Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(3): e2310711121, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38190531

RESUMO

Brown adipose tissue (BAT) is the main site of nonshivering thermogenesis which plays an important role in thermogenesis and energy metabolism. However, the regulatory factors that inhibit BAT activity remain largely unknown. Here, cardiotrophin-like cytokine factor 1 (CLCF1) is identified as a negative regulator of thermogenesis in BAT. Adenovirus-mediated overexpression of CLCF1 in BAT greatly impairs the thermogenic capacity of BAT and reduces the metabolic rate. Consistently, BAT-specific ablation of CLCF1 enhances the BAT function and energy expenditure under both thermoneutral and cold conditions. Mechanistically, adenylate cyclase 3 (ADCY3) is identified as a downstream target of CLCF1 to mediate its role in regulating thermogenesis. Furthermore, CLCF1 is identified to negatively regulate the PERK-ATF4 signaling axis to modulate the transcriptional activity of ADCY3, which activates the PKA substrate phosphorylation. Moreover, CLCF1 deletion in BAT protects the mice against diet-induced obesity by promoting BAT activation and further attenuating impaired glucose and lipid metabolism. Therefore, our results reveal the essential role of CLCF1 in regulating BAT thermogenesis and suggest that inhibiting CLCF1 signaling might be a potential therapeutic strategy for improving obesity-related metabolic disorders.


Assuntos
Tecido Adiposo Marrom , Metabolismo Energético , Animais , Camundongos , Adenoviridae , Interleucinas , Obesidade/genética , Termogênese/genética
2.
Biochem Biophys Res Commun ; 636(Pt 1): 170-177, 2022 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-36334441

RESUMO

NSCs play an essential role in the regeneration process of the central nervous system. However, due to the influence of the harsh pathological microenvironment, the viability of neural stem cells is limited, and the therapeutic effect needs improvement. Previous studies have found that stem cells overexpressing ciliary neurotrophic factor (CNTF) have apparent therapeutic effects on remyelination, but the specific mechanism of action still needs to be further explored. We found that astrocytes, the most numerous groups in the CNS, exhibited a pathological role in the experimental autoimmune encephalomyelitis model, but after stimulation with CNTF-NSCs, a phenotypic switch occurred and induced the neurotrophic factor cardiotrophin-like cytokine 1 (Clcf1) production. Mechanistically, Clcf1 can significantly promote the differentiation of oligodendrocyte precursor cells (OPCs), and the advanced effect can attenuate by the Clcf1 antibody. Therefore, this study was conducted to investigate the pathway by which CNTF-NSCs exert their therapeutic effects by affecting astrocytes. It is expected to identify a potential therapeutic factor, Clcf1, for the treatment of demyelinating diseases.


Assuntos
Células-Tronco Neurais , Células Precursoras de Oligodendrócitos , Fator Neurotrófico Ciliar/farmacologia , Células Precursoras de Oligodendrócitos/metabolismo , Astrócitos/metabolismo , Diferenciação Celular , Células-Tronco Neurais/metabolismo , Oligodendroglia
3.
Int J Mol Sci ; 23(2)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35055176

RESUMO

Cytokines and their receptors have a vital function in regulating various processes such as immune function, inflammation, haematopoiesis, cell growth and differentiation. The interaction between a cytokine and its specific receptor triggers intracellular signalling cascades that lead to altered gene expression in the target cell and consequent changes in its proliferation, differentiation, or activation. In this review, we highlight the role of the soluble type I cytokine receptor CRLF1 (cytokine receptor-like factor-1) and the Interleukin (IL)-6 cytokine CLCF1 (cardiotrophin-like cytokine factor 1) during development in physiological and pathological conditions with particular emphasis on Crisponi/cold-induced sweating syndrome (CS/CISS) and discuss new insights, challenges and possibilities arising from recent studies.


Assuntos
Citocinas/metabolismo , Deformidades Congênitas da Mão/genética , Hiperidrose/genética , Receptores de Citocinas/metabolismo , Trismo/congênito , Animais , Morte Súbita , Modelos Animais de Doenças , Fácies , Desenvolvimento Humano , Humanos , Transdução de Sinais , Trismo/genética
4.
J Biol Chem ; 294(32): 11952-11959, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31248987

RESUMO

Mesenchymal stem cells (MSCs) are multipotent cells capable of differentiating into adipocytes, chondrocytes, or osteocytes. MSCs secrete an array of cytokines and express the LIFRß (leukemia inhibitory factor receptor) chain on their surface. Mutations in the gene coding for LIFRß lead to a syndrome with altered bone metabolism. LIFRß is one of the signaling receptor chains for cardiotrophin-like cytokine (CLCF1), a neurotrophic factor known to modulate B and myeloid cell functions. We investigated its effect on MSCs induced to differentiate into osteocytes in vitro Our results indicate that CLCF1 binds mouse MSCs, triggers STAT1 and -3 phosphorylation, inhibits the up-regulation of master genes involved in the control of osteogenesis, and markedly prevents osteoblast generation and mineralization. This suggests that CLCF1 could be a target for therapeutic intervention with agents such as cytokine traps or blocking mAbs in bone diseases such as osteoporosis.


Assuntos
Diferenciação Celular , Citocinas/metabolismo , Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Animais , Células da Medula Óssea/citologia , Células Cultivadas , Citocinas/genética , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mutagênese , Osteoblastos/metabolismo , Osteogênese , Fosforilação , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Regulação para Cima
5.
Clin Genet ; 97(1): 209-221, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31497877

RESUMO

Crisponi/cold-induced sweating syndrome (CS/CISS) is an autosomal recessive disease characterized by hyperthermia, camptodactyly, feeding and respiratory difficulties often leading to sudden death in the neonatal period. The affected individuals who survived the first critical years of life, develop cold-induced sweating and scoliosis in early childhood. The disease is caused by variants in the CRLF1 or in the CLCF1 gene. Both proteins form a heterodimeric complex that acts on cells expressing the ciliary neurotrophic factor receptor (CNTFR). CS/CISS belongs to the family of "CNTFR-related disorders" showing a similar clinical phenotype. Recently, variants in other genes, including KLHL7, NALCN, MAGEL2 and SCN2A, previously linked to other diseases, have been associated with a CS/CISS-like phenotype. Therefore, retinitis pigmentosa and Bohring-Optiz syndrome-like (KLHL7), Congenital contractures of the limbs and face, hypotonia, and developmental delay syndrome (NALCN), Chitayat-Hall/Schaaf-Yang syndrome (MAGEL2), and early infantile epileptic encephalopathy-11 syndrome (SCN2A) all share an overlapping phenotype with CS/CISS, especially in the neonatal period. This review aims to summarize the existing literature on CS/CISS, focusing on the current state of differential diagnosis, pathogenesis and treatment concepts in order to achieve an accurate and rapid diagnosis. This will improve patient management and enable specific treatments for the affected individuals.


Assuntos
Craniossinostoses/diagnóstico , Citocinas/genética , Deformidades Congênitas da Mão/diagnóstico , Hiperidrose/diagnóstico , Deficiência Intelectual/diagnóstico , Receptores de Citocinas/genética , Trismo/congênito , Subunidade alfa do Receptor do Fator Neutrófico Ciliar/genética , Craniossinostoses/genética , Craniossinostoses/patologia , Morte Súbita/patologia , Diagnóstico Diferencial , Fácies , Deformidades Congênitas da Mão/patologia , Deformidades Congênitas da Mão/terapia , Humanos , Hiperidrose/patologia , Hiperidrose/terapia , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Retinose Pigmentar/diagnóstico , Retinose Pigmentar/genética , Retinose Pigmentar/patologia , Escoliose/diagnóstico , Trismo/diagnóstico , Trismo/patologia , Trismo/terapia
6.
Front Cell Dev Biol ; 11: 1142586, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36846595

RESUMO

Zebrafish possess the innate ability to fully regenerate any neurons lost following a retinal injury. This response is mediated by Müller glia that reprogram and divide asymmetrically to produce neuronal precursor cells that differentiate into the lost neurons. However, little is understood about the early signals that induce this response. Ciliary neurotrophic factor (CNTF) was previously shown to be both neuroprotective and pro-proliferative within the zebrafish retina, however CNTF is not expressed following injury. Here we demonstrate that alternative ligands of the Ciliary neurotrophic factor receptor (CNTFR), such as Cardiotrophin-like cytokine factor 1 (Clcf1) and Cytokine receptor-like factor 1a (Crlf1a), are expressed within Müller glia of the light-damaged retina. We found that CNTFR, Clcf1, and Crlf1a are required for Müller glia proliferation in the light-damaged retina. Furthermore, intravitreal injection of CLCF1/CRLF1 protected against rod photoreceptor cell death in the light-damaged retina and induced proliferation of rod precursor cells in the undamaged retina, but not Müller glia. While rod precursor cell proliferation was previously shown to be Insulin-like growth factor 1 receptor (IGF-1R)-dependent, co-injection of IGF-1 with CLCF1/CRLF1 failed to induce further proliferation of either Müller glia or rod precursor cells. Together, these findings demonstrate that CNTFR ligands have a neuroprotective effect and are required for induction of Müller glia proliferation in the light-damaged zebrafish retina.

7.
Front Immunol ; 13: 810832, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35265072

RESUMO

Background: Cardiotrophin-like cytokine factor 1 (CLCF1) has been described as an oncogene and a potential therapeutic target in a variety of cancers, but its role in glioma remains unknown. Methods: Based on The Cancer Genome Atlas (TCGA), we conducted a bioinformatics analysis to investigate the clinical significance and biological functions of CLCF1 in glioma at the transcriptional level and predicted the response to immunotherapy of glioma patients with different CLCF1 expression levels. All the results were further verified in Chinese Glioma Genome Altas(CGGA) Data processing and figure generating were performed with R language. Results: Elevated CLCF1 expression was common in cancers and usually predicted poor prognosis, which was also consistent with gliomas. In Univariate Cox Regression analysis and Kaplan-Meier survival analysis, tumor patients with higher CLCF1 expression tended to experience a worse prognosis. In the multivariate Cox proportional hazard model, the expression of CLCF1 was an independent prognostic factor in gliomas. The biological function analysis of CLCF1 in glioma showed that CLCF1 was closely associated with immune signatures, including immune-related pathways, immune cell infiltration, and immune checkpoints. Moreover, glioma patients with low CLCF1 expression showed a greater tendency to respond to anti-PD1/PD-L1 immunotherapy, indicating CLCF1 also had potential clinical significance in guiding immunotherapy. And CLCF1 as a member of the IL6 family had a better predictive value for prognosis and immunotherapy response in glioma than that of IL6 and other IL6 family members. Conclusion: CLCF1 expression is an independent prognosticator and a promising therapeutic target correlated with immunotherapy in glioma.


Assuntos
Neoplasias Encefálicas , Glioma , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Citocinas , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Glioma/metabolismo , Glioma/terapia , Humanos , Imunoterapia/métodos , Interleucina-6/metabolismo , Prognóstico , Microambiente Tumoral
8.
Ann Transl Med ; 10(7): 399, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35530960

RESUMO

Background: Ischemia-reperfusion injury (IRI) is one of the most important risk factors for acute kidney injury. In kidney transplantation, renal IRI can induce delayed graft function (DGF). However, the mechanisms that link IRI to DGF remain unclear. This study aimed to find molecular markers of renal IRI which are also associated with DGF. Methods: A previously constructed database of differentially expressed genes in a murine IRI model was compared with a published DGF database. The expression of cardiotrophin-like cytokine factor 1 (CLCF1) was detected using immunohistochemistry (IHC) and real-time quantitative polymerase chain reaction (qPCR) assays. Serum CLCF1 was measured using an enzyme-linked immunosorbent assay (ELISA), and serum creatinine (Cr) was tested to evaluate kidney function. Results: By comparing the IRI database and the DGF database, we identified 107 differentially expressed genes, including 79 upregulated and 28 downregulated genes. CLCF1 was one of the upregulated genes found in the 2 databases. The levels of CLCF1 in IRI-treated kidney tissues and serum CLCF1 were upregulated compared to sham-operated mice. CLCF1 belongs to the interleukin-6 (IL-6) family, and the forkhead box O3 (FOXO3) gene plays a key role in regulating IL-6 expression. We observed that FOXO3 knockout induced an increase in serum CLCF1 levels in sham-operated mice. However, FOXO3 knockout failed to increase CLCF1 levels in IRI-treated mice. Conclusions: CLCF1 is upregulated in renal IRI and may be regulated by FOXO3. Our data indicated that CLCF1 might be a potential biomarker linking renal IRI to DGF in kidney transplantation.

9.
Ann Transl Med ; 10(8): 475, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35571403

RESUMO

Background: Glioblastoma (GBM) is one of the most common and malignant brain tumors. Cardiotrophin-like cytokine factor 1 (CLCF1) is a member of the IL-6 superfamily. However, the clinical significance, potential role, and molecular mechanism of CLCF1 in GBM remain obscure. Here, the expression and prognostic significance of CLCF1 was investigated in GBM. Methods: The Cancer Genome Atlas (TCGA) GBM and Chinese Glioma Genome Atlas (CGGA) datasets were downloaded and analyzed by using Gene Expression Profiling Interactive Analysis (GEPIA). Next, 3 shRNAs targeting CLCF1 were designed, and silencing efficiency was examined with real-time polymerase chain reaction (PCR). Cell Counting Kit 8 (CCK-8), flow cytometry, transwell, and wound healing assays were used to study the function of CLCF1 in glioma cells. Results: We found increased expression of CLCF1 as an unfavorable prognostic marker in GBM. Functionally, down-regulation of CLCF1 significantly reduced cell proliferation, induced cell apoptosis and cell cycle G2 phase arrest, and weakened the migration and invasion of GBM cells. Downstream pathway analysis was conducted, and potential targets in cytokine receptors, extracellular matrix (ECM) receptors, apoptosis, and the cell cycle were uncovered. Finally, transcriptional regulators were analyzed, and bromodomain-containing protein 4 (BRD4) was found to activate CLCF1 in GBM. Conclusions: CLCF1, transcriptionally activated by BRD4, promotes glioma and serves as an unfavorable marker in GBM.

10.
Cell Calcium ; 101: 102520, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34933172

RESUMO

Cytokines of interleukin-6 (IL-6) family are important signaling proteins involved in various physiological and pathological processes. Earlier, we described interactions between IL-11 and S100P/B proteins from the family of S100 proteins engaged in the pathogenesis of numerous diseases. We probed here interactions between seven IL-6 family cytokines (IL-6, IL-11, OSM, LIF, CNTF, CT-1, and CLCF1) and fourteen S100 proteins (S100A1/A4/A6/A7/A8/A9/A10/A11/A12/A13/A14/A15/B/P). Surface plasmon resonance spectroscopy revealed formation of calcium-dependent complexes between IL-11, OSM, CNTF, CT-1, and CLCF1 and distinct subsets of S100A1/A6/B/P proteins with equilibrium dissociation constants of 19 nM - 12 µM. The existence of a network of interactions between Ca2+-loaded S100 proteins and IL-6 family cytokines suggest regulation of these cytokines by the extracellular forms of S100 proteins.


Assuntos
Interleucina-6 , Receptores de Citocinas , Receptor gp130 de Citocina , Citocinas/metabolismo , Receptores de Citocinas/metabolismo , Proteínas S100
11.
Bone ; 153: 116140, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34364014

RESUMO

A growing body of evidence suggests that immune factors that regulate osteoclast differentiation and bone resorption might be promising therapeutic agents for the treatment of osteoporosis. The expression of CLCF1, an immune cell-derived molecule, has been reported to be reduced in patients with postmenopausal osteoporosis. This suggests that it may be involved in bone remodeling. Thus, we explored the functional role of CLCF1 in osteoclastogenesis and bone loss associated with osteoporosis. Surprisingly, the administration of recombinant CLCF1 repressed excessive bone loss in ovariectomized mice and prevented RANKL-induced bone loss in calvarial mouse model. Likewise, the addition of recombinant CLCF1 to RANKL-stimulated monocytes resulted in a significant suppression in the number of differentiated osteoclasts with small resorption areas being observed on dentine slices in vitro. At the same dosage, CLCF1 did not exhibit any detectable negative effects on the differentiation of osteoblasts. Mechanistically, the inhibition of osteoclast differentiation by the CLCF1 treatment appears to be related to the activation of interferon signaling (IFN) and the suppression of the NF-κB signaling pathway. Interestingly, the expression of the main components of IFN-signaling namely, STAT1 and IRF1, was detected in macrophages as early as 1 h after stimulation with CLCF1. Consistent with these results, the blockade of STAT1 in macrophages abolished the inhibitory effect of CLCF1 on osteoclast differentiation in vitro. These collective findings point to a novel immunoregulatory function of CLCF1 in bone remodeling and highlight it as a potentially useful therapeutic agent for the treatment of osteoporosis.


Assuntos
Reabsorção Óssea , Osteoporose , Animais , Diferenciação Celular , Humanos , Interferons , Camundongos , NF-kappa B/metabolismo , Osteoclastos/metabolismo , Osteogênese , Osteoporose/tratamento farmacológico , Ligante RANK , Transdução de Sinais
12.
Artigo em Inglês | MEDLINE | ID: mdl-32626662

RESUMO

Chagas disease is responsible for more than 10,000 deaths per year and about 6 to 7 million infected people worldwide. In its chronic stage, patients can develop mega-colon, mega-esophagus, and cardiomyopathy. Differences in clinical outcomes may be determined, in part, by the genetic background of the parasite that causes Chagas disease. Trypanosoma cruzi has a high genetic diversity, and each group of strains may elicit specific pathological responses in the host. Conflicting results have been reported in studies using various combinations of mammalian host-T. cruzi strains. We previously profiled the transcriptomic signatures resulting from infection of L6E9 rat myoblasts with four reference strains of T. cruzi (Brazil, CL, Y, and Tulahuen). The four strains induced similar overall gene expression alterations in the myoblasts, although only 21 genes were equally affected by all strains. Cardiotrophin-like cytokine factor 1 (Clcf1) was one of the genes found to be consistently upregulated by the infection with all four strains of T. cruzi. This cytokine is a member of the interleukin-6 family that binds to glycoprotein 130 receptor and activates the JAK/STAT signaling pathway, which may lead to muscle cell hypertrophy. Another commonly upregulated gene was tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein theta (Ywhaq, 14-3-3 protein Θ), present in the Cell Cycle Pathway. In the present work, we reanalyzed our previous microarray dataset, aiming at understanding in more details the transcriptomic impact that each strain has on JAK/STAT signaling and Cell Cycle pathways. Using Pearson correlation analysis between the expression levels of gene pairs in biological replicas from each pathway, we determined the coordination between such pairs in each experimental condition and the predicted protein interactions between the significantly altered genes by each strain. We found that although these highlighted genes were similarly affected by all four strains, the downstream genes or their interaction partners were not necessarily equally affected, thus reinforcing the idea of the role of parasite background on host cell transcriptome. These new analyses provide further evidence to the mechanistic understanding of how distinct T. cruzi strains lead to diverse remodeling of host cell transcriptome.


Assuntos
Trypanosoma cruzi , Animais , Brasil , Ciclo Celular , Humanos , Mioblastos , Ratos , Transdução de Sinais , Transcriptoma , Trypanosoma cruzi/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA