Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.371
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nano Lett ; 24(26): 8071-8079, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38901035

RESUMO

Single-atom nanozymes (SANs) are considered to be ideal substitutes for natural enzymes due to their high atom utilization. This work reported a strategy to manipulate the second coordination shell of the Ce atom and reshape the carbon carrier to improve the oxidase-like activity of SANs. Internally, S atoms were symmetrically embedded into the second coordination layer to form a Ce-N4S2-C structure, which reduced the energy barrier for O2 reduction, promoted the electron transfer from the Ce atom to O atoms, and enhanced the interaction between the d orbital of the Ce atom and p orbital of O atoms. Externally, in situ polymerization of mussel-inspired polydopamine on the precursor helps capture metal sources and protects the 3D structure of the carrier during pyrolysis. On the other hand, polyethylene glycol (PEG) modulated the interface of the material to enhance water dispersion and mass transfer efficiency. As a proof of concept, the constructed PEG@P@Ce-N/S-C was applied to the multimodal assay of butyrylcholinesterase activity.


Assuntos
Cério , Cério/química , Polietilenoglicóis/química , Oxirredutases/química , Oxirredutases/metabolismo , Butirilcolinesterase/química , Butirilcolinesterase/metabolismo , Polímeros/química , Indóis/química , Oxigênio/química , Oxirredução
2.
J Proteome Res ; 23(8): 3025-3040, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566450

RESUMO

Despite the recent and increasing knowledge surrounding COVID-19 infection, the underlying mechanisms of the persistence of symptoms for a long time after the acute infection are still not completely understood. Here, a multiplatform mass spectrometry-based approach was used for metabolomic and lipidomic profiling of human plasma samples from Long COVID patients (n = 40) to reveal mitochondrial dysfunction when compared with individuals fully recovered from acute mild COVID-19 (n = 40). Untargeted metabolomic analysis using CE-ESI(+/-)-TOF-MS and GC-Q-MS was performed. Additionally, a lipidomic analysis using LC-ESI(+/-)-QTOF-MS based on an in-house library revealed 447 lipid species identified with a high confidence annotation level. The integration of complementary analytical platforms has allowed a comprehensive metabolic and lipidomic characterization of plasma alterations in Long COVID disease that found 46 relevant metabolites which allowed to discriminate between Long COVID and fully recovered patients. We report specific metabolites altered in Long COVID, mainly related to a decrease in the amino acid metabolism and ceramide plasma levels and an increase in the tricarboxylic acid (TCA) cycle, reinforcing the evidence of an impaired mitochondrial function. The most relevant alterations shown in this study will help to better understand the insights of Long COVID syndrome by providing a deeper knowledge of the metabolomic basis of the pathology.


Assuntos
COVID-19 , Lipidômica , Metabolômica , Mitocôndrias , SARS-CoV-2 , Humanos , COVID-19/sangue , COVID-19/virologia , COVID-19/metabolismo , Metabolômica/métodos , Mitocôndrias/metabolismo , Lipidômica/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Espectrometria de Massas/métodos , Síndrome de COVID-19 Pós-Aguda , Metaboloma , Adulto , Ciclo do Ácido Cítrico , Ceramidas/sangue , Ceramidas/metabolismo
3.
Breast Cancer Res Treat ; 207(2): 393-404, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38740665

RESUMO

PURPOSE: Preoperative chemotherapy is a critical component of breast cancer management, yet its effectiveness is not uniform. Moreover, the adverse effects associated with chemotherapy necessitate the identification of a patient subgroup that would derive the maximum benefit from this treatment. This study aimed to establish a method for predicting the response to neoadjuvant chemotherapy in breast cancer patients utilizing a metabolomic approach. METHODS: Plasma samples were obtained from 87 breast cancer patients undergoing neoadjuvant chemotherapy at our facility, collected both before the commencement of the treatment and before the second treatment cycle. Metabolite analysis was conducted using capillary electrophoresis-mass spectrometry (CE-MS) and liquid chromatography-mass spectrometry (LC-MS). We performed comparative profiling of metabolite concentrations by assessing the metabolite profiles of patients who achieved a pathological complete response (pCR) against those who did not, both in initial and subsequent treatment cycles. RESULTS: Significant variances were observed in the metabolite profiles between pCR and non-pCR cases, both at the onset of preoperative chemotherapy and before the second cycle. Noteworthy distinctions were also evident between the metabolite profiles from the initial and the second neoadjuvant chemotherapy courses. Furthermore, metabolite profiles exhibited variations associated with intrinsic subtypes at all assessed time points. CONCLUSION: The application of plasma metabolomics, utilizing CE-MS and LC-MS, may serve as a tool for predicting the efficacy of neoadjuvant chemotherapy in breast cancer in the future after all necessary validations have been completed.


Assuntos
Neoplasias da Mama , Metabolômica , Terapia Neoadjuvante , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/sangue , Neoplasias da Mama/patologia , Feminino , Terapia Neoadjuvante/métodos , Metabolômica/métodos , Pessoa de Meia-Idade , Adulto , Idoso , Resultado do Tratamento , Metaboloma , Cromatografia Líquida , Espectrometria de Massas , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores Tumorais/sangue , Prognóstico , Eletroforese Capilar , Quimioterapia Adjuvante/métodos
4.
Small ; 20(4): e2305615, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37718453

RESUMO

The development of cerium (Ce) single-atom (SA) electrocatalysts for oxygen reduction reaction (ORR) with high active-site utilization and intrinsic activity has become popular recently but remains challenging. Inspired by an interesting phenomenon that pore-coupling with single-metal cerium sites can accelerate the electron transfer predicted by density functional theory calculations, here, a facile strategy is reported for directional design of a highly active and stable Ce SA catalyst (Ce SA/MC) by the coupling of single-metal Ce-N4 sites and mesopores in nanocarbon via pore-confinement-pyrolysis of Ce/phenanthroline complexes combined with controlling the formation of Ce oxides. This catalyst delivers a comparable ORR catalytic activity with a half-wave potential of 0.845 V versus RHE to the Pt/C catalyst. Also, a Ce SA/MC-based zinc-air battery (ZAB) has exhibited a higher energy density (924 Wh kgZn -1 ) and better long-term cycling durability than a Pt/C-based ZAB. This proposed strategy may open a door for designing efficient rare-earth metal catalysts with single-metal sites coupling with porous structures for next-generation energy devices.

5.
Small ; 20(12): e2307685, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37946630

RESUMO

The rational design of metal-organic framework (MOF)-based electrocatalysts plays a key role in achieving high-efficiency oxygen evolution reaction (OER). Herein, a synergetic morphology and electronic structure engineering strategy are proposed to design a Co-MOF nanoflower grown on carbon paper via rare-earth cerium doping (CoCe-MOF/CP). Compared with Co-MOF/CP, the developed CoCe-MOF/CP exhibited superior OER performance with a low overpotential of 267 mV at 10 mA cm-2 and outstanding long-term stability over 100 h. Theoretical calculations show that the unique 4f valence electron structure of Ce induced charge redistribution of the Co-MOF surface through the strong Co 3d-O 2p-Ce 4f orbital electronic coupling below the Fermi level. Ce-doped plays a key role in the engineering of the electronic states of the Co sites to endow them with the optimal free energy landscape for enhanced OER catalytic activity. This work provides new insights into comprehending the RE-enhanced mechanism of electrocatalysis and provides an effective strategy for the design of MOF-based electrocatalysts.

6.
Small ; : e2308858, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38618927

RESUMO

Although TiNb2O7 (TNO) with comparable operating potential and ideal theoretical capacity is considered to be the most ideal replacement for negative Li4Ti5O12 (LTO), the low ionic and electronic conductivity still limit its practical application as satisfactory anode for lithium-ion batteries (LIBs) with high-power density. Herein, TNO nanoparticles modified by Cerium (Ce) with outstanding electrochemical performance are synthesized. The successful introduction of Ce3+ in the lattice leads to increased interplanar spacing, refined grain size, more oxygen vacancy, and a smaller lithium diffusion barrier, which are conducive to improve conductivity of both Li+ and electrons. As a result, the modified TNO reaches high reversible capacity of 256.0 mA h g-1 at 100 mA g-1 after 100 cycles, and 183.0 mA h g-1 even under 3200 mA g-1. In particular, when the temperature drops to -20 °C, the cell undergoing 1500 cycles at a high current density of 500 mA g-1 can still reach 89.7 mA h g-1, corresponding to a capacity decay rate per cycle of only 0.033%. This work provides a new way to improve the electrochemical properties of alternative anodes for LIBs at extreme temperature.

7.
Small ; 20(21): e2308001, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38100205

RESUMO

Y3Al5O12:Ce (YAG:Ce) phosphors are extensively used in the field of white light-emitting diodes (LEDs) due to their efficient luminescent properties. To optimize the performance of YAG:Ce phosphors, a comprehensive understanding of their synthesis and structural evolution is essential. This paper presents a direct in situ transmission electron microscopy (TEM) /scanning TEM (STEM) investigation on the transformation process of a precursor comprising nanocrystalline CeO2 dispersed in an amorphous Y-Al oxide matrix into crystalline YAG:Ce particles. The study reveals that nanocrystalline CeO2 particles dissolve completely in the Y-Al oxide matrix at a temperature above 900 °C, while YAlO3 (YAP)-type crystalline particles with Al2O3 phase in grain boundaries are observed above 1000 °C. Finally, YAG:Ce-type crystalline particles are formed above 1180 °C. Atomic-resolution energy-dispersive X-ray spectroscopy (EDS) elemental mapping demonstrates that the doped cerium (Ce) atoms occupy the same atomic sites as yttrium (Y). Photoluminescence measurements validate the efficient luminescent properties of the obtained YAG:Ce phosphor.

8.
Small ; : e2402611, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-39031806

RESUMO

Microalgae are increasingly playing a significant role in many areas of research and development. Recent studies have demonstrated their ability to aid wound healing by their ability to generate oxygen, aiding the healing process. Bearing this in mind, the capability to spray/spin deposit microalgae in suspension (solution) or compartmentalize living microalgae within architectures such as fibers/scaffolds and beads, would have significance as healing mechanisms for addressing a wide range of wounds. Reconstructing microalgae-bearing architectures as either scaffolds or beads could be generated via electric field (bio-electrospraying and cell electrospinning) and non-electric field (aerodynamically assisted bio-jetting/threading) driven technologies. However, before studying the biomechanical properties of the generated living architectures, the microalgae exposed to these techniques must be interrogated from a molecular level upward first, to establish these techniques, have no negative effects brought on the processed microalgae. Therefore these studies, demonstrate the ability of both these jetting and threading technologies to directly handle living microalgae, in suspension or within a polymeric suspension, safely, and form algae-bearing architectures such as beads and fibers/scaffolds.

9.
Electrophoresis ; 45(1-2): 8-34, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37603373

RESUMO

This work presents a revision of the main applications of capillary electromigration (CE) methods in food analysis and Foodomics. Papers that were published during the period March 2021 to March 2023 are included. The work shows the multiple CE methods that have been developed and applied to analyze different types of molecules in foods and beverages. Namely, CE methods have been applied to analyze amino acids, biogenic amines, heterocyclic amines, peptides, proteins, phenols, polyphenols, pigments, lipids, carbohydrates, vitamins, DNAs, contaminants, toxins, pesticides, additives, residues, small organic and inorganic compounds, and other minor compounds. In addition, new CE procedures to perform chiral separation and for evaluating the effects of food processing as well as the last developments of microchip CE and new applications in Foodomics will be also discussed. The new procedures of CE to investigate food quality and safety, nutritional value, storage, and bioactivity are also included in the present review work.


