contributions in elucidation of banana plant response to drought stress.


Assuntos
Musa , Secas , Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Musa/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética
11.
Int J Mol Sci ; 23(6)2022 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-35328509

RESUMO

Calcium-dependent protein kinase (CDPKs) is one of the calcium-sensing proteins in plants. They are likely to play important roles in growth and development and abiotic stress responses. However, these functions have not been explored in sweet potato. In this study, we identified 39 CDPKs in cultivated hexaploid sweet potato (Ipomoea batatas, 2n = 6x = 90), 35 CDPKs in diploid relative Ipomoea trifida (2n = 2x = 30), and 35 CDPKs in Ipomoea triloba (2n = 2x = 30) via genome structure analysis and phylogenetic characterization, respectively. The protein physiological property, chromosome localization, phylogenetic relationship, gene structure, promoter cis-acting regulatory elements, and protein interaction network were systematically investigated to explore the possible roles of homologous CDPKs in the growth and development and abiotic stress responses of sweet potato. The expression profiles of the identified CDPKs in different tissues and treatments revealed tissue specificity and various expression patterns in sweet potato and its two diploid relatives, supporting the difference in the evolutionary trajectories of hexaploid sweet potato. These results are a critical first step in understanding the functions of sweet potato CDPK genes and provide more candidate genes for improving yield and abiotic stress tolerance in cultivated sweet potato.


Assuntos
Ipomoea batatas , Ipomoea , Diploide , Regulação da Expressão Gênica de Plantas , Crescimento e Desenvolvimento , Ipomoea/genética , Ipomoea batatas/genética , Filogenia , Estresse Fisiológico/genética
12.
Int J Mol Sci ; 23(8)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35457042

RESUMO

Tomato is an important vegetable crop. In the process of tomato production, it will encounter abiotic stress, such as low temperature, drought, and high salt, and biotic stress, such as pathogen infection, which will seriously affect the yield of tomato. Calcium-dependent protein kinase (CDPK) is a class of major calcium signal receptor which has an important regulatory effect on the perception and decoding of calcium signals. CDPK plays a key role in many aspects of plant growth, such as the elongation of pollen tubes, plant growth, and response to biotic and abiotic stress. While some studies have concentrated on Arabidopsis and pepper, Solanum habrochaites is a wild species relative of cultivated tomato and there is no report on CDPK in Solanum habrochaites to date. Using tomato genomic data, this study identified 33 members of the CDPK gene family. Evolutionary analysis divides family members into four Asian groups, of which the CDPK family members have 11 gene replication pairs. Subcellular location analysis showed that most proteins were predicted to be located in the cytoplasm, and less protein existed on the cell membrane. Not all CDPK family members have a transmembrane domain. Cis regulatory elements relating to light, hormones, and drought stress are overrepresented in the promoter region of the CDPK genes in Solanum habrochaites. The expression levels of each gene under biotic stress and abiotic stress were quantified by qRT-PCR. The results showed that members of the CDPK family in Solanum habrochaites respond to different biotic and abiotic stresses. Among them, the expression of ShCDPK6 and ShCDPK26 genes change significantly. ShCDPK6 and ShCDPK26 genes were silenced using VIGS (virus-induced gene silencing), and the silenced plants illustrated reduced stress resistance to Botrytis cinerea, cold, and drought stress. The results of this study will provide a basis for the in-depth study of the CDPK gene family in Solanum habrochaites, laying the foundation for further analysis of the function of the gene family.


Assuntos
Arabidopsis , Solanum lycopersicum , Solanum , Arabidopsis/metabolismo , Cálcio/metabolismo , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Filogenia , Proteínas de Plantas/metabolismo , Proteínas Quinases , Solanum/genética
13.
Int J Mol Sci ; 23(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35163223

RESUMO

Calcium-dependent protein kinases (CDPKs) are crucial calcium ions (Ca2+) sensors in plants with important roles in signal transduction, plant growth, development, and stress responses. Here, we identified 24 genes encoding CDPKs in Dendrobium officinale using genome-wide analysis. The phylogenetic analysis revealed that these genes formed four groups, with similar structures in the same group. The gene expression patterns following hormone treatments and yeast two-hybrid of homologous CDPK gene pairs with Rbohs showed differences, indicating functional divergence between homologous genes. In addition, the rapid accumulation of hydrogen peroxide (H2O2) and stomatal closure was observed in response to salicylic acid (SA)/jasmonic acid (JA) stress. Our data showed that CDPK9-2 and CDPK20-4 interacted with Rboh D and Rboh H, respectively, and were implicated in the generation of H2O2 and regulation of the stomatal aperture in response to salicylic acid/jasmonic acid treatment. We believe these results can provide a foundation for the functional divergence of homologous genes in D. officinale.


Assuntos
Dendrobium/genética , Dendrobium/fisiologia , Proteínas Quinases/fisiologia , Cálcio/metabolismo , China , Expressão Gênica/genética , Regulação da Expressão Gênica de Plantas/genética , Família Multigênica , Filogenia , Desenvolvimento Vegetal , Proteínas de Plantas/genética , Proteínas Quinases/genética , Proteínas Quinases/metabolismo
14.
J Exp Bot ; 72(12): 4190-4201, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33787877

RESUMO

Calcium-dependent protein kinases (CDPKs) play essential roles in plant development and stress responses. CDPKs have a conserved kinase domain, followed by an auto-inhibitory junction connected to the calmodulin-like domain that binds Ca2+. These structural features allow CDPKs to decode the dynamic changes in cytoplasmic Ca2+ concentrations triggered by hormones and by biotic and abiotic stresses. In response to these signals, CDPKs phosphorylate downstream protein targets to regulate growth and stress responses according to the environmental and developmental circumstances. The latest advances in our understanding of the metabolic, transcriptional, and protein-protein interaction networks involving CDPKs suggest that they have a direct influence on plant carbon/nitrogen (C/N) balance. In this review, we discuss how CDPKs could be key signaling nodes connecting stress responses with metabolic homeostasis, and acting together with the sugar and nutrient signaling hubs SnRK1, HXK1, and TOR to improve plant fitness.


Assuntos
Carbono , Proteínas Quinases , Nitrogênio , Desenvolvimento Vegetal
15.
Biotechnol Lett ; 43(2): 511-521, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33131007

RESUMO

OBJECTIVES: Calcium-dependent protein kinases (CDPKs) function directly in plant development and stress responses. We used whole genome sequences and mRNA expression data to analyze the phylogenetic relationships, gene structure, collinearity, and differential expression of CDPKs in two differentially drought-tolerant potato varieties. RESULTS: In total, we identified 25 CDPK proteins belonging to four subfamilies. There was a significant collinear relationship among 13 CDPK genes belonging to four segmentally duplicated pairs. Subcellular prediction implied that all StCDPKs were localized at the plasma membrane. Analysis of promoter regions revealed that StCDPKs were photosensitive and responsive to biotic stress, abiotic stress, and hormone stimuli. RNA-seq analysis showed differential expression of StCDPKs among various potato tissues, and qPCR analysis revealed that 20 StCDPKs exhibited differential expression patterns under drought stress between drought-tolerant (QS9) and drought sensitive (Atl) potato varieties. Among these, the most strongly drought-induced genes were respectively StCDPK3 and StCDPK23, highlighting these as attractive candidate genes for further functional analyses of drought-stress responses in potato. CONCLUSIONS: Our results demonstrating the tissue specific and drought stress-responsive StCDPK genes of potato both provide a reference for further research about the functions of CDPK family proteins and should support ongoing efforts for the further genetic improvement of potato.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Filogenia , Proteínas Quinases/genética , Solanum tuberosum/genética , Secas , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta/genética , Desenvolvimento Vegetal/genética , Proteínas de Plantas/genética , Solanum tuberosum/crescimento & desenvolvimento , Estresse Fisiológico/genética
16.
Int J Mol Sci ; 22(3)2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494310

RESUMO

Calcium-dependent protein kinase (CDPK or CPK) and CDPK-related kinase (CRK) play an important role in plant growth, development, and adaptation to environmental stresses. However, their gene families had been yet inadequately investigated in Medicago truncatula. In this study, six MtCRK genes were computationally identified, they were classified into five groups with MtCDPKs based on phylogenetic relationships. Six pairs of segmental duplications were observed in MtCDPK and MtCRK genes and the Ka/Ks ratio, an indicator of selection pressure, was below 0.310, indicating that these gene pairs underwent strong purifying selection. Cis-acting elements of morphogenesis, multiple hormone responses, and abiotic stresses were predicted in the promoter region. The spatial expression of MtCDPKs and MtCRKs displays diversity. The expression of MtCDPKs and MtCRKs could be regulated by various stresses. MtCDPK4, 14, 16, 22, and MtCRK6 harbor both N-myristoylation site and palmitoylation site and were anchored on plasma membrane, while MtCDPK7, 9, and 15 contain no or only one N-acylation site and were distributed in cytosol and nucleus, suggesting that the N-terminal acylation sites play a key role in subcellular localization of MtCDPKs and MtCRKs. In summary, comprehensive characterization of MtCDPKs and MtCRKs provide a subset of candidate genes for further functional analysis and genetic improvement against drought, cold, salt and biotic stress.


Assuntos
Genoma de Planta , Estudo de Associação Genômica Ampla , Medicago truncatula/genética , Família Multigênica , Proteínas Quinases/genética , Proteínas Proto-Oncogênicas c-crk/genética , Mapeamento Cromossômico , Sequência Conservada , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Medicago truncatula/classificação , Filogenia , Regiões Promotoras Genéticas
17.
BMC Genomics ; 21(1): 53, 2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31948407

RESUMO

BACKGROUND: Ca2+ played as a ubiquitous secondary messenger involved in plant growth, development, and responses to various environmental stimuli. Calcium-dependent protein kinases (CDPK) were important Ca2+ sensors, which could directly translate Ca2+ signals into downstream phosphorylation signals. Considering the importance of CDPKs as Ca2+ effectors for regulation of plant stress tolerance and few studies on Brachypodium distachyon were available, it was of interest for us to isolate CDPKs from B. distachyon. RESULTS: A systemic analysis of 30 CDPK family genes in B. distachyon was performed. Results showed that all BdCDPK family members contained conserved catalytic Ser/Thr protein kinase domain, autoinhibitory domain, and EF-hand domain, and a variable N-terminal domain, could be divided into four subgroup (I-IV), based upon sequence homology. Most BdCDPKs had four EF-hands, in which EF2 and EF4 revealed high variability and strong divergence from EF-hand in AtCDPKs. Synteny results indicated that large number of syntenic relationship events existed between rice and B. distachyon, implying their high conservation. Expression profiles indicated that most of BdCDPK genes were involved in phytohormones signal transduction pathways and regulated physiological process in responding to multiple environmental stresses. Moreover, the co-expression network implied that BdCDPKs might be both the activator and the repressor involved in WRKY transcription factors or MAPK cascade genes mediated stress response processes, base on their complex regulatory network. CONCLUSIONS: BdCDPKs might play multiple function in WRKY or MAPK mediated abiotic stresses response and phytohormone signaling transduction in B. distachyon. Our genomics analysis of BdCDPKs could provide fundamental information for further investigation the functions of CDPKs in integrating Ca2+ signalling pathways in response to environments stresses in B. distachyon.


Assuntos
Brachypodium/enzimologia , Proteínas de Plantas/genética , Proteínas Quinases/genética , Brachypodium/genética , Perfilação da Expressão Gênica , Genoma de Planta , Sistema de Sinalização das MAP Quinases/genética , Família Multigênica , Filogenia , Proteínas de Plantas/metabolismo , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Sintenia , Fatores de Transcrição/metabolismo
18.
J Exp Bot ; 71(14): 4042-4056, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32249299

RESUMO

The flowers of okra (Abelmoschus esculentus) open and wilt within only a few hours, and this is accompanied by accumulation of hyperoside, a secondary metabolite in the flavonoid pathway. However, little is known about the relationship between flavonoids and flowering. Here, we found that exogenous application of hyperoside extended the duration of the full-blooming period by more than 3-fold, and this was accompanied by a 14.7-fold increase in the expression of CALCIUM-DEPENDENT PROTEIN KINASE6 (AeCDPK6). Gene expression profiling indicated that the transcription factor AeMYB30 was co-expressed with AeCDPK6, and detailed protein interaction and phosphorylation experiments together with yeast two-hybrid and bimolecular fluorescence complementation assays demonstrated an interaction between AeMYB30 and AeCDPK6. AeCDPK6 specifically phosphorylated AeMYB30S191, leading to increased protein stability and prevention of degradation. Furthermore, AeMYB30 directly bound to the promoter of AeUF3GaT1, a key enzyme in the hyperoside biosynthesis pathway. Analysis of transgenic plants showed that AeCDPK6 was required for the hyperoside-induced phosphorylation of AeMYB30 to enhance its stability and transcriptional activity. Ectopic expression of AeCDPK6 promoted hyperoside accumulation and prolonged the full-blooming period in an AeMYB30-dependent manner. Our results indicate the role of AeCDPK6-AeMYB30 in the molecular mechanism by which hyperoside regulates the period of full blooming in okra, a plant with a short duration of flowering.


Assuntos
Abelmoschus , Flavonoides , Extratos Vegetais , Quercetina/análogos & derivados
19.
Biochem Genet ; 58(1): 40-62, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31144068

RESUMO

Calcium-dependent protein kinases (CDPKs) play vital roles in the regulation of plant growth, development, and tolerance to various abiotic stresses. However, little information is available for this gene family in banana. In this study, 44 CDPKs were identified in banana and were classified into four groups based on phylogenetic, gene structure, and conserved motif analyses. The majority of MaCDPKs generally exhibited similar expression patterns in the different tissues. Transcriptome analyses revealed that many CDPKs showed strong transcript accumulation at the early stages of fruit development and postharvest ripening in both varieties. Interaction network and co-expression analysis further identified some CDPKs-mediated network that was potentially active at the early stages of fruit development. Comparative expression analysis suggested that the high levels of CDPK expression in FJ might be related to its fast ripening characteristic. CDPK expression following the abiotic stress treatments indicated a significant transcriptional response to osmotic, cold, and salt treatment, as well as differential expression profiles, between BX and FJ. The findings of this study elucidate the transcriptional control of CDPKs in development, ripening, and the abiotic stress response in banana. Some tissue-specific, development/ripening-dependent, and abiotic stress-responsive candidate MaCDPK genes were identified for further genetic improvement of banana.


Assuntos
Musa/crescimento & desenvolvimento , Musa/genética , Desenvolvimento Vegetal/genética , Proteínas de Plantas/genética , Proteínas Quinases/genética , Estresse Fisiológico/genética , Frutas/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Folhas de Planta/genética , Raízes de Plantas/genética
20.
Biochim Biophys Acta Mol Cell Res ; 1865(2): 231-246, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29100789

RESUMO

Plant calcium-dependent protein kinases (CDPKs) are key proteins implicated in calcium-mediated signaling pathways of a wide range of biological events in the organism. The action of each particular CDPK is strictly regulated by many mechanisms in order to ensure an accurate signal translation and the activation of the adequate response processes. In this work, we investigated the regulation of a CDPK involved in rice cold stress response, OsCPK17, to better understand its mode of action. We identified two new alternative splicing (AS) mRNA forms of OsCPK17 encoding truncated versions of the protein, missing the CDPK activation domain. We analyzed the expression patterns of all AS variants in rice tissues and examined their subcellular localization in onion epidermal cells. The results indicate that the AS of OsCPK17 putatively originates truncated forms of the protein with distinct functions, and different subcellular and tissue distributions. Additionally, we addressed the regulation of OsCPK17 by post-translational modifications in several in vitro experiments. Our analysis indicated that OsCPK17 activity depends on its structural rearrangement induced by calcium binding, and that the protein can be autophosphorylated. The identified phosphorylation sites mostly populate the OsCPK17 N-terminal domain. Exceptions are phosphosites T107 and S136 in the kinase domain and S558 in the C-terminal domain. These phosphosites seem conserved in CDPKs and may reflect a common regulatory mechanism for this protein family.


Assuntos
Processamento Alternativo/fisiologia , Proteínas e Peptídeos de Choque Frio , Oryza , Proteínas de Plantas , Proteínas Quinases , Cálcio/metabolismo , Proteínas e Peptídeos de Choque Frio/química , Proteínas e Peptídeos de Choque Frio/genética , Proteínas e Peptídeos de Choque Frio/metabolismo , Oryza/enzimologia , Oryza/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Domínios Proteicos , Proteínas Quinases/química , Proteínas Quinases/genética , Proteínas Quinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA