RESUMO
Mitochondria are essential in most eukaryotes and are involved in numerous biological functions including ATP production, cofactor biosyntheses, apoptosis, lipid synthesis, and steroid metabolism. Work over the past two decades has uncovered the biogenesis of cellular iron-sulfur (Fe/S) proteins as the essential and minimal function of mitochondria. This process is catalyzed by the bacteria-derived iron-sulfur cluster assembly (ISC) machinery and has been dissected into three major steps: de novo synthesis of a [2Fe-2S] cluster on a scaffold protein; Hsp70 chaperone-mediated trafficking of the cluster and insertion into [2Fe-2S] target apoproteins; and catalytic conversion of the [2Fe-2S] into a [4Fe-4S] cluster and subsequent insertion into recipient apoproteins. ISC components of the first two steps are also required for biogenesis of numerous essential cytosolic and nuclear Fe/S proteins, explaining the essentiality of mitochondria. This review summarizes the molecular mechanisms underlying the ISC protein-mediated maturation of mitochondrial Fe/S proteins and the importance for human disease.
Assuntos
Ataxia de Friedreich/genética , Proteínas Ferro-Enxofre/genética , Mitocôndrias/genética , Doenças Mitocondriais/genética , Proteínas Mitocondriais/genética , Chaperonas Moleculares/genética , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Liases de Carbono-Enxofre/química , Liases de Carbono-Enxofre/genética , Liases de Carbono-Enxofre/metabolismo , Ferredoxinas/química , Ferredoxinas/genética , Ferredoxinas/metabolismo , Ataxia de Friedreich/metabolismo , Ataxia de Friedreich/patologia , Regulação da Expressão Gênica , Glutarredoxinas/química , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Humanos , Proteínas de Ligação ao Ferro/química , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Biossíntese de Proteínas , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , FrataxinaRESUMO
The iron-sensing protein FBXL5 is the substrate adaptor for a SKP1-CUL1-RBX1 E3 ubiquitin ligase complex that regulates the degradation of iron regulatory proteins (IRPs). Here, we describe a mechanism of FBXL5 regulation involving its interaction with the cytosolic Fe-S cluster assembly (CIA) targeting complex composed of MMS19, FAM96B, and CIAO1. We demonstrate that the CIA-targeting complex promotes the ability of FBXL5 to degrade IRPs. In addition, the FBXL5-CIA-targeting complex interaction is regulated by oxygen (O2) tension displaying a robust association in 21% O2 that is severely diminished in 1% O2 and contributes to O2-dependent regulation of IRP degradation. Together, these data identify a novel oxygen-dependent signaling axis that links IRP-dependent iron homeostasis with the Fe-S cluster assembly machinery.
Assuntos
Proteínas de Ciclo Celular/genética , Proteínas F-Box/genética , Chaperonas Moleculares/genética , Complexos Multiproteicos/genética , Complexos Ubiquitina-Proteína Ligase/genética , Proteínas de Ciclo Celular/química , Proteínas F-Box/química , Células HeLa , Homeostase , Humanos , Ferro/metabolismo , Proteínas Reguladoras de Ferro/genética , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/genética , Chaperonas Moleculares/química , Complexos Multiproteicos/química , Oxigênio/metabolismo , Proteólise , Fatores de Transcrição/genética , Complexos Ubiquitina-Proteína Ligase/químicaRESUMO
The biogenesis of iron-sulfur (Fe/S) proteins entails the synthesis and trafficking of Fe/S clusters, followed by their insertion into target apoproteins. In eukaryotes, the multiple steps of biogenesis are accomplished by complex protein machineries in both mitochondria and cytosol. The underlying biochemical pathways have been elucidated over the past decades, yet the mechanisms of cytosolic [2Fe-2S] protein assembly have remained ill-defined. Similarly, the precise site of glutathione (GSH) requirement in cytosolic and nuclear Fe/S protein biogenesis is unclear, as is the molecular role of the GSH-dependent cytosolic monothiol glutaredoxins (cGrxs). Here, we investigated these questions in human and yeast cells by various in vivo approaches. [2Fe-2S] cluster assembly of cytosolic target apoproteins required the mitochondrial ISC machinery, the mitochondrial transporter Atm1/ABCB7 and GSH, yet occurred independently of both the CIA system and cGrxs. This mechanism was strikingly different from the ISC-, Atm1/ABCB7-, GSH-, and CIA-dependent assembly of cytosolic-nuclear [4Fe-4S] proteins. One notable exception to this cytosolic [2Fe-2S] protein maturation pathway defined here was yeast Apd1 which used the CIA system via binding to the CIA targeting complex through its C-terminal tryptophan. cGrxs, although attributed as [2Fe-2S] cluster chaperones or trafficking proteins, were not essential in vivo for delivering [2Fe-2S] clusters to either CIA components or target apoproteins. Finally, the most critical GSH requirement was assigned to Atm1-dependent export, i.e. a step before GSH-dependent cGrxs function. Our findings extend the general model of eukaryotic Fe/S protein biogenesis by adding the molecular requirements for cytosolic [2Fe-2S] protein maturation.
Assuntos
Citosol , Glutarredoxinas , Glutationa , Proteínas Ferro-Enxofre , Mitocôndrias , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Citosol/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Humanos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Glutationa/metabolismo , Mitocôndrias/metabolismo , Glutarredoxinas/metabolismo , Glutarredoxinas/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas Mitocondriais/metabolismoRESUMO
The eukaryotic cytosolic Fe-S protein assembly (CIA) machinery inserts iron-sulfur (Fe-S) clusters into cytosolic and nuclear proteins. In the final maturation step, the Fe-S cluster is transferred to the apo-proteins by the CIA-targeting complex (CTC). However, the molecular recognition determinants of client proteins are unknown. We show that a conserved [LIM]-[DES]-[WF]-COO- tripeptide is present at the C-terminus of more than a quarter of clients or their adaptors. When present, this targeting complex recognition (TCR) motif is necessary and sufficient for binding to the CTC in vitro and for directing Fe-S cluster delivery in vivo. Remarkably, fusion of this TCR signal enables engineering of cluster maturation on a nonnative protein via recruitment of the CIA machinery. Our study advances our understanding of Fe-S protein maturation and paves the way for bioengineering novel pathways containing Fe-S enzymes.
Assuntos
Proteínas Ferro-Enxofre , Humanos , Proteínas Ferro-Enxofre/metabolismo , Citosol/metabolismo , Proteínas Nucleares/metabolismo , Ferro/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismoRESUMO
BACKGROUND: Chemotherapy-induced alopecia is a common consequence of cancer treatment with a high psychological impact on patients and can be prevented by scalp cooling (SC). With this multi-center patient series, we examined the results for multiple currently used chemotherapy regimens to offer an audit into the real-world determinants of SC efficacy. MATERIALS AND METHODS: The Dutch Scalp Cooling Registry collected data on 7424 scalp-cooled patients in 68 Dutch hospitals. Nurses and patients completed questionnaires on patient characteristics, chemotherapy, and SC protocol. Patient-reported primary outcomes at the start of the final SC session included head cover (HC) (eg, wig/scarf) use (yes/no) as a surrogate for patient satisfaction with SC and WHO score for alopecia (0â =â no hair loss up to 3â =â total alopecia) as a measure of scalp cooling success. Exhaustive logistic regression analysis stratified by chemotherapy regimen was implemented to examine characteristics and interactions associated with the SC result. RESULTS: Overall, over half of patients (nâ =â 4191, 56%) did not wear a HC and 53% (nâ =â 3784/7183) reported minimal hair loss (WHO score 0/1) at the start of their final treatment. Outcomes were drug and dose dependent. Besides the chemotherapy regimen, this study did not identify any patient characteristic or lifestyle factor as a generic determinant influencing SC success. For non-gender specific cancers, gender played no statistically significant role in HC use nor WHO score. CONCLUSIONS: Scalp cooling is effective for the majority of patients. The robust model for evaluating the drug and dose-specific determinants of SC efficacy revealed no indications for changes in daily practice, suggesting factors currently being overlooked. As no correlation was identified between the determinants explaining HC use and WHO score outcomes, new methods for evaluation are warranted.
Assuntos
Alopecia , Hipotermia Induzida , Sistema de Registros , Couro Cabeludo , Humanos , Feminino , Masculino , Sistema de Registros/estatística & dados numéricos , Pessoa de Meia-Idade , Alopecia/prevenção & controle , Países Baixos/epidemiologia , Hipotermia Induzida/métodos , Hipotermia Induzida/efeitos adversos , Idoso , Adulto , Neoplasias/complicações , Neoplasias/tratamento farmacológico , Idoso de 80 Anos ou maisRESUMO
Reduced glutathione (GSH) is an antioxidant involved in redox homeostasis, and recently regarded as an inducer of Reductive stress. Its immune-regulatory effects on lymphocytes have not been extensively studied. This study is based on the finding that much increased GSH level in collagen-induced arthritis (CIA) rat spleen, and aimed to investigate the effects of GSH (0, 1, 10, 100 mM) on normal and immune-stimulated spleen lymphocytes respectively. The elevated GSH level is associated with the increased levels of inflammatory factors; especially the increased DPP1 activity indicated immune-granulocytes activation in CIA rat spleen. Exogenous GSH had different influences on normal and CIA lymphocytes, affecting intracellular levels of GSH, Glutathione-S-transferases (GSTs) and Reactive oxygen species (ROS); as well as the expressions of NF-κB, MMP-9, Bcl-2, GST, P38, PCNA and TLR4. The increased extracellular GSH level disturbed redox homeostasis and induces reductive stress to spleen lymphocytes, which decreased intracellular GSH concentration and influenced the MAPK/PCNA and NF-κB/MMP-9 signaling pathways, as well as cell cycles respectively, leading to cell senescence/ferroptosis/apoptosis. This study also revealed the multiple faces of GSH in regulating spleen lymphocytes, which depended on its levels in tissue or in cells, and the activation status of lymphocytes. These findings indicate the immune-regulatory role of GSH on spleen-lymphocytes, and the high level GSH in CIA rat spleens may contribute to CIA development.
RESUMO
OBJECTIVES: Endothelial protein C receptor (EPCR) is highly expressed in synovial tissues of patients with RA, but the function of this receptor remains unknown in RA. This study investigated the effect of EPCR on the onset and development of inflammatory arthritis and its underlying mechanisms. METHODS: CIA was induced in EPCR gene knockout (KO) and matched wild-type (WT) mice. The onset and development of arthritis was monitored clinically and histologically. T cells, dendritic cells (DCs), EPCR and cytokines from EPCR KO and WT mice, RA patients and healthy controls (HCs) were detected by flow cytometry and ELISA. RESULTS: EPCR KO mice displayed >40% lower arthritis incidence and 50% less disease severity than WT mice. EPCR KO mice also had significantly fewer Th1/Th17 cells in synovial tissues with more DCs in circulation. Lymph nodes and synovial CD4 T cells from EPCR KO mice expressed fewer chemokine receptors CXCR3, CXCR5 and CCR6 than WT mice. In vitro, EPCR KO spleen cells contained fewer Th1 and more Th2 and Th17 cells than WT and, in concordance, blocking EPCR in WT cells stimulated Th2 and Th17 cells. DCs generated from EPCR KO bone marrow were less mature and produced less MMP-9. Circulating T cells from RA patients expressed higher levels of EPCR than HC cells; blocking EPCR stimulated Th2 and Treg cells in vitro. CONCLUSION: Deficiency of EPCR ameliorates arthritis in CIA via inhibition of the activation and migration of pathogenic Th cells and DCs. Targeting EPCR may constitute a novel strategy for future RA treatment.
Assuntos
Artrite Experimental , Artrite Reumatoide , Animais , Humanos , Camundongos , Artrite Experimental/metabolismo , Artrite Reumatoide/metabolismo , Células Dendríticas/metabolismo , Receptor de Proteína C Endotelial/metabolismo , Membrana Sinovial/patologia , Células Th17/metabolismoRESUMO
BACKGROUND: Rheumatoid arthritis (RA) is a chronic inflammatory disease induced by TNF-α, which increases fibroblast-like synoviocytes inflammation, resulting in cartilage destruction. The current work sought to comprehend the pathophysiological importance of TNF-α stimulation on differential protein expression and their regulation by apigenin using in-vitro and in-vivo models of RA. METHODS: The human RA synovial fibroblast cells were stimulated with or without TNF-α (10 ng/ml) and treated with 40 µM apigenin. In-silico, in-vitro and in-vivo studies were performed to confirm the pathophysiological significance of apigenin on pro-inflammatory cytokines and on differential expression of TTR and RAGE proteins. RESULTS: TNF-α induced inflammatory response in synoviocytes revealed higher levels of IL-6, IL-1ß, and TNF-α cytokines and upregulated differential expression of TTR and RAGE. In-silico results demonstrated that apigenin has a binding affinity towards TNF-α, indicating its potential effect in the inflammatory process. Both in-vitro and in-vivo results obtained by Western Blot analysis suggested that apigenin reduced the level of p65 (p = 0.005), TTR (p = 0.002), and RAGE (p = 0.020). CONCLUSION: The findings of this study suggested that TNF-α promotes the differential expression of pro-inflammatory cytokines, TTR, and RAGE via NF-kB pathways activation. Anti-inflammatory effect of apigenin impedes TNF-α mediated dysregulation or expression associated with RA pathogenesis.
Assuntos
Apigenina , Artrite Reumatoide , Receptor para Produtos Finais de Glicação Avançada , Fator de Necrose Tumoral alfa , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Apigenina/farmacologia , Humanos , Fator de Necrose Tumoral alfa/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Sinoviócitos/metabolismo , Sinoviócitos/efeitos dos fármacos , Membrana Sinovial/metabolismo , Membrana Sinovial/efeitos dos fármacos , Membrana Sinovial/patologia , Citocinas/metabolismo , Animais , Inflamação/metabolismo , Inflamação/tratamento farmacológicoRESUMO
The primary emphasis of photoimmunology is the impact of nonionizing radiation on the immune system. With the development of terahertz (THz) and sub-terahertz (sub-THz) technology, the biological effects of this emerging nonionizing radiation, particularly its influence on immune function, remain insufficiently explored but are progressively attracting attention. Here, we demonstrated that 0.1 sub-THz radiation can modulate the immune system and alleviate symptoms of arthritis in collagen-induced arthritis (CIA) mice through a nonthermal manner. The application of 0.1 sub-THz irradiation led to a decrease in proinflammatory factors within the joints and serum, reducing the levels of blood immune cells and the quantity of splenic CD4+ T cells. Notably, 0.1 sub-THz irradiation restored depleted Treg cells in CIA mice and re-established the Th17/Treg equilibrium. These findings suggested that sub-THz irradiation plays a crucial role in systemic immunoregulation. Further exploration of its immune modulation mechanisms revealed the anti-inflammatory properties of 0.1 sub-THz on LPS-stimulated skin keratinocytes. Through the reduction in NF-κB signaling and NLRP3 inflammasome activation, 0.1 sub-THz irradiation effectively decreased the production of inflammatory factors and immune-active substances, including IL-1ß and PGE2, in HaCaT cells. Consequently, 0.1 sub-THz irradiation mitigated the inflammatory response and contributed to the maintenance of immune tolerance in CIA mice. This research provided significant new evidence supporting the systemic impacts of 0.1 sub-THz radiation, particularly on the immune system. It also enhanced the field of photoimmunology and offered valuable insights into the potential biomedical applications of 0.1 sub-THz radiation for treating autoimmune diseases.
Assuntos
Artrite Experimental , Animais , Artrite Experimental/imunologia , Artrite Experimental/radioterapia , Artrite Experimental/patologia , Camundongos , Radiação Terahertz , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Masculino , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Inflamassomos/imunologia , NF-kappa B/metabolismo , Camundongos Endogâmicos DBA , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/efeitos da radiação , Humanos , Transdução de Sinais/efeitos da radiação , Queratinócitos/efeitos da radiação , Queratinócitos/imunologia , Queratinócitos/metabolismoRESUMO
To investigate the mechanism of action of aqueous extract of Strychni Semen(SA) on bone destruction in rats with type â ¡ collagen-induced arthritis(CIA), the SD rats were randomly divided into normal group, model group, low, medium, and high dose(2.85, 5.70, and 11.40 mg·kg~(-1)) groups of SA, and methotrexate group. Except for the normal group, the CIA model was prepared for the other groups. After the second immunization, different doses of SA were given to the low, medium, and high dose groups of SA once a day, and the methotrexate group was given once every three days. 0.3% sodium hydroxymethylcellulose(CMC-Na) was given once a day to the normal and model groups for 28 d. The clinical score of arthritis was evaluated every three days. Micro computed tomography(Micro-CT) method was used to evaluate the degree of bone destruction. Histopathological changes in the joint tissue and the number of osteoclasts in CIA rats were evaluated by hematoxylin-eosin(HE) staining and tartrate-resistant acid phosphatase(TRAP) staining. The expression of interleukin-1ß(IL-1ß) in the joint tissue of rats was detected by immunohistochemistry. Western blot was used to detect key protein expression in mitogen-activated protein kinase(MAPK) and phosphatidylinositol 3-kinase/protein kinase B(PI3K/Akt) signaling pathways in the joint tissue of rats. The results showed that different doses of SA were able to improve the red and swollen inflammatory joint and joint deformity in CIA rats to varying degrees, reduce the clinical score, inhibit synovial inflammation, vascular opacification, cartilage erosion, and bone destruction, and reduce the number of TRAP-positive cells in bone tissue. Micro-CT results showed that the SA was able to increase bone mineral density, bone volume fraction, trabecular reduce, and trabecular number and reduce bone surface/bone volume and trabecular separation/spacing. Different doses of SA could down-regulate the protein expression of IL-1ß, p-JNK, p-ERK, p-p38, PI3K, and p-Akt to varying degrees. In conclusion, SA can improve disease severity, attenuate histopathological and imaging changes in joints, and have osteoprotective effects in CIA rats, and its mechanism of action may be related to the inhibition of the overactivation of MAPK and PI3K/Akt signaling pathways.
Assuntos
Artrite Experimental , Artrite Reumatoide , Ratos , Animais , Colágeno Tipo II , Metotrexato , Proteínas Proto-Oncogênicas c-akt , Sêmen , Microtomografia por Raio-X , Fosfatidilinositol 3-Quinases , Ratos Sprague-Dawley , Artrite Reumatoide/tratamento farmacológico , Artrite Experimental/tratamento farmacológico , Artrite Experimental/induzido quimicamenteRESUMO
This study investigates the effects of Daphnes Cortex and its processed products on the differentiation of Th17/Treg cells in SD rats with type â ¡ collagen-induced arthritis(CIA).Sixty-four SD rats were randomly divided into the normal group(normal),model group(model),fried Daphne giraldii Nitsche low-dose and high-dose groups(FDGN-L group, FDGN-H group),raw D. giraldii Nitsche low-dose and high-dose groups(RDGN-L group, RDGN-H group),daphnetin group(DAPH group),and tripterygium glycosides group(GTW group).Except for the normal group, the CIA model was immunized on the seventh day after the first immunization, and was gavaged for 28 days after the second immunization.After sampling, the inflammation of articular synovial membrane in CIA rats was observed by hematoxylin-eosin(HE)staining; the levels of transforming growth factor-ß(TGF-ß),interferon-γ(IFN-γ),interleukin(IL)-2,IL-4,and IL-10 in serum were detected by enzyme-linked immunosorbent assay(ELISA); real-time reverse transcription-PCR(qRT-PCR)and Western blot were used to detect the mRNA and protein expressions of cluster of differentiation(CD) 80(B7-1),CD 86(B7-2),CD28,and cytotoxic T lymphocyte-associated antigen 4(CTLA-4)in the synovial membrane of rats; flow cytometry was used to detect the proportion of Th17 and Treg cells in the synovial membrane of rats.The results showed that compared with the normal group, the joint synovial inflammation of rats in the model group was significantly aggravated, the arthritis index was significantly increased, and the immune organ index was increased(P<0.01).Compared with the model group, each drug administration group could improve the joint inflammation of rats to varying degrees, reduce the arthritis index, inhibit synovial hyperplasia, and reduce the immune organ index; compared with the model group, the serum levels of IL-2 and IFN-γ in each drug administration group were significantly decreased(P<0.01),TGF-ß,IL-4,and IL-10 were significantly increased(P<0.01),the mRNA and protein expressions of B7-1 and CTLA-4 in the synovial membrane were significantly increased(P<0.01),and the proportion of Th17 cells and Treg cells in the joint tissue was significantly decreased(P<0.01).In conclusion, Daphnes Cortex inhibits the expression of Th17 cells in CIA rats and promotes the expression of Treg cells by regulating the B7/CD28/CTLA-4 pathway and the balance of Th17/Treg, thereby treating rheumatoid arthritis.
Assuntos
Artrite Experimental , Antígenos CD28 , Antígeno CTLA-4 , Daphne , Ratos Sprague-Dawley , Animais , Ratos , Artrite Experimental/imunologia , Artrite Experimental/tratamento farmacológico , Masculino , Daphne/química , Antígeno CTLA-4/imunologia , Antígeno CTLA-4/genética , Antígenos CD28/imunologia , Antígenos CD28/genética , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/farmacologia , Células Th17/imunologia , Células Th17/efeitos dos fármacos , Antígeno B7-1/genética , Antígeno B7-1/imunologia , Antígeno B7-1/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Humanos , Transdução de Sinais/efeitos dos fármacosRESUMO
The cytosolic iron-sulfur (Fe-S) cluster assembly (CIA) pathway delivers Fe-S clusters to nuclear and cytosolic Fe-S proteins involved in essential cellular functions. Although the delivery process is regulated by the availability of iron and oxygen, it remains unclear how CIA components orchestrate the cluster transfer under varying cellular environments. Here, we utilized a targeted proteomics assay for monitoring CIA factors and substrates to characterize the CIA machinery. We find that nucleotide-binding protein 1 (NUBP1/NBP35), cytosolic iron-sulfur assembly component 3 (CIAO3/NARFL), and CIA substrates associate with nucleotide-binding protein 2 (NUBP2/CFD1), a component of the CIA scaffold complex. NUBP2 also weakly associates with the CIA targeting complex (MMS19, CIAO1, and CIAO2B) indicating the possible existence of a higher order complex. Interactions between CIAO3 and the CIA scaffold complex are strengthened upon iron supplementation or low oxygen tension, while iron chelation and reactive oxygen species weaken CIAO3 interactions with CIA components. We further demonstrate that CIAO3 mutants defective in Fe-S cluster binding fail to integrate into the higher order complexes. However, these mutants exhibit stronger associations with CIA substrates under conditions in which the association with the CIA targeting complex is reduced suggesting that CIAO3 and CIA substrates may associate in complexes independently of the CIA targeting complex. Together, our data suggest that CIA components potentially form a metabolon whose assembly is regulated by environmental cues and requires Fe-S cluster incorporation in CIAO3. These findings provide additional evidence that the CIA pathway adapts to changes in cellular environment through complex reorganization.
Assuntos
Proteínas Ferro-Enxofre , Ferro , Citosol/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ferro/metabolismo , Proteínas Ferro-Enxofre/biossíntese , Proteínas Ferro-Enxofre/metabolismo , Oxigênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Enxofre/metabolismoRESUMO
CD20+ T cells comprise a highly inflammatory subset implicated in autoimmunity, including rheumatoid arthritis (RA). We sought to characterize the CD20+ T cell subset in the murine collagen-induced arthritis (CIA) model of RA and investigate the phenotype and functional relevance of CD3+CD20+ T cells in the lymph nodes and arthritic joints using flow cytometry and immunohistochemistry. We demonstrate that CD3+CD4+CD20+ and CD3+CD8+CD20+ T cells are expanded in the draining lymph nodes of CIA mice, produce increased levels of pro-inflammatory cytokines and are less susceptible to regulation by regulatory T cells. Notably, CD3+CD4+CD20+ and CD3+CD8+CD20+ T cells are enriched with CXCR5+PD-1+ T follicular helper cells and CXCR5-PD-1+ peripheral T helper cells, subsets of T cells implicated in promoting B-cell responses and antibody production within pathologically inflamed non-lymphoid tissues in RA. Our findings suggest CD20+ T cells are associated with inflammatory responses and may exacerbate pathology by promoting inflammatory B-cell responses.
Assuntos
Artrite Experimental , Artrite Reumatoide , Animais , Camundongos , Receptor de Morte Celular Programada 1 , Linfócitos T Auxiliares-Indutores , Subpopulações de Linfócitos T , Receptores CXCR5RESUMO
INTRODUCTION: The estimation of post-mortem interval (PMI) remains a major challenge in forensic science. Most of the proposed approaches lack the reliability required to meet the rigorous forensic standards. OBJECTIVES: We applied 1H NMR metabolomics to estimate PMI on ovine vitreous humour comparing the results with the actual scientific gold standard, namely vitreous potassium concentrations. METHODS: Vitreous humour samples were collected in a time frame ranging from 6 to 86 h after death. Experiments were performed by using 1H NMR metabolomics and ion capillary analysis. Data were submitted to multivariate statistical data analysis. RESULTS: A multivariate calibration model was built to estimate PMI based on 47 vitreous humour samples. The model was validated with an independent test set of 24 samples, obtaining a prediction error on the entire range of 6.9 h for PMI < 24 h, 7.4 h for PMI between 24 and 48 h, and 10.3 h for PMI > 48 h. Time-related modifications of the 1H NMR vitreous metabolomic profile could predict PMI better than potassium up to 48 h after death, whilst a combination of the two is better than the single approach for higher PMI estimation. CONCLUSION: The present study, although in a proof-of-concept animal model, shows that vitreous metabolomics can be a powerful tool to predict PMI providing a more accurate estimation compared to the widely studied approach based on vitreous potassium concentrations.
Assuntos
Mudanças Depois da Morte , Potássio , Ovinos , Animais , Potássio/análise , Corpo Vítreo/química , Reprodutibilidade dos Testes , MetabolômicaRESUMO
Organic anion transporter 1 (OAT1) plays a major role in mediating the absorption, distribution and excretion of drugs and other xenobiotics in the human body. In this study we explored the OAT1 status in rheumatoid arthritis (RA) patients and arthritic animals and its role in regulating the anti-arthritic activity of methotrexate (MTX). We showed that OAT1 expression was significantly downregulated in synovial tissues from RA patients compared with that in the control patients. In collagen-induced arthritis (CIA) rats, synovial OAT1 expression was significantly decreased compared with the control rats. In synoviocytes isolated from CIA rats, PGE2 (0.003-1.75 µM) dose-dependently downregulated OAT1 expression, resulting in decreased absorption of MTX. Silencing OAT1 in synoviocytes caused a 43.7% reduction in the uptake of MTX. Furthermore, knockdown of OAT1 impaired MTX-induced inhibitory effects on the viability and migration of synoviocytes isolated from CIA rats. Moreover, injection of OAT1-shRNA into articular cavity of CIA rats significantly decreased synovial OAT1 expression and impaired the anti-arthritic action of MTX, while injection of lentivirus containing OAT1 sequences led to the opposite results. Interestingly, we found that paeoniflorin-6'-O-benzene sulfonate (CP-25) upregulated OAT1 expression both in vitro and in vivo and promoted MTX uptake by synoviocytes via regulating OAT1 expression and function. Taken together, OAT1 plays a major role in regulating MTX uptake by synoviocytes and the anti-arthritic activity of MTX. OAT1 is downregulated in RA and CIA rats, which can be improved by CP-25.
Assuntos
Artrite Experimental , Artrite Reumatoide , Sinoviócitos , Ratos , Humanos , Animais , Metotrexato/farmacologia , Metotrexato/uso terapêutico , Artrite Experimental/induzido quimicamente , Artrite Experimental/tratamento farmacológico , Artrite Experimental/metabolismo , Membrana Sinovial , Articulações , Artrite Reumatoide/tratamento farmacológicoRESUMO
Collagen-induced arthritis is the most com-mon in vivo model of rheumatoid arthritis used for investigation of new potential therapies in preclinical research. Rheumatoid arthritis is a systemic inflammatory and autoimmune disease affecting joints, accompanied by significant extra-articular symptoms. The pathogenesis of rheumatoid arthritis and collagen-induced arthritis involves a so far properly unexplored network of immune cells, cytokines, antibodies and other factors. These agents trigger the autoimmune response leading to polyarthritis with cell infiltration, bone and cartilage degeneration and synovial cell proliferation. Our review covers the knowledge about cytokines present in the rat collagen-induced arthritis model and the factors affecting them. In addition, we provide a comparison with rheumatoid arthritis and a description of their important effects on the development of both diseases. We discuss the crucial roles of various immune cells (subtypes of T and B lymphocytes, dendritic cells, monocytes, macrophages), fibroblast-like synoviocy-tes, and their related cytokines (TNF-α, IL-1ß, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12, IL-17, IL-23, GM-CSF, TGF-ß). Finally, we also focus on key antibodies (rheu-matoid factor, anti-citrullinated protein antibodies, anti-collagen II antibodies) and tissue-degrading enzymes (matrix metalloproteinases).
Assuntos
Artrite Experimental , Artrite Reumatoide , Ratos , Animais , Citocinas/metabolismo , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Artrite Reumatoide/metabolismo , Artrite Reumatoide/terapia , Anticorpos , Fator de Necrose Tumoral alfa , Colágeno/efeitos adversosRESUMO
The present study aimed to evaluate anti-rheumatoid arthritis (RA) effect of Lonicerin (LON), a safe compound with anti-inflammatory and immunomodulatory properties. Nevertheless, the exact role of LON in RA remains elusive. In this test, the anti-RA effect of LON was evaluated in collagen-induced arthritis (CIA) mouse model. Relevant parameters were measured during the experiment; ankle tissue and serum were collected at the end of the experiment for radiology, histopathology, and inflammation analysis. ELISA, qRT-PCR, immunofluorescence, and western blot were used to explore the effect of LON on the polarization of macrophages and related signal pathways. It was discovered that LON treatment attenuated the disease progression of CIA mice with lower paw swelling, clinical score, mobility, and inflammatory response. LON treatment significantly decreased M1 marker levels in CIA mice and LPS/IFN-γ-induced RAW264.7 cells, while slightly increasing M2 marker levels in CIA mice and IL-4-induced RAW264.7 cells. Mechanistically, LON attenuated the activation of the NF-κB signaling pathway, which contributes to M1 macrophage polarization and inflammasome activation. In addition, LON inhibited NLRP3 inflammasome activation in M1 macrophages, thereby reducing inflammation by inhibiting IL-1ß and IL-18 release. These results indicated that LON might exert anti-RA effects by regulating the polarization of M1/M2 macrophage, especially by inhibiting macrophage polarization toward M1.
Assuntos
Artrite Experimental , Artrite Reumatoide , Camundongos , Animais , NF-kappa B/metabolismo , Artrite Experimental/tratamento farmacológico , Inflamassomos/metabolismo , Macrófagos , Transdução de Sinais , Artrite Reumatoide/tratamento farmacológico , Inflamação/metabolismoRESUMO
Chemotherapy-induced alopecia (CIA) is one of the common side effects in cancer treatment. The psychological distress caused by hair loss may cause patients to discontinue chemotherapy, affecting the efficacy of the treatment. The JAK inhibitor, Tofacitinib citrate (TFC), showed huge potential in therapeutic applications for treating baldness, but the systemic adverse effects of oral administration and low absorption rate at the target site limited its widespread application in alopecia. To overcome these problems, we designed phospholipid-calcium carbonate hybrid nanoparticles (PL/ACC NPs) for a topical application to target deliver TFC. The results proved that PL/ACC-TFC NPs showed excellent pH sensitivity and transdermal penetration in vitro. PL/ACC NPs offered an efficient follicular targeting approach to deliver TFC in a Cyclophosphamide (CYP)-induced alopecia areata mouse model. Compared to the topical application of TFC solution, PL/ACC-TFC NPs significantly inhibited apoptosis of mouse hair follicles and accelerated hair growth. These findings support that PL/ACC-TFC NPs has the potential for topical application in preventing and mitigating CYP-induced Alopecia areata.
Assuntos
Alopecia em Áreas , Antineoplásicos , Camundongos , Animais , Alopecia em Áreas/induzido quimicamente , Alopecia em Áreas/tratamento farmacológico , Folículo Piloso , Alopecia/tratamento farmacológico , Ciclofosfamida/farmacologia , Antineoplásicos/farmacologia , Lipídeos/farmacologiaRESUMO
This study aims to investigate the therapeutic effect of alcohol extract of root and root bark of Toddalia asiatica(TAAE) on collagen-induced arthritis(CIA) in rats through phosphatidylinoinosidine-3 kinase/protein kinase B(PI3K/Akt) signaling pathway. To be specific, CIA was induced in rats, and then the rats were treated(oral, daily) with TAAE and Tripterygium Glycoside Tablets(TGT), respectively. The swelling degree of the hind leg joints was scored weekly. After 35 days of administration, the histopathological changes were observed based on hematoxylin and eosin(HE) staining. Enzyme-linked immunosorbent assay(ELISA) was employed to detect the levels of cytokines [tumor necrosis factor-α(TNF-α), interleukin(IL)-6)]. Terminal deoxynucleotidyl transferase dUTP nick end labeling(TUNEL) staining was performed to detect the apoptosis of synoviocytes in rats. Western blot was used to detect the expression levels of apoptosis-related proteins B-cell lymphoma 2(Bcl-2)-associated X(Bax), Bcl-2, and caspase-3 and pathway-related proteins phosphoinositide 3-kinase(PI3K), phosphorylated(p)-PI3K, protein kinase B(Akt), and p-Akt. RT-qPCR was conducted to examine the mRNA levels of Bax, Bcl-2, caspase-3, TNF-α, IL-6, and IL-1ß and pathway-related proteins PI3K, p-PI3K, Akt, and p-Akt. TAAE can alleviate the joint swelling in CIA rats, reduce serum levels of inflammatory cytokines, improve synovial histopathological changes, promote apoptosis of synoviocytes, and inhibit synovial inflammation. In addition, RT-qPCR and Western blot results showed that TAAE up-regulated the level of Bax, down-regulated the level of Bcl-2, and activated caspase-3 to promote apoptosis in synoviocytes. TAAE effectively down-regulated the protein levels of p-PI3K and p-Akt. In this study, TAAE shows therapeutic effect on CIA in rats and reduces the inflammation. The mechanism is that it suppresses PI3K/Akt signaling pathway and promotes synoviocyte apoptosis. Overall, this study provides a new clue for the research on the anti-inflammatory mechanism of TAAE and lays a theoretical basis for the better clinical application of TAAE in the treatment of inflammatory and autoimmune diseases.
Assuntos
Artrite Experimental , Extratos Vegetais , Zanthoxylum , Animais , Ratos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Apoptose/efeitos dos fármacos , Artrite Experimental/tratamento farmacológico , Artrite Experimental/induzido quimicamente , Citocinas/genética , Citocinas/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Casca de Planta/química , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Raízes de Plantas/química , Zanthoxylum/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Sinoviócitos/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacosRESUMO
Chloroplast-to-nucleus retrograde signaling is essential for cell function, acclimation to fluctuating environmental conditions, plant growth and development. The vast majority of chloroplast proteins are nuclear-encoded, and must be imported into the organelle after synthesis in the cytoplasm. This import is essential for the development of fully functional chloroplasts. On the other hand, functional chloroplasts act as sensors of environmental changes and can trigger acclimatory responses that influence nuclear gene expression. Signaling via mobile transcription factors (TFs) has been recently recognized as a way of communication between organelles and the nucleus. In this study, we performed a targeted reverse genetic screen to identify dual-localized TFs involved in chloroplast retrograde signaling during stress responses. We found that CHLOROPLAST IMPORT APPARATUS 2 (CIA2) has a functional plastid transit peptide, and can be located both in chloroplasts and the nucleus. Further, we found that CIA2, along with its homolog CIA2-like (CIL) are involved in the regulation of Arabidopsis responses to UV-AB, high light and heat shock. Finally, our results suggest that both CIA2 and CIL are crucial for chloroplast translation. Our results contribute to a deeper understanding of signaling events in the chloroplast-nucleus cross-talk.