Assuntos
Eletroforese Capilar , Análise de Alimentos , Análise de Alimentos/métodos , Eletroforese Capilar/métodos , Qualidade dos Alimentos , Polifenóis , Vitaminas/análise , Aminas
10.
Electrophoresis ; 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191956

RESUMO

Biological thiols spontaneously form a stable Au-S dative bond with gold nanoparticles (AuNP) that might be used for their selective extraction and enrichment in biological samples. In this work, interactions of selected biological thiols (glutathione, cysteine, homocysteine [Hcys], cysteamine [CA], and N-acetylcysteine) with AuNP stabilized by different capping agents (citrate, Tween 20, Brij 35, CTAB, SDS) were investigated by UV-Vis spectroscopy and capillary electrophoresis with laser-induced fluorescence. Spectrophotometric measurements showed aggregation of Hcys and CA with AuNP. In contrast, it was confirmed by CE-LIF that biological thiols were adsorbed to all types of AuNP. Citrate-capped AuNP were selected for AuNP-based extraction of biological thiols from exhaled breath condensate (EBC). Dithiothreitol was utilized for desorption of biological thiols from the AuNP surface, which was followed by derivatization with eosin-5-maleimide and CE-LIF analysis. AuNP-based extraction increased the sensitivity of CE-LIF analysis; however, further optimization of methodology is necessary for accurate quantification of biological thiols in EBC.

11.
Electrophoresis ; 45(3-4): 333-345, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37985935

RESUMO

The oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (ox-PAPC) products in human high-density lipoproteins (HDLs) were investigated by low-flow capillary electrophoresis-mass spectrometry (low-flow CE-MS). To accelerate the optimization, native PAPC (n-PAPC) standard was first analyzed by a commercial CE instrument with a photodiode array detector. The optimal separation buffer contained 60% (v/v) acetonitrile, 40% (v/v) methanol, 20 mM ammonium acetate, 0.5% (v/v) formic acid, and 0.1% (v/v) water. The selected separation voltage and capillary temperature were 20 kV and 23°C. The optimal CE separation buffer was then used for the low-flow CE-MS analysis. The selected MS conditions contained heated capillary temperature (250°C), capillary voltage (10 V), and injection time (1 s). No sheath gas was used for MS. The linear range for n-PAPC was 2.5-100.0 µg/mL. The coefficient of determination (R2 ) was 0.9918. The concentration limit of detection was 1.52 µg/mL, and the concentration limit of quantitation was 4.60 µg/mL. The optimal low-flow CE-MS method showed good repeatability and sensitivity. The ox-PAPC products in human HDLs were determined based on the in vitro ox-PAPC products of n-PAPC standard. Twenty-one ox-PAPC products have been analyzed in human HDLs. Uremic patients showed significantly higher levels of 15 ox-PAPC products than healthy subjects.


Assuntos
Lipoproteínas HDL , Fosfolipídeos , Humanos , Células Cultivadas , Espectrometria de Massas , Eletroforese Capilar
12.
Gastrointest Endosc ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38851456

RESUMO

BACKGROUND AND AIMS: Despite the benefits of artificial intelligence (AI) in small bowel (SB) capsule endoscopy (CE) image reading, information on its application in the stomach and SB CE is lacking. METHODS: In this multicenter, retrospective diagnostic study, gastric imaging data were added to the deep learning (DL)-based SmartScan (SS), which has been described previously. A total of 1,069 magnetically controlled gastrointestinal (GI) CE examinations (comprising 2,672,542 gastric images) were used in the training phase for recognizing gastric pathologies, producing a new AI algorithm named SS Plus. 342 fully automated, magnetically controlled CE (FAMCE) examinations were included in the validation phase. The performance of both senior and junior endoscopists with both the SS Plus-Assisted Reading (SSP-AR) and conventional reading (CR) modes was assessed. RESULTS: SS Plus was designed to recognize 5 types of gastric lesions and 17 types of SB lesions. SS Plus reduced the number of CE images required for review to 873.90 (1000) (median, IQR 814.50-1,000) versus 44,322.73 (42,393) (median, IQR 31,722.75-54,971.25) for CR. Furthermore, with SSP-AR, endoscopists took 9.54 min (8.51) (median, IQR 6.05-13.13) to complete the CE video reading. In the 342 CE videos, SS Plus identified 411 gastric and 422 SB lesions, whereas 400 gastric and 368 intestinal lesions were detected with CR. Moreover, junior endoscopists remarkably improved their CE image reading ability with SSP-AR. CONCLUSIONS: Our study shows that the newly upgraded DL-based algorithm SS Plus can detect GI lesions and help improve the diagnostic performance of junior endoscopists in interpreting CE videos.

13.
Eur Radiol ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867119

RESUMO

OBJECTIVES: The Node-RADS score was recently introduced to offer a standardized assessment of lymph node invasion (LNI). We tested its diagnostic performance in accurately predicting LNI in breast cancer (BC) patients with magnetic resonance imaging. The study also explores the consistency of the score across three readers. MATERIALS AND METHODS: A retrospective study was conducted on BC patients who underwent preoperative breast contrast-enhanced magnetic resonance imaging and lymph node dissection between January 2020 and January 2023. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value were calculated for different Node-RADS cut-off values. Pathologic results were considered the gold standard. The overall diagnostic performance was evaluated using receiver operating characteristic curves and the area under the curve (AUC). A logistic regression analysis was performed. Cohen's Kappa analysis was used for inter-reader agreement. RESULTS: The final population includes 192 patients and a total of 1134 lymph nodes analyzed (372 metastatic and 762 benign). Increasing the Node-RADS cut-off values, specificity and PPV rose from 71.4% to 100% and 76.7% to 100%, respectively, for Reader 1, 69.4% to 100% and 74.6% to 100% for Reader 2, and from 64.3% to 100% and 72% to 100% for Reader 3. Node-RADS > 2 could be considered the best cut-off value due to its balanced performance. Node-RADS exhibited a similar AUC for the three readers (0.97, 0.93, and 0.93). An excellent inter-reader agreement was found (Kappa values between 0.71 and 0.83). CONCLUSIONS: The Node-RADS score demonstrated moderate-to-high overall accuracy in identifying LNI in patients with BC, suggesting that the scoring system can aid in the identification of suspicious lymph nodes and facilitate appropriate treatment decisions. CLINICAL RELEVANCE STATEMENT: Node-RADS > 2 can be considered the best cut-off for discriminating malignant nodes, suggesting that the scoring system can effectively help identify suspicious lymph nodes by staging the disease and providing a global standardized language for clear communication. KEY POINTS: Axillary lymphadenopathies in breast cancer are crucial for determining the disease stage. Node-RADS was introduced to provide a standardized evaluation of breast cancer lymph nodes. RADS > 2 can be considered the best cut-off for discriminating malignant nodes.

14.
Conserv Biol ; : e14292, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38752470

RESUMO

To achieve sustainable shark fisheries, it is key to understand not only the biological drivers and environmental consequences of overfishing, but also the social and economic drivers of fisher behavior. The extinction risk of sharks is highest in coastal tropical waters, where small-scale fisheries are most prevalent. Small-scale fisheries provide a critical source of economic and nutritional security to coastal communities, and these fishers are among the most vulnerable social and economic groups. We used Kenya's and Zanzibar's small-scale shark fisheries, which are illustrative of the many data-poor, small-scale shark fisheries worldwide, as case studies to explore the relationship between extinction risk and the economic and nutritional value of sharks. To achieve this, we combined existing data on shark landings, extinction risk, and nutritional value with sales data at 16 key landing sites and information from interviews with 476 fishers. Shark fisheries were an important source of economic and nutritional security, valued at >US$4 million annually and providing enough nutrition for tens of thousands of people. Economically and nutritionally, catches were dominated by threatened species (72.7% and 64.6-89.7%, respectively). The most economically valuable species were large and slow to reproduce (e.g. mobulid rays, wedgefish, and bull, silky, and mako sharks) and therefore more likely to be threatened with extinction. Given the financial incentive and intensive fishing pressure, small-scale fisheries are undoubtedly major contributors to the decline of threatened coastal shark species. In the absence of effective fisheries management and enforcement, we argue that within small-scale fisheries the conditions exist for an economically incentivized feedback loop in which vulnerable fishers are driven to persistently overfish vulnerable and declining shark species. To protect these species from extinction, this feedback loop must be broken.


Conexión entre el riesgo de extinción y el valor nutricional de los tiburones en las pesquerías a pequeña escala Resumen Para lograr la sustentabilidad de las pesquerías de tiburones se deben entender los factores ecológicos y las consecuencias ambientales de la sobrepesca, así como los factores sociales y económicos del comportamiento del pescador. El riesgo de extinción de los tiburones es mucho mayor en las aguas tropicales costeras, en donde son más frecuentes las pesquerías a pequeña escala. Las pesquerías a pequeña escala, que además se encuentran entre los grupos con mayor vulnerabilidad social y económica, proporcionan una fuente importante de seguridad económica y nutricional para las comunidades costeras. Usamos las pesquerías de Kenia y Zanzíbar, las cuales representan muy bien a muchas de las pequeñas pesquerías de tiburones con deficiencia de datos, como estudios de caso para explorar la relación entre el riesgo de extinción y el valor económico y nutricional de los tiburones. Para lograr esto, combinamos los datos ya existentes de desembarques de tiburones, riesgo de extinción y valor nutricional con la información de ventas en 16 sitios clave de desembarque e información de las entrevistas a 476 pescadores. Las pesquerías de tiburones son una fuente importante de seguridad alimentaria y económica, valorada en más de US$4 millones anuales y que proporciona suficiente alimentación para miles de personas. En cuanto a la economía y la alimentación, las capturas estuvieron dominadas por especies amenazadas (72.7% y 64.6­89.7%, respectivamente). Las especies con mayor valor económico eran aquellas de gran tamaño y lenta reproducción, y, por lo tanto, con mayor probabilidad de estar en peligro de extinción. A causa del incentivo económico y la presión intensa de pesca, las pesquerías pequeñas sin duda son uno de los principales contribuyentes a la declinación de especies amenazadas de tiburones en las costas. Ya que no hay una aplicación ni un manejo efectivos de las pesquerías, argumentamos que en las pequeñas pesquerías existen las condiciones para un bucle de retroalimentación con incentivación económica en el que los pescadores vulnerables con frecuencia necesitan sobre pescar las especies de tiburones vulnerables y en declinación. Para proteger a estas especies de la extinción, este bucle de retroalimentación debe romperse.

15.
Environ Sci Technol ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037090

RESUMO

Catalytic elimination of halogenated volatile organic compound (HVOC) emissions was still a huge challenge through conventional catalytic combustion technology, such as the formation of halogenated byproducts and the destruction of the catalyst structure; hence, more efficient catalysts or a new route was eagerly desired. In this work, crystal phase- and defect-engineered CePO4 was rationally designed and presented abundant acid sites, moderate redox ability, and superior thermal/chemical stability; the halogenated byproduct-free and stable elimination of HVOCs was achieved especially in the presence of H2O. Hexagonal and defective CePO4 with more structural H2O and Brønsted/Lewis acid sites was more reactive and durable compared with monoclinic CePO4. Based on the phase and defect engineering of CePO4, in situ diffuse reflectance infrared Fourier transform spectra (DRIFTS), and kinetic isotope effect experiments, a hydrolysis-oxidation pathway characterized by the direct involvement of H2O was proposed. Initiatively, an external electric field (5 mA) significantly accelerated the elimination of HVOCs and even 90% conversion of dichloromethane could be obtained at 170 °C over hexagonal CePO4. The structure-performance-dependent relationships of the engineered CePO4 contributed to the rational design of efficient catalysts for HVOC elimination, and this pioneering work on external electric field-assisted catalytic hydrolysis-oxidation established an innovative HVOC elimination route.

16.
Environ Sci Technol ; 58(1): 883-894, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38134887

RESUMO

Transition metal catalysts, such as copper oxide, are more attractive alternatives to noble metal catalysts for emission control due to their higher abundance, lower cost, and excellent catalytic activity. In this study, we report the preparation and application of a novel CuO/CeO2 catalyst using a hydroxyl-rich Ce(OH)x support for CO oxidation and NO reduction by CO. Compared to the catalyst prepared from a regular CeO2 support, the new CuO/CeO2 catalyst prepared from the OH-rich Ce(OH)x (CuO/CeO2-OH) showed significantly higher catalytic activity under different testing conditions. The effect of OH species in the CeO2 support on the catalytic performance and physicochemical properties of the CuO/CeO2 catalyst was characterized in detail. It is demonstrated that the abundant OH species enhanced the CuOx dispersion on CeO2, increased the CuOx-CeO2 interfaces and surface defects, promoted the oxygen activation and mobility, and boosted the NO adsorption and dissociation on CuO/CeO2-OH, thus contributing to its superior catalytic activity for both CO oxidation and NO reduction by CO. These results suggest that the OH-rich Ce(OH)x is a superior support for the preparation of highly efficient metal catalysts for different applications.


Assuntos
Elementos de Transição , Oxirredução , Oxigênio , Radical Hidroxila , Catálise
17.
J Fluoresc ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39009904

RESUMO

We study concentration quenching and energy transfer mechanisms of yttrium oxide (Y2O3) nanomaterials doped with different concentrations (0-5 mol%) of cerium (Ce). Photoluminescence (PL) spectra recorded under an excitation wavelength of 350 nm show a broad emission band at ∼ 406 nm and a feeble emission band at ∼ 463 nm in the undoped Y2O3 sample. The doping of Ce in Y2O3 induced multiple PL peaks within the blue-green region of the spectrum in all the doped samples with the peak at ∼ 466 nm being notably the prominent one. This prominent emission band exhibits a decrease in intensity with increasing Ce concentration due to concentration quenching. Analysis of Time-resolved photoluminescence (TRPL) spectra reveal that the average emission lifetime of Ce-doped Y2O3 is shorter than that of the undoped Y2O3 sample. The concentration quenching effect and the decrease of average emission lifetime of the dominant emission band are explained on the basis of energy transfer from the host Y2O3 to the Ce3+ ion centres. The critical quenching concentration of Ce3+ ion in Y2O3:Ce phosphor was identified to be 1 mol% and the critical transfer distance was estimated to be 23.74 Å. Analysis reveal that the concentration quenching mechanism involves nearest-neighbour interaction.

18.
J Fluoresc ; 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520621

RESUMO

In the paper, we have successfully prepared hexagonal boron nitride (h-BN:Tb3+, Ce3+) phosphors with melamine as the nitrogen source. The X-ray powder diffraction patterns confirm that the sample possesses a hexagonal crystal structure within the P 6 ¯ m2 space group. It is interesting that the co-doping combination of Tb3+ and Ce3+ can markedly enhance the threshold concentration of doped activators within the limited solid solution of h-BN phosphors. Under 302 nm excitation, the h-BN:Ce3+ phosphors exhibit broadband blue light emission at 406 nm. In h-BN:Tb3+, Ce3+ phosphors, the co-doping of Ce3+ not only ensures high phase purity but also results in strong green light emission. The energy transfer efficiency from Ce3+ to Tb3+ is about 55%. The fluorescence lifetime increases with the increase of Ce3+ and Tb3+ concentration, and the fluorescence lifetime of h-BN:0.025Tb3+, 0.05Ce3+ phosphor reached 2.087 ms. Additionally, the h-BN:0.025Tb3+, 0.05Ce3+ phosphor exhibits excellent thermal performance with an activation energy value of 0.2825 eV. Moreover, the photoluminescence quantum yield of the sample exceeds 52%. Therefore, the h-BN:Tb3+, Ce3+ samples can be used as green phosphors for solid state lighting and fluorescent labeling.

19.
Anal Bioanal Chem ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39078455

RESUMO

Nanocatalytic medicine, which aims to accurately target and effectively treat tumors through intratumoral in situ catalytic reactions triggered by tumor-specific environments or markers, is an emerging technology. However, the relative lack of catalytic activity of nanoenzymes in the tumor microenvironment (TME) has hampered their use in biomedical applications. Therefore, it is crucial to develop a highly sensitive probe that specifically responds to the TME or disease markers in the TME for precision diagnosis and treatment of diseases. In this work, a chiral photoacoustic (PA) nanoprobe (D/L-Ce@MoO3) based on the H2O2-catalyzed TME activation reaction was constructed in a one-step method using D-cysteine (D-Cys) or L-cysteine (L-Cys), polymolybdate, and cerium nitrate as raw materials. The designed and synthesized D/L-Ce@MoO3 chiral nanoprobe can perform in situ, non-invasive, and precise imaging of pharmacological acute liver injury. In vivo and in vitro experiments have shown that the D/L-Ce@MoO3 probe had chiral properties, the CD signal decreased upon reaction with H2O2, and the absorption and PA signals increased with increasing H2O2 concentration. This is because of the catalytic reaction between Ce ions doped in the nanoenzyme and the high expression of H2O2 caused by drug-induced liver injury to produce ·OH, which has a strong oxidizing property to kill tumor cells and destroy the Mo-S bond in the probe, thus converting the chiral probe into an achiral polyoxometalate (POM) with PA signal.

20.
Anal Bioanal Chem ; 416(4): 1069-1084, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38102410

RESUMO

Adeno-associated viruses (AAVs) are viral vectors used as delivery systems for gene therapies. Intact protein characterization of AAV viral capsid proteins (VPs) and their post-translational modifications is critical to ensuring product quality. In this study, microchip-based ZipChip capillary electrophoresis-mass spectrometry (CE-MS) was applied for the rapid characterization of AAV intact VPs, specifically full and empty viral capsids of serotypes AAV6, AAV8 and AAV9, which was accomplished using 5 min of analysis time. Low levels of dimethyl sulfoxide (4%) in the background electrolyte (BGE) improved MS signal quality and component detection. A sensitivity evaluation revealed consistent detection of VP proteoforms when as little as 2.64 × 106 viral particles (≈26.4 picograms) were injected. Besides the traditional VP proteoforms used for serotype identification, multiple VP3 variants were detected, including truncated VP3 variants most likely generated by leaky scanning as well as unacetylated and un-cleaved VP3 proteoforms. Phosphorylation, known to impact AAV transduction efficiency, was also seen in all serotypes analysed. Additionally, low abundant fragments originating from either N- or C-terminus truncation were detected. As the aforementioned VP components can impact product quality and efficacy, the ZipChip's ability to rapidly characterize them illustrates its strength in monitoring product quality during AAV production.


Assuntos
Proteínas do Capsídeo , Dependovirus , Dependovirus/genética , Dependovirus/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/análise , Proteínas do Capsídeo/metabolismo , Processamento de Proteína Pós-Traducional , Espectrometria de Massas , Eletroforese Capilar , Vetores Genéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA