RESUMO
Terpenes are plant secondary metabolites known for their anti-inflammatory and antioxidant activities. According to ethnobotanical knowledge, Rhododendron luteum Sweet was used in traditional medicine against inflammation. The present study was conducted to determine the triterpene profile and antioxidant and anti-inflammatory activity of supercritical CO2 (SC-CO2) extracts of Rhododendron luteum Sweet flower (RLF). An LC-APCI-MS/MS analysis showed the presence of eight pentacyclic triterpenes and one phytosterol in the extracts obtained with pure CO2 as well as CO2 with the addition of aqueous ethanol as a co-solvent. Among the compounds detected, oleanolic/ursolic acid, ß-sitosterol and 3ß-taraxerol were the most abundant. The extract obtained with pure SC-CO2 was additionally subjected to HS-SPME-GC-FID-MS, which revealed more than 100 volatiles, mainly eugenol, ß-phenylethanol, dodecane, ß-caryophyllene, estragole and (Z)- and (E)-cinnamyl alcohol, followed by δ-cadinene. The extracts demonstrated significant hyaluronidase inhibition and exhibited varying modes of lipoxygenase and xanthine oxidase inhibitory activities. The studies of RLF have shown that their SC-CO2 extracts can be a rich source of triterpenes with anti-inflammatory potential.
Assuntos
Anti-Inflamatórios , Antioxidantes , Dióxido de Carbono , Flores , Extratos Vegetais , Rhododendron , Rhododendron/química , Antioxidantes/farmacologia , Antioxidantes/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Flores/química , Dióxido de Carbono/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Terpenos/química , Terpenos/farmacologia , Cromatografia com Fluido Supercrítico/métodos , Espectrometria de Massas em TandemRESUMO
Cinnamomum tamala leaf (CTL), also known as Indian bay leaf, is used all over the world for seasoning, flavoring, and medicinal purposes. These characteristics could be explained by the presence of several essential bioactive substances and lipid derivatives. In this work, rapid screening and identification of the chemical compounds in supercritical (SC)-CO2 extracts of CTL by use of UPLC-Q-TOF-MSE with a multivariate statistical analysis approach was established in both negative and positive mode. A total of 166 metabolites, including 66 monocarboxylic fatty acids, 52 dicarboxylic fatty acids, 27 fatty acid amides, and 21 cinnamic acid derivatives, were tentatively identified based on accurate mass and the mass spectrometric fragmentation pattern, out of which 142 compounds were common in all SC-CO2 extracts of CTL. Further, PCA and cluster hierarchical analysis clearly discriminated the chemical profile of analyzed extracts and allowed the selection of SC-CO2 extract rich in fatty acids, fatty acid amides, and other bioactive constituents. The result showed that the higher number of compounds was detected in CTL4 (300 bar/55 °C) extract than the other CTL extracts. The mono- and di-carboxylic fatty acids, fatty acid amides, and cinnamic acid derivatives were identified in CTL for the first time. UPLC-Q-TOF-MSE combined with chemometric analysis is a powerful method to rapidly screen the metabolite profiling to justify the quality of CTL as a flavoring agent and in functional foods.
Assuntos
Amidas , Cinamatos , Cinnamomum , Ácidos Graxos , Extratos Vegetais , Folhas de Planta , Cinamatos/química , Cinamatos/análise , Extratos Vegetais/química , Ácidos Graxos/química , Ácidos Graxos/análise , Folhas de Planta/química , Cromatografia Líquida de Alta Pressão/métodos , Amidas/química , Cinnamomum/química , Dióxido de Carbono/química , Quimiometria , Cromatografia com Fluido Supercrítico/métodos , Espectrometria de Massas/métodosRESUMO
Amongst the current alternatives, algae were proven to be a promising source of biofuel, which is renewable and capable of meeting world demand for transportation fuels. However, a suitable lipid extraction method that efficiently releases the lipids from different algal strains remains a bottleneck. The multifarious pretreatment methods are prevalent in this field of lipid extraction, and therefore, this article has critically reviewed the various lipid extraction methods for ameliorating the lipid yield from algae, irrespective of the strains/species. Physical, mechanical, and chemical are the different types of pretreatment methods. In this review, methodologies such as homogenization, sonication, Soxhlet extraction, microwave treatment, and bead-beating, have been studied in detail and are the most commonly used methods for lipid extraction. Specific advanced/emerging processes such as supercritical CO2 extraction, ionic liquid, and CO2 switchable solvent-based algal lipid extraction are yet to be demonstrated at pilot-scale, though promising. The extraction of lipids has to be financially conducive, environmentally sustainable, and industrially applicable for further conversion into biodiesel. Hence, this paper discusses variable pretreatment for lipid extraction and imparts a comparative analysis to elect an efficient, economically sound lipid extraction method for pilot-scale biodiesel production.
Assuntos
Líquidos Iônicos , Microalgas , Lipídeos , Biocombustíveis/análise , Dióxido de Carbono/análise , BiomassaRESUMO
Hericium erinaceus (HE), a widely utilized natural remedy and dietary source, has garnered significant attention for its therapeutic potential in various diseases. In this study, we employed supercritical fluid extraction (SFE) technology to isolate the bioactive compounds from HE's fruiting body. Comprehensive assessments of the antioxidant and antibacterial activities were conducted, along with in vitro investigations on the human colon cancer cell line (HCT-8). The SFE rate served as the evaluation metric, while the variables of extraction time, pressure, and temperature were systematically examined. By integrating the response surface center composite design, we successfully optimized the extraction process, yielding optimal parameters of 80 min, 30 MPa, and 35 °C, thus resulting in an extraction rate of 2.51%. These optimized conditions exhibited considerable antioxidant capacity, anticancer activity, and antibacterial potential. Furthermore, we employed graded alcohol extraction to refine the crude extracts, thereby confirming superior anticancer effects under a 70% alcohol precipitation. To elucidate the composition, Fourier-transform infrared spectroscopy (FT-IR) and gas chromatography-mass spectrometry (GC-MS) were employed to analyze the crude extracts and isolates of HE, facilitating a comparative analysis of six HE varieties. Our findings suggest that sterol derivatives hold promise as the active component against the colon cancer HCT-8 cell line. In conclusion, this study underscores the potential of HE SFE in the development of functional foods or alternative drugs for colon cancer treatment, thus opening new avenues for therapeutic interventions.
Assuntos
Neoplasias do Colo , Humanos , Antioxidantes/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Neoplasias do Colo/tratamento farmacológico , Antibacterianos/farmacologiaRESUMO
Three types of extraction were used to obtain biologically active substances from the heartwood of M. amurensis: supercritical CO2 extraction, maceration with EtOH, and maceration with MeOH. The supercritical extraction method proved to be the most effective type of extraction, giving the highest yield of biologically active substances. Several experimental conditions were investigated in the pressure range of 50-400 bar, with 2% of ethanol as co-solvent in the liquid phase at a temperature in the range of 31-70 °C. The most effective extraction conditions are: pressure of 100 bar and a temperature of 55 °C for M. amurensis heartwood. The heartwood of M. amurensis contains various polyphenolic compounds and compounds of other chemical groups with valuable biological activity. Tandem mass spectrometry (HPLC-ESI-ion trap) was applied to detect target analytes. High-accuracy mass spectrometric data were recorded on an ion trap equipped with an ESI source in the modes of negative and positive ions. The four-stage ion separation mode was implemented. Sixty-six different biologically active components have been identified in M. amurensis extracts. Twenty-two polyphenols were identified for the first time in the genus Maackia.
Assuntos
Dióxido de Carbono , Maackia , Espectrometria de Massas em Tandem , Polifenóis , Solventes/química , Cromatografia Líquida de Alta Pressão , Etanol , Extratos Vegetais/químicaRESUMO
The employment of supercritical carbon dioxide extraction for obtaining the chemical compounds from N. tabacum leaves, especially nicotine, is advancing. The supercritical carbon dioxide extraction of dried N. tabacum cv. Samsun and N. tabacum cv. Virginia at different process parameters was performed to obtain the highest extraction yield and nicotine relative amount. The optimal extraction conditions concerning the highest extraction yield and nicotine relative amount were determined by response surface methodology. The highest extraction yield for N. tabacum cv. Samsun was 2.99% and for N. tabacum cv. Virginia 2.33% at 23.41 MPa, 50 °C and 90 min of extraction time. The highest nicotine relative amount in N. tabacum cv. Samsun and N. tabacum cv. Virginia was at 15 MPa, 50 °C and 90 min extraction time and was 242.1 mg per 100 g of plant material and 32.4 mg per 100 g of plant material, respectively. The pressure, temperature and time influenced the extraction yield and nicotine relative amount recovery in N. tabacum cv. Samsun and N. tabacum cv. Virginia. A general inclusive concept in respect to pressure, temperature and time of the supercritical carbon dioxide extraction and a report on phytochemicals present in two N. tabacum varieties is presented.
Assuntos
Dióxido de Carbono , Cromatografia com Fluido Supercrítico , Dióxido de Carbono/química , Cromatografia com Fluido Supercrítico/métodos , Nicotiana , Nicotina , TemperaturaRESUMO
The essential oil extracted from Cinnamomum camphora leaves is a mixture of volatile compounds, mainly terpenes, and is widely used in medicine, perfume and chemical industries. In this study, the extraction processes of essential oil from Cinnamomum camphora leaves by steam distillation and supercritical CO2 extraction were summarized and compared, and the camphor tree essential oil was detected by GC/MS. The extraction rate of essential oil extracted by steam distillation is less than 0.5%, while that of supercritical CO2 extraction is 4.63% at 25 MPa, 45 °C and 2.5 h. GC/MS identified 21 and 42 compounds, respectively. The content of alcohols in the essential oil is more than 35%, and that of terpenoids is more than 80%. The steam extraction method can extract volatile substances with a low boiling point and more esters and epoxides; The supercritical method is suitable for extracting weak polar substances with a high alcohol content. Supercritical CO2 extraction can selectively extract essential oil components and effectively prevent oxidation and the escape of heat sensitive substances.
Assuntos
Cromatografia com Fluido Supercrítico , Cinnamomum camphora , Óleos Voláteis , Dióxido de Carbono , Cromatografia com Fluido Supercrítico/métodos , Destilação/métodos , Óleos Voláteis/química , Extratos Vegetais , Vapor , Terpenos/análiseRESUMO
Supercritical CO2 extraction (SCCO2) extraction of cannabis oil from Indian cannabis (Cannabis indica) leaves was optimized through a central composite design using CO2 pressure (150-250 bar), temperature (30-50 °C) and time (1-2 h). From the regression model, the optimal CO2 pressure, extraction temperature and time were 250 bar, 43 °C and 1.7 h, respectively resulting in the experimental yield of 4.9 wt% of cannabis oil via SCCO2 extraction. The extract contained cannabidiol, tetrahydrocannabivarin, Δ9-tetrahydrocannabinol and Δ8-tetrahydrocannabinol as well as two terpenoids such as cis-caryophyllene and α-humulene. Besides SCCO2 extraction of cannabis oil, the raffinate biomass was utilized to extract polyphenols using water as the extraction medium. Cannabis oil and water extractive were investigated for their half-maximal inhibitory concentration (IC50) values, which were found to be 1.3 and 0.6 mg/mL, respectively. This is comparable to the commercially available antioxidant such as butylated hydroxytoluene with an IC50 value of 0.5 mg/mL. This work on SCCO2 extraction of cannabinoids and other valuable bioactive compounds provides an environmentally sustainable technique to valorize cannabis leaves.
Assuntos
Canabinoides , Cannabis , Alucinógenos , Dióxido de Carbono , Biomassa , DronabinolRESUMO
Fungal infections of cultivated food crops result in extensive losses of crops at the global level, while resistance to antifungal agents continues to grow. Supercritical fluid extraction using CO2 (SFE-CO2) has gained attention as an environmentally well-accepted extraction method, as CO2 is a non-toxic, inert and available solvent, and the extracts obtained are, chemically, of greater or different complexities compared to those of conventional extracts. The SFE-CO2 extracts of Achillea millefolium, Calendula officinalis, Chamomilla recutita, Helichrysum arenarium, Humulus lupulus, Taraxacum officinale, Juniperus communis, Hypericum perforatum, Nepeta cataria, Crataegus sp. and Sambucus nigra were studied in terms of their compositions and antifungal activities against the wheat- and buckwheat-borne fungi Alternaria alternata, Epicoccum nigrum, Botrytis cinerea, Fusarium oxysporum and Fusarium poae. The C. recutita and H. arenarium extracts were the most efficacious, and these inhibited the growth of most of the fungi by 80% to 100%. Among the fungal species, B. cinerea was the most susceptible to the treatments with the SFE-CO2 extracts, while Fusarium spp. were the least. This study shows that some of these SFE-CO2 extracts have promising potential for use as antifungal agents for selected crop-borne fungi.
Assuntos
Fungicidas Industriais/química , Fungicidas Industriais/farmacologia , Doenças das Plantas/prevenção & controle , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Botrytis/efeitos dos fármacos , Dióxido de Carbono/química , Cromatografia com Fluido Supercrítico/métodos , Produtos Agrícolas/microbiologia , Fagopyrum/microbiologia , Fungos/efeitos dos fármacos , Fungicidas Industriais/isolamento & purificação , Doenças das Plantas/microbiologia , Extratos Vegetais/isolamento & purificação , Triticum/microbiologiaRESUMO
In this study, the volatile compound profiles of gurum seed oil were determined using two methods: supercritical CO2 extraction (SFE) and the screw press process (SPP). For volatile compounds extraction and identification, headspace solid-phase micro-extraction (HS-SPME) and GC-MS were used, respectively. A total number of 56 volatile compounds were revealed and identified in oil extracted by SFE, while only 40 compounds were detected in extracted oil by SPP. Acids, aldehydes, esters, ketones, furans, and other components were present in the highest ratio in oil extracted by SFE. In contrast, alcohols and alkenes were found in the highest proportion in oil extracted by SPP. In this study, it was observed that SFE showed an increase in the amounts of volatile compounds and favorably impacted the aroma of gurum seed oil. The results reveal that different extraction methods significantly impact the volatile components of gurum seed oil, and this study can help evaluate the quality of the oil extracted from gurum seeds.
Assuntos
Microextração em Fase Sólida , Compostos Orgânicos Voláteis , Ésteres/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Óleos de Plantas , Sementes/química , Microextração em Fase Sólida/métodos , Compostos Orgânicos Voláteis/análiseRESUMO
Lycopene, ß-carotene and ω-fatty acids are major compounds in tomatoes with known antioxidant activity, capable of preventing health disorders. The identification of potential natural sources of antioxidants, extraction efficiencies and antioxidant activity assessments are essential to promote such products to be used in the food, pharmaceutical or cosmetic industries. This work presents four added-value products recovered from tomatoes: pigmented solid oleoresin, pigmented oil and two raw extracts from supercritical and Soxhlet extraction. Different parameters including the matrices of tomatoes, extraction methods, green solvents and operating parameters were varied to obtain extracts with different qualities. Extract analysis was performed using UV-VIS, FT-IR, GC-MS, Folin-Ciocalteu and DPPH methods. The highest-quality extract was the solid oleoresin obtained from pomace using supercritical CO2 extraction at 450 bar, 70 °C and 11 kg/h: 1016.94 ± 23.95 mg lycopene/100 g extract, 154.87 ± 16.12 mg ß-carotene/100 g extract, 35.25 ± 0.14 mg GAE/g extract and 67.02 ± 5.11% inhibition DPPH. The economic feasibility of the three extraction processes (1:10:100 kg dried pomace/batch as scalability criterion) was evaluated. The most profitable was the supercritical extraction process at the highest capacity, which produces pigmented solid oleoresin and oil with high content of lycopene valorized with a high market price, using natural food waste (pomace).
Assuntos
Produtos Biológicos , Eliminação de Resíduos , Solanum lycopersicum , Antioxidantes/química , Antioxidantes/farmacologia , Produtos Biológicos/farmacologia , Alimentos , Licopeno , Extratos Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier , beta CarotenoRESUMO
The flowers of Narcissus poeticus are used for the isolation of valuable fragrance substances. So far, as the majority of these substances consist of volatile and sensitive to heat compounds, there is a need of developing effective methods for their recovery. In this study, freeze-dried N. poeticus inflorescences were extracted with pure supercritical CO2 (SFE-CO2) and its mixture with 5% co-solvent ethanol (EtOH) at 40 °C. Extract yields varied from 1.63% (12 MPa) to 3.12% (48 MPa, 5% EtOH). In total, 116 volatile compounds were identified by GC-TOF/MS in the extracts, which were divided into 20 different groups. Benzyl benzoate (9.44-10.22%), benzyl linoleate (1.72-2.17%) and benzyl alcohol (0.18-1.00%) were the major volatiles among aromatic compounds. The amount of the recovered benzyl benzoate in N. poeticus SFE-CO2 extracts varied from 58.98 ± 2.61 (24 MPa) to 91.52 ± 1.36 (48 MPa) mg/kg plant dry weight (pdw). α-Terpineol dominated among oxygenated monoterpenes (1.08-3.42%); its yield was from 9.25 ± 0.63 (12 MPa) to 29.88 ± 1.25 (48 MPa/EtOH) mg/kg pdw. Limonene was the major monoterpene hydrocarbon; (3E)-hexenol and heneicosanol dominated among alcohols and phenols; dihydroactinidiolide and 4,8,12,16-tetramethyl heptadecan-4-olide were the most abundant lactones; heptanal, nonanal, (2E,4E)-decadienal and octadecanal were the most abundant aldehydes. The most important prenol lipids were triterpenoid squalene, from 0.86 ± 0.10 (24 MPa) to 7.73 ± 0.18 (48 MPa/EtOH) mg/kg pdw and D-α-tocopherol, from 1.20 ± 0.04 (12 MPa) to 15.39 ± 0.31 (48 MPa/EtOH) mg/kg pdw. Aliphatic hydrocarbons (waxes) constituted the main part (41.47 to 54.93%) in the extracts; while in case of a 5% EtOH the percentage of alkanes was the lowest. The fraction of waxes may be removed for the separation of higher value fragrance materials. In general, the results obtained are promising for a wider application of SFE-CO2 for the recovery of fragrance substances from N. poeticus flowers.
Assuntos
Dióxido de Carbono/química , Flores/química , Narcissus/química , Odorantes/análise , Óleos Voláteis/isolamento & purificação , Compostos Fitoquímicos/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Perfumes/análise , Solventes/químicaRESUMO
Extraction of lipids from biological tissues is a crucial step in lipid analysis. The selection of appropriate solvent is the most critical factor in the efficient extraction of lipids. A mixture of polar (to disrupt the protein-lipid complexes) and nonpolar (to dissolve the neutral lipids) solvents are precisely selected to extract lipids efficiently. In addition, the disintegration of complex and rigid cell-wall of plants, fungi, and microalgal cells by various mechanical, chemical, and enzymatic treatments facilitate the solvent penetration and extraction of lipids. This review discusses the chloroform/methanol-based classical lipid extraction methods and modern modifications of these methods in terms of using healthy and environmentally safe solvents and rapid single-step extraction. At the same time, some adaptations were made to recover the specific lipids. In addition, the high throughput lipid extraction methodologies used for liquid chromatography-mass spectrometry (LC-MS)-based plant and animal lipidomics were discussed. The advantages and disadvantages of various pretreatments and extraction methods were also illustrated. Moreover, the emerging green solvents-based lipid extraction method, including supercritical CO2 extraction (SCE), is also discussed.
Assuntos
Parede Celular/química , Lipidômica/métodos , Lipídeos/isolamento & purificação , Solventes/química , Animais , Clorofórmio/química , Cromatografia Líquida , Química Verde , Espectrometria de Massas , Metanol/químicaRESUMO
In the present work, we establish novel "environmentally-friendly" oil-in-water nanoemulsions to enhance the transdermal delivery of bakuchiol, the so-called "bioretinol" obtained from powdered Psoralea corylifolia seeds via a sustainable process, i.e., using a supercritical fluid extraction approach with pure carbon dioxide (SC-CO2). According to Green Chemistry principles, five novel formulations were stabilized by "green" hybrid ionic surfactants such as coco-betaine-surfactin molecules obtained from coconut and fermented rapeseed meal. Preliminary optimization studies involving three dispersion stability tests, i.e., centrifugation, heating, and cooling cycles, indicated the most promising candidates for further physicochemical analysis. Finally, nanoemulsion colloidal characterization provided by scattering (dynamic and electrophoretic light scattering as well as backscattering), microscopic (transmission electron and confocal laser scanning microscopy), and spectroscopic (UV-Vis spectroscopy) methods revealed the most stable nanocarrier for transdermal biological investigation. In vitro, topical experiments provided on human skin cell line HaCaT keratinocytes and normal dermal NHDF fibroblasts indicated high cell viability upon treatment of the tested formulation with a final 0.02-0.2 mg/mL bakuchiol concentration. This excellent biocompatibility was confirmed by ex vivo and in vivo tests on animal and human skin tissue. The improved permeability and antiaging potential of the bakuchiol-encapsulated rich extract were observed, indicating that the obtained ecological nanoemulsions are competitive with commercial retinol formulations.
Assuntos
Administração Tópica , Emulsões/química , Química Verde , Fenóis/administração & dosagem , Administração Cutânea , Animais , Materiais Biocompatíveis , Brassica napus , Linhagem Celular , Sobrevivência Celular , Coloides/química , Sistemas de Liberação de Medicamentos , Fermentação , Humanos , Íons , Queratinócitos/metabolismo , Luz , Nanomedicina/métodos , Permeabilidade , Pós , Psoralea/metabolismo , Espalhamento de Radiação , Pele/metabolismo , Absorção Cutânea , Tensoativos , Vitamina A/administração & dosagemRESUMO
Lactic acid fermentation increases the bioactive properties of shrimp waste. Astaxanthin is the principal carotenoid present in shrimp waste, which can be found esterified in the liquid fraction (liquor) after its lactic acid fermentation. Supercritical CO2 technology has been proposed as a green alternative to obtain astaxanthin from fermented shrimp waste. This study aimed to optimize astaxanthin extraction by supercritical CO2 technology from fermented liquor of shrimp waste and study bioaccessibility using simulated gastrointestinal digestion (GD) of the optimized extract. A Box-Behnken design with three variables (pressure, temperature, and flow rate) was used to optimize the supercritical CO2 extraction. The optimized CO2 extract was obtained at 300 bar, 60 °C, and 6 mL/min, and the estimated characteristics showed a predictive extraction yield of 11.17%, antioxidant capacity of 1.965 mmol of Trolox equivalent (TE)/g, and astaxanthin concentration of 0.6353 µg/g. The experiment with optimal conditions performed to validate the predicted values showed an extraction yield of 12.62%, an antioxidant capacity of 1.784 mmol TE/g, and an astaxanthin concentration of 0.52 µg/g. The astaxanthin concentration decreased, and the antioxidant capacity of the optimized extract increased during gastrointestinal digestion. In conclusion, our optimized supercritical CO2 process is suitable for obtaining astaxanthin from shrimp by-products after lactic acid fermentation.
Assuntos
Antioxidantes , Penaeidae/química , Animais , Antioxidantes/análise , Antioxidantes/isolamento & purificação , Dióxido de Carbono/química , Fermentação , Resíduos , Xantofilas/análise , Xantofilas/isolamento & purificaçãoRESUMO
Cichorium intybus L. or chicory plants are a natural source of health-promoting compounds in the form of supplements such as inulin, as well as other bioactive compounds such as sesquiterpene lactones (SLs). After inulin extraction, chicory roots are considered waste, with most SLs not being harnessed. We developed and optimized a new strategy for SL extraction that can contribute to the conversion of chicory root waste into valuable products to be used in human health-promoting applications. In our work, rich fractions of SLs were recovered from chicory roots using supercritical CO2. A response surface methodology was used to optimize the process parameters (pressure, temperature, flow rate, and co-solvent percentage) for the extraction performance. The best operating conditions were achieved at 350 bar, 40 °C, and 10% EtOH as a co-solvent in a 15 g/min flow rate for 120 min. The extraction with supercritical CO2 revealed to be more selective for the SLs than the conventional solid-liquid extraction with ethyl acetate. In our work, 1.68% mass and a 0.09% sesquiterpenes yield extraction were obtained, including the recovery of two sesquiterpene lactones (8-deoxylactucin and 11ß,13-dihydro-8-deoxylactucin), which, to the best of our knowledge, are not commercially available. A mixture of the abovementioned compounds were tested at different concentrations for their toxic profile and anti-inflammatory potential towards a human calcineurin/NFAT orthologue pathway in a yeast model, the calcineurin/Crz1 pathway. The SFE extract obtained, rich in SLs, yielded results of inhibition of 61.74 ± 6.87% with 50 µg/mL, and the purified fraction containing 8-deoxylactucin and 11ß,13-dihydro-8-deoxylactucin inhibited the activation of the reporter gene up to 53.38 ± 3.9% at 10 µg/mL. The potential activity of the purified fraction was also validated by the ability to inhibit Crz1 nuclear translocation and accumulation. These results reveal a possible exploitable green technology to recover potential anti-inflammatory compounds from chicory roots waste after inulin extraction.
Assuntos
Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Dióxido de Carbono/química , Cichorium intybus/química , Lactonas/farmacologia , Raízes de Plantas/química , Sesquiterpenos/farmacologia , Anti-Inflamatórios/química , Fracionamento Químico , Humanos , Lactonas/química , Estrutura Molecular , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Sesquiterpenos/química , Análise EspectralRESUMO
Croton lechleri, commonly known as Dragon's blood, is a tree cultivated in the northwest Amazon rainforest of Ecuador and Peru. This tree produces a deep red latex which is composed of different natural products such as phenolic compounds, alkaloids, and others. The chemical structures of these natural products found in C. lechleri latex are promising corrosion inhibitors of admiralty brass (AB), due to the number of heteroatoms and π structures. In this work, three different extracts of C. lechleri latex were obtained, characterized phytochemically, and employed as novel green corrosion inhibitors of AB. The corrosion inhibition efficiency (IE%) was determined in an aqueous 0.5 M HCl solution by potentiodynamic polarization (Tafel plots) and electrochemical impedance spectroscopy, measuring current density and charge transfer resistance, respectively. In addition, surface characterization of AB was performed by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy techniques. Chloroform alkaloid-rich extracts resulted in IE% of 57% at 50 ppm, attributed to the formation of a layer of organic compounds on the AB surface that hindered the dezincification process. The formulation of corrosion inhibitors from C. lechleri latex allows for the valorization of non-edible natural sources and the diversification of the offer of green corrosion inhibitors for the chemical treatment of heat exchangers.
Assuntos
Cobre/química , Croton/química , Ácido Clorídrico/química , Extratos Vegetais/química , Zinco/química , CorrosãoRESUMO
BACKGROUND: This study provides an insight into the impact of ultrasound-assisted extraction with water as solvent (UAEW) and extraction by supercritical carbon dioxide (SC-CO2 ) with 5% EtOH on antioxidant and enzyme inhibitory activity in regard to the chemical profile of the edible and medicinal mushroom, Pleurotus pulmonarius. RESULTS: Extraction efficiency was between 0.36% and 63.32%, depending on the extraction technique. The main compounds in the extracts were fatty acids. Supercritical CO2 extraction with co-solvent was the most suitable method for obtaining extracts that were rich in ergosterol content, reaching a value of 40.1 mg g-1 . The UAEW of crude mushroom powder ensured the highest yield, as well as the extracts with best antioxidative activity. The measurements of enzyme inhibitory activity revealed that all types of investigated extracts exhibited only tyrosinase and amylase inhibition at a significant level. CONCLUSION: Based on our results, the extraction methods significantly affected the chemical profile and bioactivity of P. pulmonarius. © 2020 Society of Chemical Industry.
Assuntos
Amilases/antagonistas & inibidores , Cromatografia com Fluido Supercrítico/métodos , Inibidores Enzimáticos/isolamento & purificação , Monofenol Mono-Oxigenase/antagonistas & inibidores , Extratos Vegetais/isolamento & purificação , Pleurotus/química , Amilases/química , Inibidores Enzimáticos/química , Ergosterol/química , Ergosterol/isolamento & purificação , Humanos , Monofenol Mono-Oxigenase/química , Extratos Vegetais/química , UltrassomRESUMO
Endophytic fungi have been highlight in the production of secondary metabolites with different bioactive properties, such as in the production of the antioxidant compounds. Therefore, the objective of this work was the extraction of the antioxidant compounds from the biomass of Diaporthe schini using supercritical carbon dioxide (CO2) without and with ethanol as cosolvent. The biomass was produced by submerged fermentation and the parameters evaluated in the extraction process were: pressure (150-250 bar), temperature (40-60 ºC) and cosolvent [biomass: cosolvent ratio, 1:0, 1:0.75 and 1:1.5 (w/v)]. Extraction yield, antioxidant activity and chemical composition of the extracts were determined. The highest extraction yield (3.24 wt.%) and the best antioxidant activity against the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical (96.62%) were obtained at 40 ºC, 250 bar and biomass:cosolvent ratio of 1:1.5 (w/v). The chemical compounds 1,4-diaza-2,5-dioxo-3-isobutyl bicyclo[4.3.0]nonane and benzeneethanol identified in GC/MS could be responsible for the antioxidant activity found in this study.
Assuntos
Antioxidantes , Ascomicetos/química , Dióxido de Carbono/química , Etanol/química , Antioxidantes/química , Antioxidantes/isolamento & purificação , Solventes/químicaRESUMO
Circular economy principles are based on the use of by-products from one operation as the raw materials in another. The aim of this work is to obtain extracts with high antioxidant capacity and resveratrol content for the superior capitalization of the biomass of Feteasca regala leaves obtained during vineyard horticultural operations in spring. In order to obtain a high-quality extract at an industrial level, an optimal extraction process is needed. Central composite design (CCD) was used for the experiment design, which contained three independent variables: the ratio of extraction solvent to solid matter, temperature (°C) and time (minutes). The evaluation of extracts was done by measuring the total antioxidant capacity of the extracts using photo-chemiluminescent techniques, and the resveratrol content using liquid chromatography. Process optimization was done using response surface methodology (RSM). Minitab software version 17.0 was used for the design of experiments and data analysis. Regression analysis showed that the model predicts 87.5% of the variation for resveratrol and 96% for total antioxidant capacity (TAC). The temperature had the biggest influence on the extraction yield. The optimal operational conditions for the extraction method applied had the following conditions: ratio e/m 2.92; 43.23 °C and 55.4 min. A maximum value of 34,623 µg ascorbic acid equivalent (AAE) /mL total antioxidant capacity and 182.4 µg/mL resveratrol content were obtained when the optimal extraction parameters where used. The values obtained in experiments proved that by using RSM an accurate model can be obtained for extraction of Feteasca regala leaves.