Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 421
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(10): 2446-2464.e22, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38582079

RESUMO

Tauopathies are age-associated neurodegenerative diseases whose mechanistic underpinnings remain elusive, partially due to a lack of appropriate human models. Here, we engineered human induced pluripotent stem cell (hiPSC)-derived neuronal lines to express 4R Tau and 4R Tau carrying the P301S MAPT mutation when differentiated into neurons. 4R-P301S neurons display progressive Tau inclusions upon seeding with Tau fibrils and recapitulate features of tauopathy phenotypes including shared transcriptomic signatures, autophagic body accumulation, and reduced neuronal activity. A CRISPRi screen of genes associated with Tau pathobiology identified over 500 genetic modifiers of seeding-induced Tau propagation, including retromer VPS29 and genes in the UFMylation cascade. In progressive supranuclear palsy (PSP) and Alzheimer's Disease (AD) brains, the UFMylation cascade is altered in neurofibrillary-tangle-bearing neurons. Inhibiting the UFMylation cascade in vitro and in vivo suppressed seeding-induced Tau propagation. This model provides a robust platform to identify novel therapeutic strategies for 4R tauopathy.


Assuntos
Células-Tronco Pluripotentes Induzidas , Neurônios , Tauopatias , Proteínas tau , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas tau/metabolismo , Tauopatias/metabolismo , Tauopatias/patologia , Neurônios/metabolismo , Neurônios/patologia , Animais , Camundongos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Encéfalo/metabolismo , Encéfalo/patologia , Paralisia Supranuclear Progressiva/metabolismo , Paralisia Supranuclear Progressiva/patologia , Paralisia Supranuclear Progressiva/genética , Diferenciação Celular , Mutação , Autofagia
2.
Cell ; 186(2): 346-362.e17, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36638793

RESUMO

Ribosomes frequently stall during mRNA translation, resulting in the context-dependent activation of quality control pathways to maintain proteostasis. However, surveillance mechanisms that specifically respond to stalled ribosomes with an occluded A site have not been identified. We discovered that the elongation factor-1α (eEF1A) inhibitor, ternatin-4, triggers the ubiquitination and degradation of eEF1A on stalled ribosomes. Using a chemical genetic approach, we unveiled a signaling network comprising two E3 ligases, RNF14 and RNF25, which are required for eEF1A degradation. Quantitative proteomics revealed the RNF14 and RNF25-dependent ubiquitination of eEF1A and a discrete set of ribosomal proteins. The ribosome collision sensor GCN1 plays an essential role by engaging RNF14, which directly ubiquitinates eEF1A. The site-specific, RNF25-dependent ubiquitination of the ribosomal protein RPS27A/eS31 provides a second essential signaling input. Our findings illuminate a ubiquitin signaling network that monitors the ribosomal A site and promotes the degradation of stalled translation factors, including eEF1A and the termination factor eRF1.


Assuntos
Proteínas de Ligação a RNA , Transativadores , Proteínas de Transporte/metabolismo , Fatores de Alongamento de Peptídeos/genética , Biossíntese de Proteínas , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Humanos , Células HeLa , Células HEK293 , Proteínas de Ligação a RNA/metabolismo , Transativadores/metabolismo , Fator 1 de Elongação de Peptídeos/metabolismo
3.
Cell ; 183(7): 2020-2035.e16, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33326746

RESUMO

Thousands of proteins localize to the nucleus; however, it remains unclear which contain transcriptional effectors. Here, we develop HT-recruit, a pooled assay where protein libraries are recruited to a reporter, and their transcriptional effects are measured by sequencing. Using this approach, we measure gene silencing and activation for thousands of domains. We find a relationship between repressor function and evolutionary age for the KRAB domains, discover that Homeodomain repressor strength is collinear with Hox genetic organization, and identify activities for several domains of unknown function. Deep mutational scanning of the CRISPRi KRAB maps the co-repressor binding surface and identifies substitutions that improve stability/silencing. By tiling 238 proteins, we find repressors as short as ten amino acids. Finally, we report new activator domains, including a divergent KRAB. These results provide a resource of 600 human proteins containing effectors and demonstrate a scalable strategy for assigning functions to protein domains.


Assuntos
Ensaios de Triagem em Larga Escala , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Sistemas CRISPR-Cas/genética , Feminino , Inativação Gênica , Genes Reporter , Células HEK293 , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Células K562 , Lentivirus/fisiologia , Anotação de Sequência Molecular , Mutação/genética , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas/genética , Domínios Proteicos , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Reprodutibilidade dos Testes , Transcrição Gênica , Dedos de Zinco
4.
Cell ; 176(1-2): 377-390.e19, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30612741

RESUMO

Over one million candidate regulatory elements have been identified across the human genome, but nearly all are unvalidated and their target genes uncertain. Approaches based on human genetics are limited in scope to common variants and in resolution by linkage disequilibrium. We present a multiplex, expression quantitative trait locus (eQTL)-inspired framework for mapping enhancer-gene pairs by introducing random combinations of CRISPR/Cas9-mediated perturbations to each of many cells, followed by single-cell RNA sequencing (RNA-seq). Across two experiments, we used dCas9-KRAB to perturb 5,920 candidate enhancers with no strong a priori hypothesis as to their target gene(s), measuring effects by profiling 254,974 single-cell transcriptomes. We identified 664 (470 high-confidence) cis enhancer-gene pairs, which were enriched for specific transcription factors, non-housekeeping status, and genomic and 3D conformational proximity to their target genes. This framework will facilitate the large-scale mapping of enhancer-gene regulatory interactions, a critical yet largely uncharted component of the cis-regulatory landscape of the human genome.


Assuntos
Mapeamento Cromossômico/métodos , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica/genética , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Perfilação da Expressão Gênica , Redes Reguladoras de Genes/genética , Genoma Humano , Estudo de Associação Genômica Ampla , Genômica , Humanos , Locos de Características Quantitativas , Fatores de Transcrição/genética
5.
Cell ; 174(4): 953-967.e22, 2018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-30033366

RESUMO

Seminal yeast studies have established the value of comprehensively mapping genetic interactions (GIs) for inferring gene function. Efforts in human cells using focused gene sets underscore the utility of this approach, but the feasibility of generating large-scale, diverse human GI maps remains unresolved. We developed a CRISPR interference platform for large-scale quantitative mapping of human GIs. We systematically perturbed 222,784 gene pairs in two cancer cell lines. The resultant maps cluster functionally related genes, assigning function to poorly characterized genes, including TMEM261, a new electron transport chain component. Individual GIs pinpoint unexpected relationships between pathways, exemplified by a specific cholesterol biosynthesis intermediate whose accumulation induces deoxynucleotide depletion, causing replicative DNA damage and a synthetic-lethal interaction with the ATR/9-1-1 DNA repair pathway. Our map provides a broad resource, establishes GI maps as a high-resolution tool for dissecting gene function, and serves as a blueprint for mapping the genetic landscape of human cells.


Assuntos
Biomarcadores/metabolismo , Colesterol/metabolismo , Epistasia Genética , Redes Reguladoras de Genes , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Células Jurkat , Células K562 , Mapeamento de Interação de Proteínas
6.
Cell ; 173(6): 1398-1412.e22, 2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29731168

RESUMO

Noncoding mutations in cancer genomes are frequent but challenging to interpret. PVT1 encodes an oncogenic lncRNA, but recurrent translocations and deletions in human cancers suggest alternative mechanisms. Here, we show that the PVT1 promoter has a tumor-suppressor function that is independent of PVT1 lncRNA. CRISPR interference of PVT1 promoter enhances breast cancer cell competition and growth in vivo. The promoters of the PVT1 and the MYC oncogenes, located 55 kb apart on chromosome 8q24, compete for engagement with four intragenic enhancers in the PVT1 locus, thereby allowing the PVT1 promoter to regulate pause release of MYC transcription. PVT1 undergoes developmentally regulated monoallelic expression, and the PVT1 promoter inhibits MYC expression only from the same chromosome via promoter competition. Cancer genome sequencing identifies recurrent mutations encompassing the human PVT1 promoter, and genome editing verified that PVT1 promoter mutation promotes cancer cell growth. These results highlight regulatory sequences of lncRNA genes as potential disease-associated DNA elements.


Assuntos
Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica , Genes myc , RNA Longo não Codificante/genética , Animais , Neoplasias da Mama/metabolismo , Sistemas CRISPR-Cas , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica , Cromatina , DNA de Neoplasias/genética , Elementos Facilitadores Genéticos , Feminino , Perfilação da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos NOD , Mutação , Transplante de Neoplasias , Regiões Promotoras Genéticas , RNA Longo não Codificante/metabolismo , Transcrição Gênica
7.
Cell ; 168(3): 427-441.e21, 2017 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-28111074

RESUMO

Human apolipoprotein E (ApoE) apolipoprotein is primarily expressed in three isoforms (ApoE2, ApoE3, and ApoE4) that differ only by two residues. ApoE4 constitutes the most important genetic risk factor for Alzheimer's disease (AD), ApoE3 is neutral, and ApoE2 is protective. How ApoE isoforms influence AD pathogenesis, however, remains unclear. Using ES-cell-derived human neurons, we show that ApoE secreted by glia stimulates neuronal Aß production with an ApoE4 > ApoE3 > ApoE2 potency rank order. We demonstrate that ApoE binding to ApoE receptors activates dual leucine-zipper kinase (DLK), a MAP-kinase kinase kinase that then activates MKK7 and ERK1/2 MAP kinases. Activated ERK1/2 induces cFos phosphorylation, stimulating the transcription factor AP-1, which in turn enhances transcription of amyloid-ß precursor protein (APP) and thereby increases amyloid-ß levels. This molecular mechanism also regulates APP transcription in mice in vivo. Our data describe a novel signal transduction pathway in neurons whereby ApoE activates a non-canonical MAP kinase cascade that enhances APP transcription and amyloid-ß synthesis.


Assuntos
Precursor de Proteína beta-Amiloide/genética , Apolipoproteínas E/metabolismo , Sistema de Sinalização das MAP Quinases , Doença de Alzheimer/metabolismo , Animais , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Fibroblastos/metabolismo , Humanos , Camundongos , Neurônios/metabolismo , Isoformas de Proteínas/metabolismo
8.
Mol Cell ; 82(11): 2148-2160.e4, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35659325

RESUMO

Used widely for genome editing, CRISPR-Cas enzymes provide RNA-guided immunity to microbes by targeting foreign nucleic acids for cleavage. We show here that the native activity of CRISPR-Cas12c protects bacteria from phage infection by binding to DNA targets without cleaving them, revealing that antiviral interference can be accomplished without chemical attack on the invader or general metabolic disruption in the host. Biochemical experiments demonstrate that Cas12c is a site-specific ribonuclease capable of generating mature CRISPR RNAs (crRNAs) from precursor transcripts. Furthermore, we find that crRNA maturation is essential for Cas12c-mediated DNA targeting. These crRNAs direct double-stranded DNA binding by Cas12c using a mechanism that precludes DNA cutting. Nevertheless, Cas12c represses transcription and can defend bacteria against lytic bacteriophage infection when targeting an essential phage gene. Together, these results show that Cas12c employs targeted DNA binding to provide antiviral immunity in bacteria, providing a native DNase-free pathway for transient antiviral immunity.


Assuntos
Bacteriófagos , Sistemas CRISPR-Cas , Antivirais , Bactérias/genética , Bacteriófagos/genética , Bacteriófagos/metabolismo , DNA/metabolismo , Desoxirribonuclease I/metabolismo , Desoxirribonucleases/genética , Expressão Gênica , RNA/metabolismo
9.
Mol Cell ; 82(1): 190-208.e17, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34932975

RESUMO

Developmental genes such as Xist, which initiates X chromosome inactivation, are controlled by complex cis-regulatory landscapes, which decode multiple signals to establish specific spatiotemporal expression patterns. Xist integrates information on X chromosome dosage and developmental stage to trigger X inactivation in the epiblast specifically in female embryos. Through a pooled CRISPR screen in differentiating mouse embryonic stem cells, we identify functional enhancer elements of Xist at the onset of random X inactivation. Chromatin profiling reveals that X-dosage controls the promoter-proximal region, while differentiation cues activate several distal enhancers. The strongest distal element lies in an enhancer cluster associated with a previously unannotated Xist-enhancing regulatory transcript, which we named Xert. Developmental cues and X-dosage are thus decoded by distinct regulatory regions, which cooperate to ensure female-specific Xist upregulation at the correct developmental time. With this study, we start to disentangle how multiple, functionally distinct regulatory elements interact to generate complex expression patterns in mammals.


Assuntos
Elementos Facilitadores Genéticos , Loci Gênicos , Células-Tronco Embrionárias Murinas/metabolismo , Regiões Promotoras Genéticas , RNA Longo não Codificante/genética , Inativação do Cromossomo X , Cromossomo X , Animais , Diferenciação Celular , Linhagem Celular , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Regulação para Cima
10.
Mol Cell ; 79(1): 191-198.e3, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32619469

RESUMO

We recently used CRISPRi/a-based chemical-genetic screens and cell biological, biochemical, and structural assays to determine that rigosertib, an anti-cancer agent in phase III clinical trials, kills cancer cells by destabilizing microtubules. Reddy and co-workers (Baker et al., 2020, this issue of Molecular Cell) suggest that a contaminating degradation product in commercial formulations of rigosertib is responsible for the microtubule-destabilizing activity. Here, we demonstrate that cells treated with pharmaceutical-grade rigosertib (>99.9% purity) or commercially obtained rigosertib have qualitatively indistinguishable phenotypes across multiple assays. The two formulations have indistinguishable chemical-genetic interactions with genes that modulate microtubule stability, both destabilize microtubules in cells and in vitro, and expression of a rationally designed tubulin mutant with a mutation in the rigosertib binding site (L240F TUBB) allows cells to proliferate in the presence of either formulation. Importantly, the specificity of the L240F TUBB mutant for microtubule-destabilizing agents has been confirmed independently. Thus, rigosertib kills cancer cells by destabilizing microtubules, in agreement with our original findings.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células , Glicina/análogos & derivados , Microtúbulos/efeitos dos fármacos , Neoplasias/patologia , Preparações Farmacêuticas/metabolismo , Sulfonas/farmacologia , Tubulina (Proteína)/metabolismo , Células Cultivadas , Cristalografia por Raios X , Contaminação de Medicamentos , Glicina/farmacologia , Humanos , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Preparações Farmacêuticas/química , Conformação Proteica , Tubulina (Proteína)/química , Tubulina (Proteína)/genética
11.
Mol Cell ; 79(2): 221-233.e5, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32603710

RESUMO

Cas9 is a prokaryotic RNA-guided DNA endonuclease that binds substrates tightly in vitro but turns over rapidly when used to manipulate genomes in eukaryotic cells. Little is known about the factors responsible for dislodging Cas9 or how they influence genome engineering. Unbiased detection through proximity labeling of transient protein interactions in cell-free Xenopus laevis egg extract identified the dimeric histone chaperone facilitates chromatin transcription (FACT) as an interactor of substrate-bound Cas9. FACT is both necessary and sufficient to displace dCas9, and FACT immunodepletion converts Cas9's activity from multi-turnover to single turnover. In human cells, FACT depletion extends dCas9 residence times, delays genome editing, and alters the balance between indel formation and homology-directed repair. FACT knockdown also increases epigenetic marking by dCas9-based transcriptional effectors with a concomitant enhancement of transcriptional modulation. FACT thus shapes the intrinsic cellular response to Cas9-based genome manipulation most likely by determining Cas9 residence times.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Proteínas de Ligação a DNA/metabolismo , Genoma Humano , Proteínas de Grupo de Alta Mobilidade/metabolismo , Fatores de Elongação da Transcrição/metabolismo , Animais , Proteínas Associadas a CRISPR/metabolismo , Linhagem Celular , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Epigênese Genética , Edição de Genes , Técnicas de Silenciamento de Genes , Humanos , Nucleossomos/metabolismo , Xenopus laevis
12.
Genes Dev ; 34(23-24): 1619-1636, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33122293

RESUMO

Mutations in the telomere-binding protein POT1 are associated with solid tumors and leukemias. POT1 alterations cause rapid telomere elongation, ATR kinase activation, telomere fragility, and accelerated tumor development. Here, we define the impact of mutant POT1 alleles through complementary genetic and proteomic approaches based on CRISPR interference and biotin-based proximity labeling, respectively. These screens reveal that replication stress is a major vulnerability in cells expressing mutant POT1, which manifests as increased telomere mitotic DNA synthesis at telomeres. Our study also unveils a role for the nuclear pore complex in resolving replication defects at telomeres. Depletion of nuclear pore complex subunits in the context of POT1 dysfunction increases DNA damage signaling, telomere fragility and sister chromatid exchanges. Furthermore, we observed telomere repositioning to the nuclear periphery driven by nuclear F-actin polymerization in cells with POT1 mutations. In conclusion, our study establishes that relocalization of dysfunctional telomeres to the nuclear periphery is critical to preserve telomere repeat integrity.


Assuntos
Replicação do DNA/genética , Poro Nuclear/patologia , Proteínas de Ligação a Telômeros/genética , Telômero/genética , Linhagem Celular Tumoral , Dano ao DNA/genética , Humanos , Mitose/genética , Mutação , Neoplasias/genética , Neoplasias/fisiopatologia , Complexo Shelterina , Telômero/metabolismo , Proteínas de Ligação a Telômeros/metabolismo
13.
Am J Hum Genet ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38906146

RESUMO

Genome-wide association studies (GWASs) have identified numerous lung cancer risk-associated loci. However, decoding molecular mechanisms of these associations is challenging since most of these genetic variants are non-protein-coding with unknown function. Here, we implemented massively parallel reporter assays (MPRAs) to simultaneously measure the allelic transcriptional activity of risk-associated variants. We tested 2,245 variants at 42 loci from 3 recent GWASs in East Asian and European populations in the context of two major lung cancer histological types and exposure to benzo(a)pyrene. This MPRA approach identified one or more variants (median 11 variants) with significant effects on transcriptional activity at 88% of GWAS loci. Multimodal integration of lung-specific epigenomic data demonstrated that 63% of the loci harbored multiple potentially functional variants in linkage disequilibrium. While 22% of the significant variants showed allelic effects in both A549 (adenocarcinoma) and H520 (squamous cell carcinoma) cell lines, a subset of the functional variants displayed a significant cell-type interaction. Transcription factor analyses nominated potential regulators of the functional variants, including those with cell-type-specific expression and those predicted to bind multiple potentially functional variants across the GWAS loci. Linking functional variants to target genes based on four complementary approaches identified candidate susceptibility genes, including those affecting lung cancer cell growth. CRISPR interference of the top functional variant at 20q13.33 validated variant-to-gene connections, including RTEL1, SOX18, and ARFRP1. Our data provide a comprehensive functional analysis of lung cancer GWAS loci and help elucidate the molecular basis of heterogeneity and polygenicity underlying lung cancer susceptibility.

14.
Proc Natl Acad Sci U S A ; 121(3): e2307904121, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38207075

RESUMO

Respiratory chain dysfunction can decrease ATP and increase reactive oxygen species (ROS) levels. Despite the importance of these metabolic parameters to a wide range of cellular functions and disease, we lack an integrated understanding of how they are differentially regulated. To address this question, we adapted a CRISPRi- and FACS-based platform to compare the effects of respiratory gene knockdown on ROS to their effects on ATP. Focusing on genes whose knockdown is known to decrease mitochondria-derived ATP, we showed that knockdown of genes in specific respiratory chain complexes (I, III, and CoQ10 biosynthesis) increased ROS, whereas knockdown of other low ATP hits either had no impact (mitochondrial ribosomal proteins) or actually decreased ROS (complex IV). Moreover, although shifting metabolic conditions profoundly altered mitochondria-derived ATP levels, it had little impact on mitochondrial or cytosolic ROS. In addition, knockdown of a subset of complex I subunits-including NDUFA8, NDUFB4, and NDUFS8-decreased complex I activity, mitochondria-derived ATP, and supercomplex level, but knockdown of these genes had differential effects on ROS. Conversely, we found an essential role for ether lipids in the dynamic regulation of mitochondrial ROS levels independent of ATP. Thus, our results identify specific metabolic regulators of cellular ATP and ROS balance that may help dissect the roles of these processes in disease and identify therapeutic strategies to independently target energy failure and oxidative stress.


Assuntos
Mitocôndrias , Membranas Mitocondriais , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Trifosfato de Adenosina/metabolismo , Estresse Oxidativo
15.
Proc Natl Acad Sci U S A ; 121(6): e2311323121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38294941

RESUMO

Microbiota-centric interventions are limited by our incomplete understanding of the gene functions of many of its constituent species. This applies in particular to small RNAs (sRNAs), which are emerging as important regulators in microbiota species yet tend to be missed by traditional functional genomics approaches. Here, we establish CRISPR interference (CRISPRi) in the abundant microbiota member Bacteroides thetaiotaomicron for genome-wide sRNA screens. By assessing the abundance of different protospacer-adjacent motifs, we identify the Prevotella bryantii B14 Cas12a as a suitable nuclease for CRISPR screens in these bacteria and generate an inducible Cas12a expression system. Using a luciferase reporter strain, we infer guide design rules and use this knowledge to assemble a computational pipeline for automated gRNA design. By subjecting the resulting guide library to a phenotypic screen, we uncover the sRNA BatR to increase susceptibility to bile salts through the regulation of genes involved in Bacteroides cell surface structure. Our study lays the groundwork for unlocking the genetic potential of these major human gut mutualists and, more generally, for identifying hidden functions of bacterial sRNAs.


Assuntos
Bacteroides thetaiotaomicron , Pequeno RNA não Traduzido , Humanos , Bacteroides thetaiotaomicron/genética , RNA Guia de Sistemas CRISPR-Cas , Bile , RNA Bacteriano/genética , Pequeno RNA não Traduzido/genética
16.
Proc Natl Acad Sci U S A ; 121(22): e2322524121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38781216

RESUMO

Long noncoding RNAs (lncRNAs) account for the largest portion of RNA from the transcriptome, yet most of their functions remain unknown. Here, we performed two independent high-throughput CRISPRi screens to understand the role of lncRNAs in monocyte function and differentiation. The first was a reporter-based screen to identify lncRNAs that regulate TLR4-NFkB signaling in human monocytes and the second screen identified lncRNAs involved in monocyte to macrophage differentiation. We successfully identified numerous noncoding and protein-coding genes that can positively or negatively regulate inflammation and differentiation. To understand the functional roles of lncRNAs in both processes, we chose to further study the lncRNA LOUP [lncRNA originating from upstream regulatory element of SPI1 (also known as PU.1)], as it emerged as a top hit in both screens. Not only does LOUP regulate its neighboring gene, the myeloid fate-determining factor SPI1, thereby affecting monocyte to macrophage differentiation, but knockdown of LOUP leads to a broad upregulation of NFkB-targeted genes at baseline and upon TLR4-NFkB activation. LOUP also harbors three small open reading frames capable of being translated and are responsible for LOUP's ability to negatively regulate TLR4/NFkB signaling. This work emphasizes the value of high-throughput screening to rapidly identify functional lncRNAs in the innate immune system.


Assuntos
Diferenciação Celular , Inflamação , Macrófagos , Monócitos , RNA Longo não Codificante , Transdução de Sinais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Humanos , Macrófagos/metabolismo , Macrófagos/citologia , Diferenciação Celular/genética , Monócitos/metabolismo , Monócitos/citologia , Inflamação/genética , Inflamação/metabolismo , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , NF-kappa B/metabolismo , Transativadores/metabolismo , Transativadores/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Sistemas CRISPR-Cas , Regulação da Expressão Gênica
17.
EMBO J ; 41(21): e111338, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36121125

RESUMO

The balance between self-renewal and differentiation in human foetal lung epithelial progenitors controls the size and function of the adult organ. Moreover, progenitor cell gene regulation networks are employed by both regenerating and malignant lung cells, where modulators of their effects could potentially be of therapeutic value. Details of the molecular networks controlling human lung progenitor self-renewal remain unknown. We performed the first CRISPRi screen in primary human lung organoids to identify transcription factors controlling progenitor self-renewal. We show that SOX9 promotes proliferation of lung progenitors and inhibits precocious airway differentiation. Moreover, by identifying direct transcriptional targets using Targeted DamID, we place SOX9 at the centre of a transcriptional network, which amplifies WNT and RTK signalling to stabilise the progenitor cell state. In addition, the proof-of-principle CRISPRi screen and Targeted DamID tools establish a new workflow for using primary human organoids to elucidate detailed functional mechanisms underlying normal development and disease.


Assuntos
Pulmão , Fatores de Transcrição SOX9 , Células-Tronco , Humanos , Diferenciação Celular/fisiologia , Pulmão/embriologia , Transdução de Sinais , Fatores de Transcrição SOX9/metabolismo , Células-Tronco/metabolismo
18.
EMBO J ; 41(24): e111179, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36341546

RESUMO

Transposable elements are a genetic reservoir from which new genes and regulatory elements can emerge. However, expression of transposable elements can be pathogenic and is therefore tightly controlled. KRAB domain-containing zinc finger proteins (KRAB-ZFPs) recruit the co-repressor KRAB-associated protein 1 (KAP1/TRIM28) to regulate many transposable elements, but how KRAB-ZFPs and KAP1 interact remains unclear. Here, we report the crystal structure of the KAP1 tripartite motif (TRIM) in complex with the KRAB domain from a human KRAB-ZFP, ZNF93. Structure-guided mutations in the KAP1-KRAB binding interface abolished repressive activity in an epigenetic transcriptional silencing assay. Deposition of H3K9me3 over thousands of loci is lost genome-wide in cells expressing a KAP1 variant with mutations that abolish KRAB binding. Our work identifies and functionally validates the KRAB-KAP1 molecular interface, which is critical for a central transcriptional control axis in vertebrates. In addition, the structure-based prediction of KAP1 recruitment efficiency will enable optimization of KRABs used in CRISPRi.


Assuntos
Elementos de DNA Transponíveis , Proteínas Repressoras , Animais , Humanos , Proteínas Repressoras/metabolismo , Proteína 28 com Motivo Tripartido/genética , Proteína 28 com Motivo Tripartido/metabolismo , Dedos de Zinco/genética , Regulação da Expressão Gênica , Epigênese Genética
19.
Am J Hum Genet ; 110(10): 1735-1749, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37734371

RESUMO

Emphysema and chronic obstructive pulmonary disease (COPD) most commonly result from the effects of environmental exposures in genetically susceptible individuals. Genome-wide association studies have implicated ADGRG6 in COPD and reduced lung function, and a limited number of studies have examined the role of ADGRG6 in cells representative of the airway. However, the ADGRG6 locus is also associated with DLCO/VA, an indicator of gas exchange efficiency and alveolar function. Here, we sought to evaluate the mechanistic contributions of ADGRG6 to homeostatic function and disease in type 2 alveolar epithelial cells. We applied an inducible CRISPR interference (CRISPRi) human induced pluripotent stem cell (iPSC) platform to explore ADGRG6 function in iPSC-derived AT2s (iAT2s). We demonstrate that ADGRG6 exerts pleiotropic effects on iAT2s including regulation of focal adhesions, cytoskeleton, tight junctions, and proliferation. Moreover, we find that ADGRG6 knockdown in cigarette smoke-exposed iAT2s alters cellular responses to injury, downregulating apical complexes in favor of proliferation. Our work functionally characterizes the COPD GWAS gene ADGRG6 in human alveolar epithelium.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doença Pulmonar Obstrutiva Crônica , Receptores Acoplados a Proteínas G , Humanos , Células Epiteliais Alveolares/metabolismo , Células Epiteliais/metabolismo , Estudo de Associação Genômica Ampla , Células-Tronco Pluripotentes Induzidas/metabolismo , Pulmão/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Receptores Acoplados a Proteínas G/genética
20.
Am J Hum Genet ; 110(8): 1289-1303, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37541187

RESUMO

Genome-wide association studies along with expression quantitative trait locus (eQTL) mapping have identified hundreds of single-nucleotide polymorphisms (SNPs) and their target genes in prostate cancer (PCa), yet functional characterization of these risk loci remains challenging. To screen for potential regulatory SNPs, we designed a CRISPRi library containing 9,133 guide RNAs (gRNAs) to cover 2,166 candidate SNP loci implicated in PCa and identified 117 SNPs that could regulate 90 genes for PCa cell growth advantage. Among these, rs60464856 was covered by multiple gRNAs significantly depleted in screening (FDR < 0.05). Pooled SNP association analysis in the PRACTICAL and FinnGen cohorts showed significantly higher PCa risk for the rs60464856 G allele (p value = 1.2 × 10-16 and 3.2 × 10-7, respectively). Subsequent eQTL analysis revealed that the G allele is associated with increased RUVBL1 expression in multiple datasets. Further CRISPRi and xCas9 base editing confirmed that the rs60464856 G allele leads to elevated RUVBL1 expression. Furthermore, SILAC-based proteomic analysis demonstrated allelic binding of cohesin subunits at the rs60464856 region, where the HiC dataset showed consistent chromatin interactions in prostate cell lines. RUVBL1 depletion inhibited PCa cell proliferation and tumor growth in a xenograft mouse model. Gene-set enrichment analysis suggested an association of RUVBL1 expression with cell-cycle-related pathways. Increased expression of RUVBL1 and activation of cell-cycle pathways were correlated with poor PCa survival in TCGA datasets. Our CRISPRi screening prioritized about one hundred regulatory SNPs essential for prostate cell proliferation. In combination with proteomics and functional studies, we characterized the mechanistic role of rs60464856 and RUVBL1 in PCa progression.


Assuntos
Próstata , Neoplasias da Próstata , Animais , Humanos , Masculino , Camundongos , Alelos , ATPases Associadas a Diversas Atividades Celulares/genética , Proteínas de Transporte/genética , DNA Helicases/genética , Detecção Precoce de Câncer , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único/genética , Próstata/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteômica , Coesinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA