Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Electrophoresis ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629299

RESUMO

Lung adenocarcinoma (LUAD) is the predominant subtype within the spectrum of lung malignancies. CTHRC1 has a pro-oncogenic role in various cancers. Here, we observed the upregulation of CTHRC1 in LUAD, but its role in cisplatin resistance in LUAD remains unclear. Bioinformatics analysis was employed to detect CTHRC1 and SRY-related HMG-box 4 (SOX4) expression in LUAD. Gene Set Enrichment Analysis predicted the enriched pathways related to CTHRC1. JASPAR and MotifMap databases predicted upstream transcription factors of CTHRC1. Pearson analysis was conducted to analyze the correlation between genes of interest. The interaction and binding relationship between CTHRC1 and SOX4 were validated through dual-luciferase and chromatin immunoprecipitation assays. Quantitative real-time polymerase chain reaction determined the expression of CTHRC1 and SOX4 genes. CCK-8 was performed to assess cell viability and calculate IC50 value. Flow cytometry examined the cell cycle. Comet assay and western blot assessed DNA damage. CTHRC1 and SOX4 were upregulated in LUAD. CTHRC1 exhibited higher expression in cisplatin-resistant A549 cells compared to cisplatin-sensitive A549 cells. Knockdown of CTHRC1 enhanced DNA damage during cisplatin treatment and increased the sensitivity of LUAD cells to cisplatin. Additionally, SOX4 modulated DNA damage repair (DDR) by activating CTHRC1 transcriptional activity, promoting cisplatin resistance in LUAD cells. SOX4 regulated DDR by activating CTHRC1, thereby enhancing cisplatin resistance in LUAD cells. The finding provides a novel approach to address clinical cisplatin resistance in LUAD, with CTHRC1 possibly serving as a candidate for targeted therapies in addressing cisplatin resistance within LUAD.

2.
BMC Oral Health ; 24(1): 742, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937712

RESUMO

BACKGROUND: Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignancy worldwide, characterized by high morbidity, high mortality, and poor prognosis. Collagen triple helix repeat containing 1 (CTHRC1) has been shown to be highly expressed in various cancers. However, its biological functions, potential role as a biomarker, and its relationship with immune infiltrates in HNSCC remain unclear. Our principal objective was to analyze CTHRC1 expression, its prognostic implications, biological functions, and its effects on the immune system in HNSCC patients using bioinformatics analysis. METHODS: The expression matrix was obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). CTHRC1 expression in HNSCC was analyzed between tumor and adjacent normal tissues, different stages were compared, and its impact on clinical prognosis was assessed using Kaplan-Meier analysis. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Variation Analysis (GSVA) were employed for enrichment analysis. The Search Tool for the Retrieval of Interacting Genes database (STRING) was used to analyze protein-protein interactions. Pearson correlation tests were used to investigate the association between CTHRC1 expression and immune checkpoints. The correlation between CTHRC1 and immune infiltration was investigated using CIBERSORT, TIMER, and ESTIMATE. RESULTS: Compared to adjacent normal tissues, CTHRC1 was found to be highly overexpressed in tumors. Increased expression of CTHRC1 was more evident in the advanced stage of HNSCC and predicted a poor prognosis. Most genes related to CTHRC1 in HNSCC were enriched in physiological functions of Extracellular matrix(ECM) and tumor. Furthermore, several immune checkpoints, such as TNFSF4 and CD276 have been shown to be associated with CTHRC1 expression. Notably, the level of CTHRC1 expression correlated significantly with immune infiltration levels, particularly activated macrophages in HNSCC. CONCLUSIONS: High expression of CTHRC1 predicts poor prognosis and is associated with immune infiltration in HNSCC, confirming its utility as a tumor marker for HNSCC. TRIAL REGISTRATION: Not applicable. All data are from public databases and do not contain any clinical trials.


Assuntos
Biomarcadores Tumorais , Proteínas da Matriz Extracelular , Neoplasias de Cabeça e Pescoço , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Biomarcadores Tumorais/metabolismo , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/metabolismo , Biologia Computacional , Masculino
3.
Mol Biol Rep ; 50(4): 3401-3411, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36753017

RESUMO

BACKGROUND: Esophageal Squamous Cell Carcinoma (ESCC) is a highly aggressive tumor with increased metastatic potential. Recent evidence suggests that esophageal CSCs have a crucial role in tumor initiation, progression, and resistance to conventional anti-cancer therapies. The study aimed to develop mouse model to mimic the late steps of the metastasis process using a tail-vein injection of esophageal CSCs. METHODS AND RESULTS: The sphere formation assay was used to enrich CSCs. For analysis of tumorigenicity, YM-1 adherent cells and enriched CSCs were injected subcutaneously into dorsal flank of nude mice. The expression of SLUG, E-cad, and CTHRC1 genes was examined by Real-Time qRT-PCR and immunohistochemistry (IHC) methods. To assess the metastatic potential of adherent YM-1 cells and their enriched CSCs, we injected the cells into the tail vein of nude mice. Our findings showed the up-regulation of SLUG and down-regulation of E-cad in the esophageal CSC-derived tumors (ECSCTs) compared to adherent cells-derived tumors. There was no statistically significant difference between CTHRC1 gene expressions in both groups of tumors. IHC staining confirmed the higher expression of SLUG protein in ECSCTs compared to adherent cell-derived tumors. Enriched CSCs were able to metastasize to the lungs and livers after three months, but, metastasis of adherent cells wasn't observed. CONCLUSION: Our study showed esophageal CSCs injected through the tail-vein injection can migrate and metastasize to the lung and liver after three months. The developed metastatic mouse model can be a valuable and relevant model to investigate the molecular and cellular mechanisms of metastasis and develop successful targeted therapies against ESCC. The present study is one of the few studies that investigate the metastasis of esophageal cancer stem cells (ESCC type) through injection into the tail vein of nude mice.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Neoplasias Pulmonares , Animais , Camundongos , Carcinoma de Células Escamosas do Esôfago/metabolismo , Neoplasias Esofágicas/metabolismo , Camundongos Nus , Neoplasias Pulmonares/metabolismo , Fígado/metabolismo , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular Tumoral
4.
Medicina (Kaunas) ; 59(4)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37109608

RESUMO

Background: Chronic kidney disease (CKD) has various etiologies, making it impossible to fully understand its complex pathophysiology. Elevated levels of plasma creatinine, proteinuria, and albuminuria and declined eGFR are traits observed in CKD patients. The current study attempts to highlight the collagen triple helix repeat containing 1 (CTHRC1) protein as a putative blood biomarker for CKD in addition to existing recognized indicators of CKD progression. Methods: A total of 26 CKD patients and 18 healthy controls were enrolled in this study. Clinical characteristics and complete blood and biochemical analyses were collected, and human ELISA kits were used to detect possible CKD biomarkers. Results: The study's findings showed that CTHRC1 correlates with key clinical markers of kidney function such as 24 h urine total protein, creatinine, urea, and uric acid. In addition, CTHRC1 demonstrated a strong significant difference (p ≤ 0.0001) between the CKD and control group. Conclusions: Our research demonstrates that the plasma level of CTHRC1 can distinguish between those with CKD and healthy patients. Plasma CTHRC1 levels may aid in the diagnosis of CKD given the current state of knowledge, and these results call for further investigation in a wider, more diverse patient group.


Assuntos
Proteínas da Matriz Extracelular , Insuficiência Renal Crônica , Humanos , Albuminúria , Biomarcadores , Colágeno , Creatinina , Insuficiência Renal Crônica/complicações , Taxa de Filtração Glomerular
5.
World J Surg Oncol ; 20(1): 89, 2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-35307012

RESUMO

BACKGROUND: Colon adenocarcinoma (COAD) is one of the common cancers worldwide. Collagen triple helix repeat containing 1 (CTHRC1) has been reported to be involved in cell invasion, angiogenesis, and the promotion of epithelial-mesenchymal transformation by mediating multiple signaling pathways. However, the role of CTHRC1 in COAD has not yet been determined. METHODS: Differentially expressed genes were evaluated using gene expression data from the Oncomine and TIMER databases. Correlations between CTHRC1 gene expression and clinicopathological factors were analyzed using gene expression data from UALCAN databases. Then, we searched the GEPIA database to evaluate the association of CTHRC1 gene expression with clinical outcomes. The cBioPortal database was used to analyze CTHRC1 genetic alterations. Subsequently, the TIMER website was chosen to assess the correlation of CTHRC1 with the tumor immune cell infiltration level. The TCGA dataset was used for a gene set enrichment analysis (GSEA). RESULT: CTHRC1 was highly expressed in COAD patients, and significantly related to poor prognosis. In addition, elevated expression of CTHRC1 was related to the clinical stage and pathological type of COAD. The GSEA analysis showed that CTHRC1 was enriched in Gα signaling, GCPR ligand binding, neutrophil degranulation, interleukin signaling, and tumor-associated pathways. In addition, CTHRC1 was significantly associated with the expression of multiple immune markers related to specific immune cells. CONCLUSION: This study suggest that CTHRC1 expression is related to the prognosis and immune infiltration of COAD patients. Therefore, CTHRC1 may be a new candidate prognostic biomarker for determining immune infiltration levels and providing COAD prognoses.


Assuntos
Adenocarcinoma/diagnóstico , Adenocarcinoma/imunologia , Neoplasias do Colo/diagnóstico , Neoplasias do Colo/imunologia , Proteínas da Matriz Extracelular/metabolismo , Adenocarcinoma/patologia , Neoplasias do Colo/patologia , Transição Epitelial-Mesenquimal , Humanos , Prognóstico , Transdução de Sinais
6.
Rev Invest Clin ; 75(2): 63-75, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37205792

RESUMO

Background: CTHRC1 is highly expressed in various cancers. Objectives: The aim of the study was to study the role of CTHRC1 played in lung adenocarcinoma (LUAD) development and its underlying biological functions. Methods: Enriched pathways and upstream transcription factors of CTHRC1 were explored by bioinformatics analysis. Dual-luciferase assay and Chromatin immunoprecipitation assay were used to verify the binding relationship between CTHRC1 and HOXB9. CCK-8 was utilized to detect cell viability. Expression levels of CTHRC1, HOXB9, and angiogenesis-related genes were assessed by quantitative real time-polymerase chain reaction. Angiogenesis assay was used to detect angiogenesis ability. Quantitative analysis of metabolites were used to detect the accumulation of neutral lipids, the levels of free fatty acids (FAs), and glycerol. Western blot was conducted to measure expression of metabolic enzymes of FA. Results: CTHRC1 was enriched in FA metabolic pathway, which was positively correlated and bound with HOXB9. CTHRC1 and HOXB9 expression was remarkably up-regulated in LUAD cells. Overexpression of CTHRC1 promoted FA metabolic pathway and angiogenesis, and FA inhibitor Orlistat restored it to NC group level. Meanwhile, CTHRC1 affected LUAD angiogenesis by activating HOXB9 to regulate FA metabolism. Conclusions: This study found that activation of CTHRC1 by HOXB9 induces angiogenesis by mediating FA metabolism. CTHRC1 may be a potential target for LUAD diagnosis.


Assuntos
Adenocarcinoma de Pulmão , Ácidos Graxos , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/genética , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Ácidos Graxos/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia
7.
Biochem Biophys Res Commun ; 571: 14-19, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34298337

RESUMO

Restoration of hair follicle (HF) regenerative capacity is the cornerstone in tissue engineering for the loss of regenerative capacity during in vitro expansion of skin-derived precursors (SKPs). Microenvironmental cues facilitated tissue or organ regeneration offers a potential strategy to overcome this difficulty. In our previous work, plantar dermis matrix homogenate (PD) has been proved to induce sweat glands regeneration both in vivo and in vitro. Here, we found PD also restore regenerative capacity of culture impaired HF spheroids (IHFS). Further, followed by our previous iTRAQ results, the CTHRC1 was identified as a potential regulator in PD facilitated restorative effects in HF regeneration. Knockout of Cthrc1 impaired HF regenerative capacity in spheroids, decreased the diameter of HF in 28 postnatal days mice and shortened invagination of HF bud in 18 days of gestation mice. In IHFS and Cthrc1-/- spheroids, PD partially restored HF regenerative capacity while Cthrc1-/- PD (PDKO) has less or no effect. Taken together, PD is an effective microenvironmental cues for HF regenerative capacity restoration and CTHRC1 played an important role in HF regeneration.


Assuntos
Derme/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Folículo Piloso/metabolismo , Animais , Proteínas da Matriz Extracelular/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
8.
Cancer Cell Int ; 21(1): 566, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34702252

RESUMO

BACKGROUND: The function of collagen triple helix repeat containing 1 (CTHRC1) as an oncogene has been reported in a growing number of publications. Bioinformatics methods represent a beneficial approach to examine the mechanism and function of the CTHRC1 gene in the disease process of cancers from a pan-cancer perspective. METHODS: In this study, using the online databases UCSC, NCBI, HPA, TIMER2, Oncomine, GEPIA, UALCAN, cBioPortal, COSMIC, MEXPRESS, STRING, CCLE, LinkedOmics, GTEx, TCGA, CGGA, and SangerBox, we focused on the relationship between CTHRC1 and tumorigenesis, progression, methylation, immunity, and prognosis. qPCR was used to detect CTHRC1 expression in glioma tissues and cell lines. RESULTS: The pan-cancer analysis showed that CTHRC1 was overexpressed in most tumors, and a significant correlation was observed between CTHRC1 expression and the prognosis of patients with cancer. CTHRC1 genetic alterations occur in diverse tumors and are associated with tumor progression. Levels of CTHRC1 promoter methylation were decreased in most cancer tissues compared with normal tissues. In addition, CTHRC1 coordinated the activity of ICP genes through diverse signal transduction pathways, was also associated with immune cell infiltration and the tumor microenvironment, and potentially represented a promising immunotherapy target. We identified CTHRC1-related genes across cancers using the GEPIA2 tool. The single-gene GO analysis of CTHRC1 across cancers showed that it was involved in some signaling pathways and biological processes, such as the Wnt signaling pathway, cell migration, and positive regulation of protein binding. The expression and function of CTHRC1 were also further verified in glioma tissues and cell lines. CONCLUSIONS: CTHRC1 is overexpressed in various cancer types and functions as an important oncogene that may promote tumorigenesis and development through different mechanisms. CTHRC1 may represent an important therapeutic target for human cancers.

9.
Int J Mol Sci ; 22(5)2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33670905

RESUMO

Rheumatoid arthritis (RA) is a chronic autoimmune disease causing inflammation of joints, cartilage destruction and bone erosion. Biomarkers and new drug targets are actively sought and progressed to improve available options for patient treatment. The Collagen Triple Helix Repeat Containing 1 protein (CTHRC1) may have an important role as a biomarker for rheumatoid arthritis, as CTHRC1 protein concentration is significantly elevated in the peripheral blood of rheumatoid arthritis patients compared to osteoarthritis (OA) patients and healthy individuals. CTHRC1 is a secreted glycoprotein that promotes cell migration and has been implicated in arterial tissue-repair processes. Furthermore, high CTHRC1 expression is observed in many types of cancer and is associated with cancer metastasis to the bone and poor patient prognosis. However, the function of CTHRC1 in RA is still largely undefined. The aim of this review is to summarize recent findings on the role of CTHRC1 as a potential biomarker and pathogenic driver of RA progression. We will discuss emerging evidence linking CTHRC1 to the pathogenic behavior of fibroblast-like synoviocytes and to cartilage and bone erosion through modulation of the balance between bone resorption and repair.


Assuntos
Artrite Reumatoide/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Animais , Artrite Reumatoide/fisiopatologia , Biomarcadores , Proteínas da Matriz Extracelular/fisiologia , Humanos , Sinoviócitos/metabolismo , Sinoviócitos/fisiologia , Via de Sinalização Wnt
10.
J Biol Chem ; 294(31): 11772-11784, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31189651

RESUMO

Enhanced osteoclast-mediated bone resorption and diminished formation may promote bone loss. Pleckstrin homology (PH) domain and leucine-rich repeat protein phosphatase 1 (Phlpp1) regulates protein kinase C (PKC) and other proteins in the control of bone mass. Germline Phlpp1 deficiency reduces bone volume, but the mechanisms remain unknown. Here, we found that conditional Phlpp1 deletion in murine osteoclasts increases their numbers, but also enhances bone mass. Despite elevating osteoclasts, Phlpp1 deficiency did not increase serum markers of bone resorption, but elevated serum markers of bone formation. These results suggest that Phlpp1 suppresses osteoclast formation and production of paracrine factors controlling osteoblast activity. Phlpp1 deficiency elevated osteoclast numbers and size in ex vivo osteoclastogenesis assays, accompanied by enhanced expression of proto-oncogene C-Fms (C-Fms) and hyper-responsiveness to macrophage colony-stimulating factor (M-CSF) in bone marrow macrophages. Although Phlpp1 deficiency increased TRAP+ cell numbers, it suppressed actin-ring formation and bone resorption in these assays. We observed that Phlpp1 deficiency increases activity of PKCζ, a PKC isoform controlling cell polarity, and that addition of a PKCζ pseudosubstrate restores osteoclastogenesis and bone resorption of Phlpp1-deficient osteoclasts. Moreover, Phlpp1 deficiency increased expression of the bone-coupling factor collagen triple helix repeat-containing 1 (Cthrc1). Conditioned growth medium derived from Phlpp1-deficient osteoclasts enhanced mineralization of ex vivo osteoblast cultures, an effect that was abrogated by Cthrc1 knockdown. In summary, Phlpp1 critically regulates osteoclast numbers, and Phlpp1 deficiency enhances bone mass despite higher osteoclast numbers because it apparently disrupts PKCζ activity, cell polarity, and bone resorption and increases secretion of bone-forming Cthrc1.


Assuntos
Osteogênese , Fosfoproteínas Fosfatases/metabolismo , Animais , Densidade Óssea , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/fisiologia , Diferenciação Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Proteínas da Matriz Extracelular/metabolismo , Feminino , Fator Estimulador de Colônias de Macrófagos/farmacologia , Masculino , Camundongos , Camundongos Knockout , Osteoclastos/citologia , Osteoclastos/metabolismo , Osteogênese/efeitos dos fármacos , Fosfoproteínas Fosfatases/antagonistas & inibidores , Fosfoproteínas Fosfatases/genética , Proteína Quinase C/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo
11.
Biochem Biophys Res Commun ; 525(2): 418-424, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32102754

RESUMO

Collagen Triple Helix Repeat Containing 1 (CTHRC1) has been picked out as a cancer-related, secreted glycoprotein that possesses multifaceted functions such as wound repair, the formation of adipose tissue, hepatocytes fibrosis, and bone remodeling. This study aims to explore the biological function and the profound regulative mechanism of CTHRC1 in human prostate cancer (PCa). We found that CTHRC1 was upregulated in patients with PCa. The knockdown of CTHRC1 suppressed PCa cell proliferation, invasion, migration, and colony formation significantly. The expression of CTHRC1 was down-regulated and up-regulated by miR-30e-5p mimics and inhibitors, respectively, in PCa cells. The dual-luciferase reporter assay validated the binding of miR-30e-5p with CTHRC1 mRNA, indicating the regulation of CTHC1 by miR-30e-5p. In consequence, this study demonstrated that CTHRC1 acts as an oncogenic gene and targeting the miR-30e-5p-CTHRC1 axis may provide novel therapeutic treatment for PCa.


Assuntos
Proteínas da Matriz Extracelular/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neoplasias da Próstata/genética , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Masculino , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Neoplasias da Próstata/patologia , Regulação para Cima
12.
Reprod Biomed Online ; 40(1): 26-32, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31787549

RESUMO

RESEARCH QUESTION: Endometriosis is characterized by the occurrence of endometrial-like tissue outside the uterus. Collagen triple helix repeat containing-1 (CTHRC1) is known as a tumour-promoting factor in several neoplasms. This study aimed to examine the roles of CTHRC1 in the development and progression of endometriosis, and to unravel the underlying mechanisms. DESIGN: Quantitative real-time PCR, western blot analyses and enzyme-linked immunosorbent assay were performed to determine the expression levels of CTHRC1 in tissues and serum. In addition, CTHRC1 expression levels were knocked down by small-interfering RNA in ectopic endometrial stromal cells (EESC). Cell Counting Kit-8, fluorescence-activated cell sorting, Transwell and wound scratch assays were carried out to assess the underlying biological behaviours, and western blot analyses were performed to reveal the molecular mechanisms. RESULTS: mRNA and protein expression levels of CTHRC1 were markedly higher in ectopic endometrial tissues than in eutopic and control endometrial tissues. In addition, the serum concentration of CTHRC1 was apparently higher in the endometriosis group than the control group. Small interfering RNA knockdown of CTHRC1 suppressed the proliferation, migration, invasion and healing abilities of EESC. Furthermore, the protein expressions of key molecules in the Wnt/ß-catenin pathway showed an obvious down-regulated expression after siRNA transfection. CONCLUSIONS: These findings suggest that CTHRC1 may be partly responsible for the development and progression of endometriosis by increasing EESC proliferation, migration and invasion via the Wnt/ß-catenin pathway. CTHRC1 may thus serve as a diagnostic and therapeutic target for endometriosis.


Assuntos
Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Endométrio/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Células Estromais/metabolismo , Via de Sinalização Wnt/fisiologia , Adulto , Proteínas da Matriz Extracelular/genética , Feminino , Humanos , beta Catenina/genética , beta Catenina/metabolismo
13.
Exp Cell Res ; 381(1): 112-120, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31077712

RESUMO

Cell adhesion and migration are key cell behaviours during gastrulation in early embryos and metastasis in cancers. Cthrc1 is a secreted protein highly conserved among vertebrates; it is upregulated in injured and diseased arteries, as well as in malignant cancers. There is increasing evidence showing that its expression and activity are associated with cancer progression and inflammatory diseases. However, the mechanism by which it regulates cell migration, and its implication during early development remains unclear. Here we show that zebrafish Cthrc1a is expressed in hypoblast cells, and is required for cell adhesion and migration during gastrulation. Knockdown of cthrc1a in whole embryo inhibits epiboly and convergent extension movements, and reduces the elongation of anteroposterior axis. Cell adhesion assay indicates that Cthrc1a is necessary for mesendoderm cells to interact with fibronectin-coated substratum, and to extend polarised cellular protrusions. Moreover, secreted Cthrc1a proteins diffuse efficiently between blastoderm cells and are recruited by neighbouring cells in an integrin-dependent manner. Consistently, there exists a functional interaction between Cthrc1a and integrin ß1 in anteroposterior axis elongation. These results provide insight into the function of Cthrc1a in the regulation of cell adhesion and migration during embryonic axis elongation.


Assuntos
Gastrulação , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Adesão Celular , Movimento Celular , Técnicas de Silenciamento de Genes , Cadeias beta de Integrinas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas de Peixe-Zebra/genética
14.
Biol Res ; 53(1): 10, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32156314

RESUMO

BACKGROUND: The aim of this study was to investigate the effect role and mechanism of miR-30b-3p on ovarian cancer cells biological function. METHODS: The expression of miR-30b-3p was detected in ovarian cancer cell lines and normal ovarian epithelial cell line by qRT-PCR. Mir-30b-3p mimic was transfected into OVCAR3 cells. Cell-counting kit-8 (CCK-8) assay was conducted to explore the effect of mir-30b-3p on the OVCAR3 cells' proliferation. Cell cycle and apoptosis were detected by Flow cytometry. Cell invasion ability was detected by Transwell test. The regulation of putative target of miR-30b-3p was verified by double luciferase reporter assays and Western blot. RESULT: We found that miR-30b-3p was downregulated in OVCAR3 cells. Overexpression of miR-30b-3p suppressed proliferation, promoted apoptosis, slowed cell cycle and inhibited migration and invasion of OVCAR3 cells. Bioinformatics analysis identified 3'-untranslated region (3'UTR) of Collagen triple helix repeat-containing 1 (CTHRC1) as the presumed binding site for miR-30b-3p. Detection of double luciferase reporter and Western-Blot result confirmed that CTHRC1 was the target gene of miR-30b-3p. Furthermore, E-cadherin, ß-cadherin and Vimentin protein expression level were changed after transfection of miR-30b-3p. CONCLUSION: miR-30b-3p function as an anti-cancer gene. Overexpression of miR-30b-3p can inhibit the biological function of ovarian cancer cells. MiR-30b-3p targets CTHRC1 gene plays an important role in epithelial-mesenchymal transformation (EMT), and supports miR-30b-3p as a potential biological indicator for ovarian cancer in the future.


Assuntos
Transição Epitelial-Mesenquimal/genética , Proteínas da Matriz Extracelular/genética , Regulação Neoplásica da Expressão Gênica/genética , MicroRNAs/genética , Neoplasias Ovarianas/genética , Apoptose , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Proteínas da Matriz Extracelular/metabolismo , Feminino , Humanos , Invasividade Neoplásica , Neoplasias Ovarianas/metabolismo , Transdução de Sinais
15.
Cancer Cell Int ; 19: 318, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31798347

RESUMO

BACKGROUND: This study aimed to investigate the prognostic value of the potential biomarker collagen triple helix repeat containing 1 (CTHRC1) in lung adenocarcinoma (LUAD) patients. METHODS: A total of 210 LUAD patients diagnosed between 2003 and 2016 in the Department of Pathology of the First Affiliated Hospital of Sun Yat-sen University were included in this study. The expression of CTHRC1 and vascular endothelial growth factor (VEGF), and microvessel density (MVD, determined by CD34 immunostaining) were evaluated by immunohistochemistry in LUAD tissues. The association between the expression of these proteins and clinicopathological features or clinical outcomes was analyzed. RESULTS: Here, we confirmed that CTHRC1 expression was associated with prognosis and can serve as a significant predictor for overall survival (OS) and progression-free survival (PFS) in LUAD. Additionally, we observed that CTHRC1 expression was positively associated with tumor angiogenesis markers, such as VEGF expression (P < 0.001) and MVD (P < 0.01). Then, we performed gene set enrichment analysis (GESA) and cell experiments to confirm that enhanced CTHRC1 expression can promote VEGF levels. Based on and cox regression analysis, a predictive model that included CTHRC1, VEGF and MVD was constructed and confirmed as a more accurate independent predictor for OS (P = 0.001) and PFS (P < 0.001) in LUAD than other parameters. CONCLUSIONS: These results demonstrated that high CTHRC1 expression may be closely related to tumor angiogenesis and poor prognosis in LUAD. The predictive model based on the CTHRC1 level and tumor angiogenesis markers can be used to predict LUAD patient prognosis more accurately.

16.
Respir Res ; 20(1): 119, 2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-31185973

RESUMO

BACKGROUND: Pirfenidone, an antifibrotic agent used for the treatment of idiopathic pulmonary fibrosis (IPF), functions by inhibiting myofibroblast differentiation, which is involved in transforming growth factor (TGF)-ß1-induced IPF pathogenesis. However, unlike normal lung fibroblasts, the relationship between pirfenidone responses of TGF-ß1-induced human fibrotic lung fibroblasts and lung fibrosis has not been elucidated. METHODS: The effects of pirfenidone were evaluated in lung fibroblasts isolated from fibrotic human lung tissues after TGF-ß1 exposure. The ability of two new pharmacological targets of pirfenidone, collagen triple helix repeat containing protein 1(CTHRC1) and four-and-a-half LIM domain protein 2 (FHL2), to mediate contraction of collagen gels and migration toward fibronectin were assessed in vitro. RESULTS: Compared to control lung fibroblasts, pirfenidone significantly restored TGF-ß1-stimulated fibroblast-mediated collagen gel contraction, migration, and CTHRC1 release in lung fibrotic fibroblasts. Furthermore, pirfenidone attenuated TGF-ß1- and CTHRC1-induced fibroblast activity, upregulation of bone morphogenic protein-4(BMP-4)/Gremlin1, and downregulation of α-smooth muscle actin, fibronectin, and FHL2, similar to that observed post-CTHRC1 inhibition. In contrast, FHL2 inhibition suppressed migration and fibronectin expression, but did not downregulate CTHRC1. CONCLUSIONS: Overall, pirfenidone suppressed fibrotic fibroblast-mediated fibrotic processes via inverse regulation of CTHRC1-induced lung fibroblast activity. Thus, CTHRC1 can be used for predicting pirfenidone response and developing new therapeutic targets for lung fibrosis.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Fibroblastos/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Piridonas/farmacologia , Fator de Crescimento Transformador beta1/toxicidade , Adulto , Idoso , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Feminino , Fibroblastos/patologia , Humanos , Pulmão/patologia , Masculino , Pessoa de Meia-Idade , Ratos
17.
J Cell Mol Med ; 22(1): 695-699, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28782909

RESUMO

We report the silencing of CA1 mRNA in PC3 and MDA cells. The levels of mRNA coding CA1 protein in the knock-down mRNA (CA1 siRNA) cells have been measured by RT-PCR and were approximately 5% (PC3) and 20% (MDA-MB-231), respectively, of the level of control (Mock siRNA) used during silencing. In PC3 and MDA-MB-231 cells, the mRNAs for COL1A1 and COL4A4 were up-regulated. The mRNAs for CTHRC1, LAMC2, and WNT7B were not changed when compared to the control. The morphology of the cells during the treatments remained the same. On the Western blots, the lysate from the silenced cells showed lower levels of CA I as well.


Assuntos
Anidrases Carbônicas/genética , Proteínas da Matriz Extracelular/genética , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Neoplasias/enzimologia , Neoplasias/genética , Anidrases Carbônicas/metabolismo , Linhagem Celular Tumoral , Proteínas da Matriz Extracelular/metabolismo , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
18.
BMC Cancer ; 18(1): 400, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29631554

RESUMO

BACKGROUND: The strong invasive and metastatic nature of non-small cell lung cancer (NSCLC) leads to poor prognosis. Collagen triple helix repeat containing 1 (CTHRC1) is involved in cell migration, motility and invasion. The object of this study is to investigate the involvement of CTHRC1 in NSCLC invasion and metastasis. METHODS: A proteomic analysis was performed to identify the different expression proteins between NSCLC and normal tissues. Cell lines stably express CTHRC1, MMP7, MMP9 were established. Invasion and migration were determined by scratch and transwell assays respectively. Clinical correlations of CTHRC1 in a cohort of 230 NSCLC patients were analysed. RESULTS: CTHRC1 is overexpressed in NSCLC as measured by proteomic analysis. Additionally, CTHRC1 increases tumour cell migration and invasion in vitro. Furthermore, CTHRC1 expression is significantly correlated with matrix metalloproteinase (MMP)7 and MMP9 expression in sera and tumour tissues from NSCLC. The invasion ability mediated by CTHRC1 were mainly MMP7- and MMP9-dependent. MMP7 or MMP9 depletion significantly eradicated the pro-invasive effects mediated by CTHRC1 on NSCLC cells. Clinically, patients with high CTHRC1 expression had poor survival. CONCLUSIONS: CTHRC1 serves as a pro-metastatic gene that contributes to NSCLC invasion and metastasis, which are mediated by upregulated MMP7 and MMP9 expression. Targeting CTHRC1 may be beneficial for inhibiting NSCLC metastasis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proteínas da Matriz Extracelular/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Metaloproteinase 7 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Feminino , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/mortalidade , Masculino , Metaloproteinase 7 da Matriz/genética , Metaloproteinase 9 da Matriz/genética , NF-kappa B/metabolismo , Prognóstico , Regiões Promotoras Genéticas , Proteômica , Proteínas Proto-Oncogênicas c-jun/metabolismo , Transdução de Sinais
19.
Cancer Cell Int ; 17: 118, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29234238

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) remains one of the most lethal cancers. MicroRNA-155 (miR-155) and collagen triple helix repeat containing 1 (CTHRC1) were found to be involved in hepatocarcinogenesis, but their detailed functions in HCC are unclear. Here, we aimed to investigate the underlying role of miR-155-5p and CTHRC1 in HCC. METHODS: miR-155-5p and CTHRC1 expression levels were detected by qRT-PCR, IHC and WB in HCC patients and cell lines. Dual-luciferase assay, qRT-PCR and WB were used to validate the target interaction between miR-155-5p and CTHRC1. Biological behaviors, including apoptosis, cell cycle progression, and cell proliferation, invasion and migration, were measured by flow cytometry, CCK-8 assay and Transwell tests. A xenograft model was established to examine the effects of miR-155-5p and CTHRC1 on tumor formation. WB was finally utilized to identify the role of GSK-3ß-involved Wnt/ß-catenin signaling in HCC growth and metastasis. RESULTS: Our results showed that miR-155-5p and CTHRC1 were down-regulated and up-regulated, respectively, in HCC patients and cell lines. Dual-luciferase assay verified that CTHRC1 was the direct target of miR-155-5p. Moreover, elevated miR-155-5p expression promoted apoptosis but suppressed cell cycle progression and cell proliferation, invasion and migration in vitro and facilitated tumor formation in vivo; elevated CTHRC1 expression abolished these biological effects. Additionally, miR-155-5p overexpression increased metastasis- and anti-apoptosis-related protein expression and decreased pro-apoptosis-related protein expression, while forced CTHRC1 expression conserved the expression of these proteins. CONCLUSION: Altogether, our data suggested that miR-155-5p modulated the malignant behaviors of HCC by targeting CTHRC1 and regulating GSK-3ß-involved Wnt/ß-catenin signaling; thereby, miR-155-5p and CTHRC1 might be promising therapeutic targets for HCC patients.

20.
J Cell Sci ; 127(Pt 5): 967-76, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24413174

RESUMO

The regulative effects of microRNAs (miRNAs) on responses of Schwann cells to a nerve injury stimulus are not yet clear. In this study, we noted that the expression of eight miRNAs was downregulated at different time points following rat sciatic nerve transection, and found that 368 potential targets of these eight miRNAs were mainly involved in phenotypic modulation of Schwann cells. Of these miRNAs, miR-9 was identified as an important functional regulator of Schwann cell migration that was a crucial regenerative response of Schwann cells to nerve injury. In vitro, upregulated expression of miR-9 inhibited Schwann cell migration, whereas silencing of miR-9 promoted Schwann cell migration. Intriguingly, miR-9 exerted this regulative function by directly targeting collagen triple helix repeat containing protein 1 (CTHRC1), which in turn inactivated downstream Rac1 GTPase. Rac1 inhibitor reduced the promotive effects of anti-miR-9 on Schwann cell migration. In vivo, high expression of miR-9 reduced Schwann cell migration within a regenerative nerve microenvironment. Collectively, our results confirmed the role of miR-9 in regulating Schwann cell migration after nerve injury, thus offering a new approach to peripheral nerve repair.


Assuntos
Glicoproteínas/genética , MicroRNAs/fisiologia , Regeneração Nervosa , Traumatismos dos Nervos Periféricos/metabolismo , Células de Schwann/fisiologia , Nervo Isquiático/fisiologia , Regiões 3' não Traduzidas , Animais , Sequência de Bases , Sítios de Ligação , Movimento Celular , Células Cultivadas , Regulação para Baixo , Glicoproteínas/metabolismo , Masculino , Traumatismos dos Nervos Periféricos/genética , Interferência de RNA , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/lesões , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA