Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Carcinog ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38994801

RESUMO

As an evolutionarily conserved transcription factor, Cut-like homeobox 1 (CUX1) plays crucial roles in embryonic and nervous system development, cell differentiation, and DNA damage repair. One of its major isoforms, p110CUX1, exhibits stable DNA binding capabilities and contributes to the regulation of cell cycle progression, proliferation, migration, and invasion. While p110CUX1 has been implicated in the progression of various malignant tumors, its involvement in acute myeloid leukemia (AML) remains uncertain. This study aims to elucidate the role of p110CUX1 in AML. Our findings reveal heightened expression levels of both p110CUX1 and pyridoxal phosphatase (PDXP) in AML cell lines. Overexpression of p110CUX1 promotes AML cell proliferation while inhibiting apoptosis and differentiation, whereas knockdown of PDXP yields contrasting effects. Mechanistically, p110CUX1 appears to facilitate AML development by upregulating PDXP expression and activating the PI3K/AKT/mTOR signaling pathway. Animal experimental corroborate the pro-AML effect of p110CUX1. These results provide experimental evidence supporting the involvement of the p110CUX1-PDXP-PI3K/AKT/mTOR axis in AML progression. Hence, targeting p110CUX1 may hold promise as a therapeutic strategy for AML.

2.
BMC Nephrol ; 25(1): 192, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849771

RESUMO

OBJECTIVE: Contrast media (CM) is a commonly applied drug in medical examination and surgery. However, contrast-induced acute kidney injury (CIAKI) poses a severe threat to human life and health. Notably, the CUT-like homeobox 1 (CUX1) gene shows protective effects in a variety of cells. Therefore, the objective of this study was to provide a new target for the treatment of CIAKI through exploring the role and possible molecular mechanism of CUX1 in CIAKI. METHOD: Blood samples were collected from 20 patients with CIAKI and healthy volunteers. Human kidney 2 (HK-2) cells were incubated with 200 mg/mL iohexol for 6 h to establish a contrast-induced injury model of HK-2 cells. Subsequently, qRT-PCR was used to detect the relative mRNA expression of CUX1; CCK-8 and flow cytometry to assess the proliferation and apoptosis of HK-2 cells; the levels of IL(interleukin)-1ß, tumor necrosis factor alpha (TNF-α) and malondialdehyde (MDA) in cells and lactate dehydrogenase (LDH) activity in cell culture supernatant were detect; and western blot to observe the expression levels of CUX1 and the PI3K/AKT signaling pathway related proteins [phosphorylated phosphoinositide 3-kinase (p-PI3K), PI3K, phosphorylated Akt (p-AKT), AKT]. RESULTS: CUX1 expression was significantly downregulated in blood samples of patients with CIAKI and contrast-induced HK-2 cells. Contrast media (CM; iohexol) treatment significantly reduced the proliferation of HK-2 cells, promoted apoptosis, stimulated inflammation and oxidative stress that caused cell damage. CUX1 overexpression alleviated cell damage by significantly improving the proliferation level of HK-2 cells induced by CM, inhibiting cell apoptosis, and reducing the level of LDH in culture supernatant and the expression of IL-1ß, TNF-α and MDA in cells. CM treatment significantly inhibited the activity of PI3K/AKT signaling pathway activity. Nevertheless, up-regulating CUX1 could activate the PI3K/AKT signaling pathway activity in HK-2 cells induced by CM. CONCLUSION: CUX1 promotes cell proliferation, inhibits apoptosis, and reduces inflammation and oxidative stress in CM-induced HK-2 cells to alleviate CM-induced damage. The mechanism of CUX1 may be correlated with activation of the PI3K/AKT signaling pathway.


Assuntos
Injúria Renal Aguda , Apoptose , Meios de Contraste , Células Epiteliais , Proteínas de Homeodomínio , Túbulos Renais , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Humanos , Apoptose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Meios de Contraste/efeitos adversos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Túbulos Renais/patologia , Túbulos Renais/metabolismo , Linhagem Celular , Fatores de Transcrição/metabolismo , Masculino , Iohexol , Feminino , Proliferação de Células/efeitos dos fármacos , Pessoa de Meia-Idade , Proteínas Repressoras
3.
Am J Hum Genet ; 104(5): 936-947, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-30982608

RESUMO

Microglia are CNS-resident macrophages that scavenge debris and regulate immune responses. Proliferation and development of macrophages, including microglia, requires Colony Stimulating Factor 1 Receptor (CSF1R), a gene previously associated with a dominant adult-onset neurological condition (adult-onset leukoencephalopathy with axonal spheroids and pigmented glia). Here, we report two unrelated individuals with homozygous CSF1R mutations whose presentation was distinct from ALSP. Post-mortem examination of an individual with a homozygous splice mutation (c.1754-1G>C) demonstrated several structural brain anomalies, including agenesis of corpus callosum. Immunostaining demonstrated almost complete absence of microglia within this brain, suggesting that it developed in the absence of microglia. The second individual had a homozygous missense mutation (c.1929C>A [p.His643Gln]) and presented with developmental delay and epilepsy in childhood. We analyzed a zebrafish model (csf1rDM) lacking Csf1r function and found that their brains also lacked microglia and had reduced levels of CUX1, a neuronal transcription factor. CUX1+ neurons were also reduced in sections of homozygous CSF1R mutant human brain, identifying an evolutionarily conserved role for CSF1R signaling in production or maintenance of CUX1+ neurons. Since a large fraction of CUX1+ neurons project callosal axons, we speculate that microglia deficiency may contribute to agenesis of the corpus callosum via reduction in CUX1+ neurons. Our results suggest that CSF1R is required for human brain development and establish the csf1rDM fish as a model for microgliopathies. In addition, our results exemplify an under-recognized form of phenotypic expansion, in which genes associated with well-recognized, dominant conditions produce different phenotypes when biallelically mutated.


Assuntos
Anormalidades Congênitas/etiologia , Leucoencefalopatias/genética , Leucoencefalopatias/patologia , Microglia/patologia , Mutação , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Adulto , Animais , Criança , Anormalidades Congênitas/patologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Homozigoto , Humanos , Lactente , Recém-Nascido , Microglia/metabolismo , Linhagem , Fenótipo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Receptores Proteína Tirosina Quinases , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Adulto Jovem , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
4.
Biochem Biophys Res Commun ; 608: 128-134, 2022 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-35397425

RESUMO

Epithelial-to-mesenchymal transition (EMT) displays a critical role in the development of renal fibrosis, an important pathological process of chronic kidney disease (CKD). Transcription factor Cut-like homeobox 1 (CUX1) has shown profound effects on several kidney diseases. However, its role in CKD has not been understood yet. In this study, unilateral ureteric obstruction (UUO) surgery was performed on male C57BL/6 mice to simulate CKD in vivo. Renal fibrosis was further induced in human proximal tubular epithelial cell (HK-2) by TGF-ß1 stimulation. CUX1 and MMP7 were found to be over-expressed in renal tissue of UUO mice. Renal functional analyses and histological assessment indicated that CUX1 knockdown alleviated renal injury in UUO mice. Mitochondrial dysfunction was determined in UUO group and improved after CUX1 silencing. Besides, CUX1 knockdown suppressed EMT in UUO mice and TGF-ß1 treated HK-2 cells, as evidenced by reduced expressions of α-SMA, vimentin, fibronectin and augmented abundance of E-cadherin. Furthermore, CUX1 knockdown decreased MMP7 expression by targeting at its promoter region. MMP7 was responsible for the inhibitory effect of CUX1 knockdown on EMT in HK-2 cells. In summary, our findings suggest that CUX1 promotes EMT in CKD by targeting MMP7, and highlight the crucial role of CUX1 in CKD pathogenesis.


Assuntos
Proteínas de Homeodomínio , Metaloproteinase 7 da Matriz , Proteínas Nucleares , Insuficiência Renal Crônica , Proteínas Repressoras , Obstrução Ureteral , Animais , Transição Epitelial-Mesenquimal , Feminino , Fibrose , Proteínas de Homeodomínio/metabolismo , Masculino , Metaloproteinase 7 da Matriz/genética , Metaloproteinase 7 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Nucleares/metabolismo , Insuficiência Renal Crônica/patologia , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Obstrução Ureteral/metabolismo
5.
Acta Biochim Biophys Sin (Shanghai) ; 53(12): 1713-1722, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34718370

RESUMO

Astragalus polysaccharide (APS) is the major natural active component of Astragalus membranaceus, which has been recognized as one of the most popular herbal medicines worldwide. Enhancing the formation and function of brown adipose tissue increases energy expenditure and hence may potentially be used against obesity and type 2 diabetes. The aim of the present study was to explore the effect and mechanism of APS on brown adipocyte formation. Mouse C3H10T 1/2 cells were subject to APS, and both proliferation and brown adipogenic differentiation were determined. The results showed that APS exhibits a decreased proliferation ability, which is accompanied by downregulated proliferating cell nuclear antigen, cyclin D1, and cyclin-dependent kinase 4. APS promotes the differentiation of C3H10T 1/2 cells into brown adipocytes and induces the expressions of key brown adipogenic transcriptional factors, including CCAAT/enhancer-binding protein ß, uncoupling protein 1, and PR domain-containing 16. Importantly, APS enables insulin sensitization in brown adipocytes, which may proceed through activation of the canonical phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT) signaling pathway and AMP-activated protein kinase (AMPK). Furthermore, the level of cut-like homeobox 1 (CUX1) is positively related to brown adipogenic differentiation, while APS regulates Cux1 expression through interaction with miR-1258-5p. Notably, the promotional effect of APS on brown adipogenic differentiation was abolished by Cux1 knockout. Collectively, our results suggest that APS enhances the differentiation of C3H10T 1/2 cells into brown adipocytes through regulating Cux1 via miR-1258-5p.


Assuntos
Adipócitos Marrons/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Astragalus propinquus/química , Proteínas de Homeodomínio/metabolismo , Proteínas Nucleares/metabolismo , Polissacarídeos/farmacologia , Proteínas Repressoras/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina , Camundongos , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
6.
Neurochem Res ; 45(12): 2840-2855, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33000435

RESUMO

Circular RNAs (circRNAs) played pivotal roles in the initiation and progression of cancers. CircRNA cut like homeobox 1 (circ-CUX1; hsa_circ_0132813) has been reported to contribute to neuroblastoma (NB) development by previous study. Furthermore, previous works reported that microRNA-16-5p (miR-16-5p) was down-regulated while doublesex and mab-3 related transcription factor 2 (DMRT2) was up-regulated in NB. The interaction and functional association between miR-16-5p and circ-CUX1 or DMRT2 were investigated in this study. Cell proliferation, cell cycle progression, colony formation, migration and invasion of NB cells were examined by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, flow cytometry, colony formation assay and transwell migration and invasion assays. The glycolysis was analyzed through measuring the consumption of glucose and the production of lactate and ATP. Dual-luciferase reporter assay, RNA immunoprecipitation (RIP) assay and RNA-pull down assay were utilized to confirm the interaction between miR-16-5p and circ-CUX1 or DMRT2. Tumor xenograft assay was performed to explore the function of circ-CUX1 in xenograft tumor growth in vivo. Circ-CUX1 promoted the proliferation, migration, invasion and glycolysis of NB cells. miR-16-5p was a direct target of circ-CUX1, and miR-16-5p overexpression-mediated effects in NB cells were partly alleviated by the introduction of circ-CUX1 overexpression plasmid. DMRT2 was a target of miR-16-5p in NB cells, and the introduction of anti-miR-16-5p overturned the influences of DMRT2 interference on the proliferation, migration and invasion and glycolysis of NB cells. Circ-CUX1 silencing restrained xenograft tumor growth in vivo. In conclusion, circ-CUX1 accelerated the proliferation, migration, invasion and glycolysis of NB cells through targeting miR-16-5p/DMRT2 signaling cascade.


Assuntos
Proteínas de Ligação a DNA/metabolismo , MicroRNAs/metabolismo , Neuroblastoma/fisiopatologia , RNA Circular/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Pré-Escolar , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica/fisiologia , Glicólise/fisiologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos Endogâmicos BALB C , Neuroblastoma/genética , Neuroblastoma/metabolismo
7.
Exp Cell Res ; 362(2): 424-435, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29246726

RESUMO

K-ras mutation is involved in cancer progression including invasion and migration, but the underlying mechanism is not yet clear. Cathepsin L is a lysosomal cysteine protease and has recently been associated with invasion and migration in human cancers when it is overexpressed. Our recent studies have shown that ionizing radiation (IR) enhanced expression of cathepsin L and increased invasion and migration of tumor cells, but the molecular mechanism is still unclear. In the present study, the effects of K-ras mutation and IR induced invasion and migration of lung cancer as well as the underlying mechanisms were investigated both in vitro and in vivo. Firstly, the levels of cathepsin L and epithelial mesenchymal transition (EMT) marker proteins remarkably changed in A549 (K-ras mutant) after irradiation compared with H1299 (K-ras wild), thereby promoting invasion and migration. Additionally, cathepsin L and its downstream transcription factor CUX1/p110 were increased after irradiation in A549 transfected with CUX1/p200, and the proteolytic processing of CUX1 by cathepsin L was remarkably increased after co-transfection of CUX1/p200 and cathepsin L-lentivirus in H1299. In addition, delivery of a mutant K-ras (V12) into HEK 293 cells stimulated EMT after irradiation due to the accumulation of cathepsin L. Moreover, mutated K-ras was associated with IR-induced cathepsin L and EMT in BALB/c nude mice. Finally, the level of cathepsin L expression was higher in samples carrying a K-ras mutation than in wild-type K-ras samples and the mesenchymal markers were upregulated in the samples of mutant K-ras, whereas the epithelial marker E-cadherin was downregulated in non-small cell lung cancers tissues. In conclusion, the findings demonstrated that mutated K-ras promotes cathepsin L expression and plays a pivotal role in EMT of human lung cancer. The regulatory effect of IR-induced cathepsin L on lung cancer invasion and migration was partially attributed to the Cathepsin L /CUX1-mediated EMT signaling pathway. This study will provide cathepsin L as a potential target for tumor therapy.


Assuntos
Catepsina L/genética , Proteínas de Homeodomínio/genética , Neoplasias Pulmonares/genética , Proteínas Nucleares/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Repressoras/genética , Células A549 , Animais , Movimento Celular/genética , Movimento Celular/efeitos da radiação , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/radioterapia , Camundongos , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Radiação Ionizante , Transdução de Sinais/efeitos da radiação , Fatores de Transcrição , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Mol Cell Neurosci ; 92: 104-113, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30077770

RESUMO

Ceruloplasmin (Cp) is an important extracellular regulator of iron metabolism. We showed previously that it stimulates Reelin proteolytic processing and cell aggregation in cultures of developing neurons. Reelin is a secreted protein required for the correct positioning of neurons in the brain. It is cleaved in vivo into N-terminally-derived 300K and 180K fragments through incompletely known mechanisms. One of Reelin signaling targets is the actin-binding protein cofilin, the phosphorylation of which is diminished in Reelin-deficient mice. This work looked for in vivo evidence of a relationship between Cp, Reelin and neuronal organization during brain development by analyzing wild-type and Cp-null mice. Cp as well as the full-length, 300K and 180K Reelin species appeared together in wild-type brains at embryonic day (E) 12.5 by immunoblotting. In wild-type compared to Cp-null brains, there was more 300K Reelin from E12.5 to E17.5, a period characterized by extensive, radially directed neuronal migration in the cerebral cortex. Immunofluorescence labeling of tissue sections at E16.5 revealed the localization of Cp with radial glia and meningeal cells adjacent to Reelin-producing Cajal-Retzius neurons, underlining the proximity of Cp and Reelin. Cofilin phosphorylation was seen starting at E10.5-E12.5 and lasted longer until postnatal day 7 in wild-type than Cp-null mice. Finally, using CUX1 as a marker revealed defective accumulation of neurons in layers II/III in neonatal and adult Cp-null mice. These results combined with our earlier work point to a potentially new role of Cp in Reelin processing and signaling and neuronal organization in the cerebral cortex in vivo.


Assuntos
Fatores de Despolimerização de Actina/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Córtex Cerebral/metabolismo , Ceruloplasmina/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurogênese , Processamento de Proteína Pós-Traducional , Serina Endopeptidases/metabolismo , Animais , Córtex Cerebral/citologia , Córtex Cerebral/crescimento & desenvolvimento , Ceruloplasmina/genética , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Fosforilação , Proteína Reelina
9.
Biochim Biophys Acta Mol Cell Res ; 1864(12): 2347-2355, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28893557

RESUMO

Intestinal epithelial cells form a protective barrier in limiting gut luminal content potentially harmful to the host. Upon gut epithelium injury, several signals instruct epithelial cells to undergo a rapid healing process. Defects in this process induce inflammatory responses and can further evolve into chronic gut inflammatory diseases. We previously identified the transcription factor CUX1 as crucial for protecting against experimental colitis in mice. However, the precise molecular mechanisms by which CUX1 intervenes during this biological process are unknown. Our aim was to evaluate CUX1 biological and functional roles during intestinal epithelial cell wound healing. RNAi knockdown of CUX1 in intestinal epithelial cells revealed a crucial role for this regulator in migratory response following wounding assays. Gene expression profiling identified several gene transcripts modulated in absence of CUX1 during wound healing for which a significant number was associated with cell motility and cytoskeleton function. Chromatin immunoprecipitation assays identified the guanine nucleotide exchange factor Vav2 gene as a direct target for CUX1. Coincidently, reduction of VAV2 in absence of CUX1 was associated with a significant decrease of RAC1 activity in response to epithelial wounding. Our results identify a novel pathway by which CUX1 regulates normal intestinal epithelial cell restitution.


Assuntos
Proteínas de Homeodomínio/genética , Inflamação/genética , Neuropeptídeos/genética , Proteínas Nucleares/genética , Proteínas Proto-Oncogênicas c-vav/genética , Proteínas Repressoras/genética , Cicatrização/genética , Proteínas rac1 de Ligação ao GTP/genética , Animais , Células Epiteliais/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Humanos , Inflamação/patologia , Mucosa Intestinal/metabolismo , Intestinos/patologia , Camundongos
10.
J Cell Mol Med ; 22(10): 4760-4770, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30010249

RESUMO

Tumour growth depends on a continual supply of the nutrients and oxygen, which are offered by tumour angiogenesis. Our previous study showed that dipalmitoylphosphatidic acid (DPPA), a bioactive phospholipid, inhibits the growth of triple-negative breast cancer cells. However, its direct effect on angiogenesis remains unknown. Our work showed that DPPA significantly suppressed vascular growth in the chick embryo chorioallantoic membrane (CAM) and yolk sac membrane (YSM) models. Meanwhile, tumour angiogenesis and tumour growth were inhibited by DPPA in the tumour tissues of an experimental breast cancer model, a subcutaneous xenograft mouse model and a genetically engineered spontaneous breast cancer mouse model (MMTV-PyMT). Furthermore, DPPA directly inhibited the proliferation, migration and tube formation of vascular endothelial cells. The anti-angiogenic effect of DPPA was regulated by the inhibition of Cut-like homeobox1 (CUX1), which transcriptionally inhibited fibroblast growth factor 1 (FGF1), leading to the downregulation of hepatocyte growth factor (HGF). This work first demonstrates that DPPA directly inhibits angiogenesis in cancer development. Our previous work along with this study suggest that DPPA functions as an anti-tumour therapeutic drug that inhibits angiogenesis.


Assuntos
Antineoplásicos/farmacologia , Fator 1 de Crescimento de Fibroblastos/genética , Regulação Neoplásica da Expressão Gênica , Fator de Crescimento de Hepatócito/genética , Proteínas de Homeodomínio/genética , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neovascularização Patológica/prevenção & controle , Proteínas Nucleares/genética , Ácidos Fosfatídicos/farmacologia , Proteínas Repressoras/genética , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Embrião de Galinha , Membrana Corioalantoide/irrigação sanguínea , Membrana Corioalantoide/efeitos dos fármacos , Feminino , Fator 1 de Crescimento de Fibroblastos/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Proteínas de Homeodomínio/metabolismo , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Nus , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
11.
J Cell Biochem ; 119(7): 6238-6248, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29663529

RESUMO

Cut-like homeobox 1 (CUX1) is a highly conserved homeoprotein that functions as a transcriptional repressor of genes specifying terminal differentiation. We previously showed that liver-specific microRNA-122 (miR-122) regulates the timing of liver development by silencing CUX1 post-transcriptionally. Since the CUX1 protein is expressed in a subset of embryonic tissues, we hypothesized that it is regulated by specific microRNAs (miRNAs) in each cell type during development. Using a large-scale screening method, we identified ten tissue-specific miRNAs from different cell lineages that directly targeted CUX1. An analysis of the interaction between heart-specific microRNA-208a (miR-208a) and CUX1 in the hearts of developing mouse embryos and in P19CL6 cells undergoing cardiac differentiation indicated that CUX1 is regulated by miR-208a during heart development and cardiomyocyte differentiation. Functional analysis of miR-208a in P19CL6 cells using lentiviral-mediated over-expression showed that it regulates the transition between cellular proliferation and differentiation. These results suggest that these tissue-specific miRNAs might play a common role in timing the progression of terminal differentiation of different cell lineages, possibly by silencing the differentiation repressor CUX1.


Assuntos
Diferenciação Celular , Linhagem da Célula/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/antagonistas & inibidores , MicroRNAs/genética , Miócitos Cardíacos/citologia , Proteínas Nucleares/antagonistas & inibidores , Proteínas Repressoras/antagonistas & inibidores , Animais , Proliferação de Células , Células Cultivadas , Células HeLa , Coração/crescimento & desenvolvimento , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Especificidade de Órgãos , Fatores de Transcrição
12.
Am J Physiol Renal Physiol ; 313(4): F1050-F1059, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28701314

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common monogenic hereditary disorders in humans characterized by fluid-filled cysts, primarily in the kidneys. Cux1, a cell cycle regulatory gene highly expressed during kidney development, is elevated in the cyst-lining cells of Pkd1 mutant mice, and in human ADPKD cells. However, forced expression of Cux1 is insufficient to induce cystic disease in transgenic mice or to induce rapid cyst formation after cilia disruption in the kidneys of adult mice. Here we report a double mutant mouse model that has a conditional deletion of the Pkd1 gene in the renal collecting ducts together with a targeted mutation in the Cux1 gene (Pkd1CD;Cux1tm2Ejn). While kidneys isolated from newborn Pkd1CD mice exhibit cortical and medullary cysts, kidneys isolated from newborn Pkd1CD;Cux1tm2Ejn-/- mice did not show any cysts. Because Cux1tm2Ejn-/- are perinatal lethal, we evaluated Pkd1CD mice that were heterozygote for the Cux1 mutation. Similar to the newborn Pkd1CD;Cux1tm2Ejn-/- mice, newborn Pkd1CD;Cux1tm2Ejn+/- mice did not show any cysts. Comparison of Pkd1CD and Pkd1CD;Cux1tm2Ejn+/- mice at later stages of development showed a reduction in the severity of PKD in the Pkd1CD;Cux1tm2Ejn+/- mice. Moreover, we observed an increase in expression of the cyclin kinase inhibitor p27, a target of Cux1 repression, in the rescued collecting ducts. Taken together, our results suggest that Cux1 expression in PKD is not directly involved in cystogenesis but promotes cell proliferation required for expansion of existing cysts, primarily by repression of p27.


Assuntos
Proliferação de Células , Proteínas de Homeodomínio/metabolismo , Túbulos Renais Coletores/metabolismo , Proteínas Nucleares/metabolismo , Rim Policístico Autossômico Dominante/metabolismo , Proteínas Repressoras/metabolismo , Fatores Etários , Animais , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Predisposição Genética para Doença , Proteínas de Homeodomínio/genética , Túbulos Renais Coletores/patologia , Camundongos Knockout , Mutação , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Fenótipo , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/patologia , Rim Policístico Autossômico Dominante/prevenção & controle , Proteínas Repressoras/deficiência , Proteínas Repressoras/genética , Índice de Gravidade de Doença , Transdução de Sinais , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo
13.
Biochem Biophys Res Commun ; 491(1): 59-64, 2017 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-28698143

RESUMO

Several recent studies have highlighted an additional unexpected localization and site of action for Cathepsin L (Cat L) protease within the nucleus in breast, colon and prostate cancer, however, its role in the nucleus was unclear. It was proposed to mediate proteolytic processing of the transcription factor CCAAT-displacement protein/cut homeobox transcription factor (Cux1) from the full-length p200 isoform to generate the p110 and p90 isoforms, of which the p110 isoform was shown to act as a cell cycle regulator to accelerate entry into the S phase. The p110 isoform has also been shown to bind to the promoter regions of Snail and E-cadherin to activate Snail and inactivate E-cadherin transcription, thus promoting epithelial mesenchymal transition (EMT). Mechanistic studies on what drives Cat L nuclear localization have not been reported. Our hypothesis is that Snail shuttles into the nucleus with Cat L through binding to importin-ß. Snail knockdown with siRNA in MDA-MB-468 breast cancer cells led to nuclear to cytoplasmic shuttling of Cat L and decreased levels of Cux1, while overexpression of Snail in MCF-7 breast cancer cells or HEK-293 human embryonic kidney cells led to increased nuclear expression of both Cat L and Cux1. Additionally, transient transfection of Snail NLS mutants not only abrogated Snail nuclear localization but also nuclear localization of Cat L and Cux1. Interestingly, importin ß1 knockdown with siRNA decreased Snail and Cux1 levels, as well as nuclear localization of Cat L. Therefore, we show for the first time that the nuclear localization of Cat L and its substrate Cux1can be positively regulated by Snail NLS and importin ß1, suggesting that Snail, Cat L and Cux1 all utilize importin ß1 for nuclear import.


Assuntos
Catepsina L/metabolismo , Núcleo Celular/metabolismo , Proteínas de Homeodomínio/metabolismo , Sinais de Localização Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Frações Subcelulares/metabolismo , beta Carioferinas/metabolismo , Transporte Ativo do Núcleo Celular/fisiologia , Células HEK293 , Humanos , Células MCF-7 , Distribuição Tecidual , Fatores de Transcrição
14.
Pol J Pathol ; 68(3): 258-260, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29363918

RESUMO

Both CUX1 and SIRT1 are considered tumor suppressor genes (TSGs), but it is not known whether CUX1 and SIRT1 alterations are different between high microsatellite instability (MSI-H) and microsatellite stable MSI (MSS) cancers. We identified frameshift mutations of CUX1 in 4 cases of colorectal cancer (CRC) and of SIRT1 in 1 case of gastric cancer (GC) and 3 cases of CRC. All of them were found in GC or CRC with MSI-H (3.5% of MSI-H for each gene), but neither in GC nor CRC with MSS. In addition, we analyzed intratumoral heterogeneity (ITH) of the CUX1 frameshift mutation and found that two CRCs (12.5%) harbored regional ITH of the frameshift mutation. Our data indicate that there exist frameshift mutations of CUX1 and SIRT1 genes as well as ITH of CUX1 frameshift mutation in MSI-H cancers, which together might play a role in tumorigenesis of GC and CRC with MSI-H.


Assuntos
Transformação Celular Neoplásica/genética , Neoplasias Colorretais/genética , Proteínas de Homeodomínio/genética , Proteínas Nucleares/genética , Proteínas Repressoras/genética , Sirtuína 1/genética , Neoplasias Gástricas/genética , Mutação da Fase de Leitura , Humanos , Instabilidade de Microssatélites , Fatores de Transcrição
15.
Br J Haematol ; 166(4): 550-6, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24931631

RESUMO

-7/del(7q) occurs in half of myeloid malignancies with adverse-risk cytogenetic features and is associated with poor survival. We identified the spectrum of mutations that co-occur with -7/del(7q) in 40 patients with de novo or therapy-related myeloid neoplasms. -7/del(7q) leukaemias have a distinct mutational profile characterized by low frequencies of alterations in genes encoding transcription factors, cohesin and DNA-methylation-related proteins. In contrast, RAS pathway activating mutations occurred in 50% of cases, a significantly higher frequency than other acute myeloid leukaemias and higher than previously reported. Our data provide guidance for which pathways may be most relevant in the treatment of adverse-risk myeloid leukaemia.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 7/genética , Leucemia Mieloide Aguda/genética , Proteínas de Homeodomínio/genética , Humanos , Proteínas Nucleares/genética , Proteínas Repressoras/genética , Fatores de Risco , Fatores de Transcrição
16.
J Orthop Surg Res ; 19(1): 260, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659042

RESUMO

Circular RNAs (circRNAs) are a newly appreciated type of endogenous noncoding RNAs that play vital roles in the development of various human cancers, including osteosarcoma (OS). In this study, we investigated three circRNAs (circ_0076684, circ_0003563, circ_0076691) from the RUNX Family Transcription Factor 2 (RUNX2) gene locus in OS. We found that the expression of circ_0076684, circ_0003563, circ_0076691, and RUNX2 mRNA is upregulated in OS, which is a consequence of CBX4-mediated transcriptional activation. Among these three RUNX2-circRNAs, only circ_0076684 is significantly associated with the clinical features and prognosis of OS patients. Functional experiments indicate that circ_0076684 promotes OS progression in vitro and in vivo. Circ_0076684 acts as a sponge for miR-370-3p, miR-140-3p, and miR-193a-5p, raising Cut Like Homeobox 1 (CUX1) expression by sponging these three miRNAs. Furthermore, we presented that circ_0076684 facilitates OS progression via CUX1. In conclusion, this study found that the expression of three circRNAs and RUNX2 mRNA from the RUNX2 gene locus is significantly upregulated in OS, as a result of CBX4-mediated transcriptional activation. Circ_0076684 raises CUX1 expression by sponging miR-370-3p, miR-140-3p, and miR-193a-5p, and facilitates OS progression via CUX1.


Assuntos
Neoplasias Ósseas , Subunidade alfa 1 de Fator de Ligação ao Core , Ligases , MicroRNAs , Osteossarcoma , Proteínas do Grupo Polycomb , RNA Circular , Regulação para Cima , Osteossarcoma/genética , Osteossarcoma/patologia , Osteossarcoma/metabolismo , Humanos , RNA Circular/genética , MicroRNAs/genética , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Neoplasias Ósseas/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Masculino , Animais , Progressão da Doença , Linhagem Celular Tumoral , Feminino , Ativação Transcricional/genética , Prognóstico , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
17.
Animals (Basel) ; 14(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38338072

RESUMO

Previous studies have demonstrated that CUX1 could contribute to the proliferation of DPCs in vitro, but the upstream transcriptional regulatory mechanisms of CUX1 remain largely unknown. This study aimed to investigate the upstream transcriptional regulators of CUX1 to enhance our comprehension of the mechanism of action of the CUX1 gene in ovine DPCs. Initially, the JASPAR (2024) software was used to predict the upstream target transcription factors for the CUX1 gene. Subsequently, through RT-qPCR and a double luciferase reporter assay, the interaction between SP1, KROX20, and CUX1 was established, respectively. The results indicated that SP1 and KROX20 were two highly reliable upstream transcription regulators for the CUX1 gene. Additionally, we found that SP1 promoted the proliferation of DPCs by overexpressing SP1 in DPCs, and KROX20 inhibited the proliferation of DPCs by overexpressing KROX20 in DPCs. These findings are also consistent with the transcriptional regulation of CUX1 by SP1 and KROX20, respectively. This study suggests that the effect of DPC proliferation in vitro by CUX1 may regulated by the transcription factors SP1 and KROX20.

18.
J Leukoc Biol ; 115(5): 926-934, 2024 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-38315716

RESUMO

The mechanism underlying autophagy in paroxysmal nocturnal hemoglobinuria (PNH) remains largely unknown. We previously sequenced the entire genome exon of the CD59- cells from 13 patients with PNH and found genes such as CUX1 encoding Cut-like homeobox 1. Peripheral blood samples from 9 patients with PNH and 7 healthy control subjects were obtained to measure CUX1 expression. The correlation between CUX1 messenger RNA expression and PNH clinical indicators was analyzed. To simulate CUX1 expression in patients with PNH, we generated a panel of PNH cell lines by knocking out PIGA in K562 cell lines and transfected lentivirus with CUX1. CCK-8 and EDU assay assessed cell proliferation. Western blotting was used to detect Beclin-1, LC3A, LC3B, ULK1, PI3K, AKT, p-AKT, mTOR, and p-mTOR protein levels. Autophagosomes were observed with transmission electron microscopy. Chloroquine was used to observe CUX1 expression in PNH after autophagy inhibition. Leukocytes from patients with PNH had lower levels of CUX1 messenger RNA expression and protein content than healthy control subjects. The lactose dehydrogenase level and the percentage of PNH clones were negatively correlated with CUX1 relative expression. We reduced CUX1 expression in a PIGA knockout K562 cell line, leading to increased cell proliferation. Levels of autophagy markers Beclin-1, LC3B, LC3A, and ULK1 increased, and autophagosomes increased. Furthermore, PI3K/AKT/mTOR protein phosphorylation levels were lower. CUX1 expression did not change and cell proliferation decreased in CUX1 knocked down PNH cells after inhibition of autophagy by chloroquine. In brief, CUX1 loss-of-function mutation resulted in stronger autophagy in PNH.


Assuntos
Autofagia , Hemoglobinúria Paroxística , Proteínas de Homeodomínio , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Repressoras , Fatores de Transcrição , Humanos , Masculino , Feminino , Hemoglobinúria Paroxística/genética , Hemoglobinúria Paroxística/patologia , Hemoglobinúria Paroxística/metabolismo , Células K562 , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Pessoa de Meia-Idade , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Adulto , Proliferação de Células , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética
19.
Aging (Albany NY) ; 16(13): 10749-10764, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38944813

RESUMO

Cathepsin L (CTSL) has been implicated in aging and age-related diseases, such as cardiovascular diseases, specifically atherosclerosis. However, the underlying mechanism(s) is not well documented. Recently, we demonstrated a role of CUT-like homeobox 1 (CUX1) in regulating the p16INK4a-dependent cellular senescence in human endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) via its binding to an atherosclerosis-associated functional SNP (fSNP) rs1537371 on the CDKN2A/B locus. In this study, to determine if CTSL, which was reported to proteolytically activate CUX1, regulates cellular senescence via CUX1, we measured the expression of CTSL, together with CUX1 and p16INK4a, in human ECs and VSMCs undergoing senescence. We discovered that CUX1 is not a substrate that is cleaved by CTSL. Instead, CTSL is an upstream regulator that activates CUX1 transcription indirectly in a process that requires the proteolytic activity of CTSL. Our findings suggest that there is a transcription factor in between CTSL and CUX1, and cleavage of this factor by CTSL can activate CUX1 transcription, inducing endothelial senescence. Thus, our findings provide new insights into the signal transduction pathway that leads to atherosclerosis-associated cellular senescence.


Assuntos
Catepsina L , Senescência Celular , Inibidor p16 de Quinase Dependente de Ciclina , Proteínas de Homeodomínio , Músculo Liso Vascular , Proteínas Repressoras , Humanos , Senescência Celular/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/genética , Catepsina L/metabolismo , Catepsina L/genética , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/citologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Regulação para Cima , Células Endoteliais/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Miócitos de Músculo Liso/metabolismo , Aterosclerose/metabolismo , Aterosclerose/genética , Aterosclerose/patologia , Células Endoteliais da Veia Umbilical Humana , Células Cultivadas
20.
BMC Med Genomics ; 17(1): 195, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103808

RESUMO

BACKGROUND: The Cut Homeobox 1 (CUX1) gene has been implicated in a number of developmental processes and has recently emerged as an important cause of developmental delay and impaired intellectual development. Individuals with variants in CUX1 have been described with a variety of co-morbidities including variations in sex development (VSD) although these features have not been closely documented. CASE PRESENTATION: The proband is a 14-year-old male who presented with congenital complex hypospadias, neurodevelopmental differences, and subtle dysmorphism. A family history of neurodevelopmental differences and VSD was noted. Microarray testing and whole exome sequencing found the 46,XY proband had a large heterozygous in-frame deletion of exons 4-10 of the CUX1 gene. CONCLUSIONS: Our review of the literature has revealed that variants in CUX1 are associated with a range of VSD and suggest this gene should be considered in cases where a VSD is noted at birth, especially if there is a familial history of VSD and/or neurodevelopmental differences. Further work is required to fully investigate the role and regulation of CUX1 in sex development.


Assuntos
Proteínas de Homeodomínio , Proteínas Repressoras , Humanos , Masculino , Proteínas de Homeodomínio/genética , Adolescente , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Desenvolvimento Sexual/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA