Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biomol NMR ; 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39217275

RESUMO

The dynamics of the backbone and side-chains of protein are routinely studied by interpreting experimentally determined 15N spin relaxation rates. R1(15N), the longitudinal relaxation rate, reports on fast motions and encodes, together with the transverse relaxation R2, structural information about the shape of the molecule and the orientation of the amide bond vectors in the internal diffusion frame. Determining error-free 15N longitudinal relaxation rates remains a challenge for small, disordered, and medium-sized proteins. Here, we show that mono-exponential fitting is sufficient, with no statistical preference for bi-exponential fitting up to 800 MHz. A detailed comparison of the TROSY and HSQC techniques at medium and high fields showed no statistically significant differences. The least error-prone DD/CSA interference removal technique is the selective inversion of amide signals while avoiding water resonance. The exchange of amide with solvent deuterons appears to affect the rate R1 of solvent-exposed amides in all fields tested and in each DD/CSA interference removal technique in a statistically significant manner. In summary, the most accurate R1(15N) rates in proteins are achieved by selective amide inversion, without the addition of D2O. Importantly, at high magnetic fields stronger than 800 MHz, when non-mono-exponential decay is involved, it is advisable to consider elimination of the shortest delays (typically up to 0.32 s) or bi-exponential fitting.

2.
FEMS Yeast Res ; 16(7)2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27609602

RESUMO

By two-dimensional gel electrophoresis (2-DE) and mass spectrometry, we have characterized the polypeptide species present in extracts obtained by 60% ethanol treatment of whole mature (48 h) biofilms formed by a reference strain (CAI4-URA3) and four Candida albicans null mutants for cell-wall-related genes (ALG5, CSA1, MNN9 and PGA10) Null mutants form fragile biofilms that appeared partially split and weakly attached to the substratum contrary to those produced by the reference strain. An almost identical, electrophoretic profile consisting of about 276 spots was visualized in all extracts examined. Proteomic analysis led to the identification of 131 polypeptides, corresponding to 86 different protein species, being the rest isoforms-83 displayed negative hydropathic indexes and 82 lack signal peptide. The majority of proteins appeared at pI between 4 and 6, and molecular mass between 10 and 94 kDa. The proteins identified belonged to the following Gene Ontology categories: 21.9% unknown molecular function, 16.2% oxidoreductase activity, 13.3% hydrolase activity and 41.8% distributed between other different GO categories. Strong defects in biofilm formation appreciated in the cell-wall mutant strains could be attributed to defects in aggregation due to abnormal cell wall formation rather than to differences in the biofilm extracellular matrix composition.


Assuntos
Biofilmes/crescimento & desenvolvimento , Candida albicans/química , Candida albicans/genética , Parede Celular/genética , Matriz Extracelular/química , Proteínas Fúngicas/análise , Proteoma/análise , Candida albicans/fisiologia , Eletroforese em Gel Bidimensional , Deleção de Genes , Genes Fúngicos , Espectrometria de Massas
3.
Cell Host Microbe ; 30(12): 1701-1716.e5, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36257318

RESUMO

Some plant NLR immune receptors are encoded in head-to-head "sensor-executor" pairs that function together. Alleles of the NLR pair CHS3/CSA1 form three clades. The clade 1 sensor CHS3 contains an integrated domain (ID) with homology to regulatory domains, which is lacking in clades 2 and 3. In this study, we defined two cell-death regulatory modes for CHS3/CSA1 pairs. One is mediated by ID domain on clade 1 CHS3, and the other relies on CHS3/CSA1 pairs from all clades detecting perturbation of an associated pattern-recognition receptor (PRR) co-receptor. Our data support the hypothesis that an ancestral Arabidopsis CHS3/CSA1 pair gained a second recognition specificity and regulatory mechanism through ID acquisition while retaining its original specificity as a "guard" against PRR co-receptor perturbation. This likely comes with a cost, since both ID and non-ID alleles of the pair persist in diverse Arabidopsis populations through balancing selection.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Alelos , Receptores Imunológicos/genética , Morte Celular , Receptores de Reconhecimento de Padrão , Imunidade Vegetal/genética , Proteínas NLR/genética
4.
Cell Host Microbe ; 30(12): 1717-1731.e6, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36446350

RESUMO

Arabidopsis BAK1/SERK3, a co-receptor of leucine-rich repeat pattern recognition receptors (PRRs), mediates pattern-triggered immunity (PTI). Genetic inactivation of BAK1 or BAK1-interacting receptor-like kinases (BIRs) causes cell death, but the direct mechanisms leading to such deregulation remains unclear. Here, we found that the TIR-NBS-LRR protein CONSTITUTIVE SHADE AVOIDANCE 1 (CSA1) physically interacts with BIR3, but not with BAK1. CSA1 mediates cell death in bak1-4 and bak1-4 bir3-2 mutants via components of effector-triggered immunity-(ETI) pathways. Effector HopB1-mediated perturbation of BAK1 also results in CSA1-dependent cell death. Likewise, microbial pattern pg23-induced cell death, but not PTI responses, requires CSA1. Thus, we show that CSA1 guards BIR3 BAK1 homeostasis and integrates pattern- and effector-mediated cell death pathways downstream of BAK1. De-repression of CSA1 in the absence of intact BAK1 and BIR3 triggers ETI cell death. This suggests that PTI and ETI pathways are activated downstream of BAK1 for efficient plant immunity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Imunidade Vegetal , Imunidade , Homeostase
5.
Front Plant Sci ; 13: 888449, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720559

RESUMO

Plants employ multi-layered immune system to fight against pathogen infections. Different receptors are able to detect the invasion activities of pathogens, transduce signals to downstream components, and activate defense responses. Among those receptors, nucleotide-binding domain leucine-rich repeat containing proteins (NLRs) are the major intracellular ones. CHILLING SENSITIVE 3 (CHS3) is an Arabidopsis NLR with an additional Lin-11, Isl-1 and Mec-3 (LIM) domain at its C terminus. The gain-of-function mutant, chs3-2D, exhibiting severe dwarfism and constitutively activated defense responses, was selected as a genetic background in this study for a forward genetic screen. A mutant allele of hsp90.2 was isolated as a partial suppressor of chs3-2D, suggesting that HSP90 is required for CHS3-mediated defense signaling. In addition, HSP90 is also required for the autoimmunity of the Dominant Negative (DN)-SNIPER1 and gain-of-function ADR1-L2 D484V transgenic lines, suggesting a broad role for HSP90 in NLR-mediated defense. Overall, our work indicates a larger contribution of HSP90 not only at the sensor, but also the helper NLR levels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA