Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(17): 4512-4530.e22, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34343496

RESUMO

Cytotoxic T lymphocyte (CTL) responses against tumors are maintained by stem-like memory cells that self-renew but also give rise to effector-like cells. The latter gradually lose their anti-tumor activity and acquire an epigenetically fixed, hypofunctional state, leading to tumor tolerance. Here, we show that the conversion of stem-like into effector-like CTLs involves a major chemotactic reprogramming that includes the upregulation of chemokine receptor CXCR6. This receptor positions effector-like CTLs in a discrete perivascular niche of the tumor stroma that is densely occupied by CCR7+ dendritic cells (DCs) expressing the CXCR6 ligand CXCL16. CCR7+ DCs also express and trans-present the survival cytokine interleukin-15 (IL-15). CXCR6 expression and IL-15 trans-presentation are critical for the survival and local expansion of effector-like CTLs in the tumor microenvironment to maximize their anti-tumor activity before progressing to irreversible dysfunction. These observations reveal a cellular and molecular checkpoint that determines the magnitude and outcome of anti-tumor immune responses.


Assuntos
Receptores CXCR6/metabolismo , Linfócitos T Citotóxicos/imunologia , Microambiente Tumoral , Animais , Antígeno B7-H1/metabolismo , Comunicação Celular , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Quimiocina CXCL16 , Células Dendríticas/metabolismo , Interleucina-12/metabolismo , Interleucina-15/metabolismo , Ligantes , Linfonodos/metabolismo , Melanoma/imunologia , Melanoma/patologia , Camundongos Endogâmicos C57BL
2.
Immunity ; 57(7): 1629-1647.e8, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38754432

RESUMO

The pancreatic islet microenvironment is highly oxidative, rendering ß cells vulnerable to autoinflammatory insults. Here, we examined the role of islet resident macrophages in the autoimmune attack that initiates type 1 diabetes. Islet macrophages highly expressed CXCL16, a chemokine and scavenger receptor for oxidized low-density lipoproteins (OxLDLs), regardless of autoimmune predisposition. Deletion of Cxcl16 in nonobese diabetic (NOD) mice suppressed the development of autoimmune diabetes. Mechanistically, Cxcl16 deficiency impaired clearance of OxLDL by islet macrophages, leading to OxLDL accumulation in pancreatic islets and a substantial reduction in intra-islet transitory (Texint) CD8+ T cells displaying proliferative and effector signatures. Texint cells were vulnerable to oxidative stress and diminished by ferroptosis; PD-1 blockade rescued this population and reversed diabetes resistance in NOD.Cxcl16-/- mice. Thus, OxLDL scavenging in pancreatic islets inadvertently promotes differentiation of pathogenic CD8+ T cells, presenting a paradigm wherein tissue homeostasis processes can facilitate autoimmune pathogenesis in predisposed individuals.


Assuntos
Autoimunidade , Linfócitos T CD8-Positivos , Diferenciação Celular , Quimiocina CXCL16 , Diabetes Mellitus Tipo 1 , Ilhotas Pancreáticas , Lipoproteínas LDL , Macrófagos , Camundongos Endogâmicos NOD , Camundongos Knockout , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Camundongos , Lipoproteínas LDL/metabolismo , Lipoproteínas LDL/imunologia , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/metabolismo , Quimiocina CXCL16/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Ilhotas Pancreáticas/imunologia , Ilhotas Pancreáticas/metabolismo , Camundongos Endogâmicos C57BL
3.
Immunity ; 57(6): 1360-1377.e13, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38821052

RESUMO

Limited infiltration and activity of natural killer (NK) and T cells within the tumor microenvironment (TME) correlate with poor immunotherapy responses. Here, we examined the role of the endonuclease Regnase-1 on NK cell anti-tumor activity. NK cell-specific deletion of Regnase-1 (Reg1ΔNK) augmented cytolytic activity and interferon-gamma (IFN-γ) production in vitro and increased intra-tumoral accumulation of Reg1ΔNK-NK cells in vivo, reducing tumor growth dependent on IFN-γ. Transcriptional changes in Reg1ΔNK-NK cells included elevated IFN-γ expression, cytolytic effectors, and the chemokine receptor CXCR6. IFN-γ induced expression of the CXCR6 ligand CXCL16 on myeloid cells, promoting further recruitment of Reg1ΔNK-NK cells. Mechanistically, Regnase-1 deletion increased its targets, the transcriptional regulators OCT2 and IκBζ, following interleukin (IL)-12 and IL-18 stimulation, and the resulting OCT2-IκBζ-NF-κB complex induced Ifng transcription. Silencing Regnase-1 in human NK cells increased the expression of IFNG and POU2F2. Our findings highlight NK cell dysfunction in the TME and propose that targeting Regnase-1 could augment active NK cell persistence for cancer immunotherapy.


Assuntos
Interferon gama , Células Matadoras Naturais , Microambiente Tumoral , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Animais , Interferon gama/metabolismo , Humanos , Camundongos , Microambiente Tumoral/imunologia , Camundongos Endogâmicos C57BL , Ribonucleases/metabolismo , Ribonucleases/genética , Camundongos Knockout , Transcrição Gênica , Linhagem Celular Tumoral , NF-kappa B/metabolismo
4.
J Pathol ; 262(4): 441-453, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38186269

RESUMO

Vitiligo is a depigmented skin disease due to the destruction of melanocytes. Under oxidative stress, keratinocyte-derived chemokine C-X-C motif ligand 16 (CXCL16) plays a critical role in recruiting CD8+ T cells, which kill melanocytes. Autophagy serves as a protective cell survival mechanism and impairment of autophagy has been linked to increased secretion of the proinflammatory cytokines. However, the role of autophagy in the secretion of CXCL16 under oxidative stress has not been investigated. Herein, we initially found that autophagy was suppressed in both keratinocytes of vitiligo lesions and keratinocytes exposed to oxidative stress in vitro. Autophagy inhibition also promoted CXCL16 secretion. Furthermore, upregulated transient receptor potential cation channel subfamily M member 2 (TRPM2) functioned as an upstream oxidative stress sensor to inhibit autophagy. Moreover, TRPM2-mediated Ca2+ influx activated calpain to shear autophagy related 5 (Atg5) and Atg12-Atg5 conjugate formation was blocked to inhibit autophagy under oxidative stress. More importantly, Atg5 downregulation enhanced the binding of interferon regulatory factor 3 (IRF3) to the CXCL16 promoter region by activating Tank-binding kinase 1 (TBK1), thus promoting CXCL16 secretion. These findings suggested that TRPM2-restrained autophagy promotes CXCL16 secretion via the Atg5-TBK1-IRF3 signaling pathway under oxidative stress. Inhibition of TRPM2 may serve as a potential target for the treatment of vitiligo. © 2024 The Pathological Society of Great Britain and Ireland.


Assuntos
Canais de Cátion TRPM , Vitiligo , Humanos , Vitiligo/metabolismo , Vitiligo/patologia , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Linfócitos T CD8-Positivos/patologia , Queratinócitos/patologia , Estresse Oxidativo , Autofagia , Quimiocina CXCL16/metabolismo
5.
Mol Med ; 30(1): 70, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789926

RESUMO

BACKGROUND: The development of pulmonary fibrosis involves a cascade of events, in which inflammation mediated by immune cells plays a pivotal role. Chemotherapeutic drugs have been shown to have dual effects on fibrosis, with bleomycin exacerbating pulmonary fibrosis and bortezomib alleviating tissue fibrotic processes. Understanding the intricate interplay between chemotherapeutic drugs, immune responses, and pulmonary fibrosis is likely to serve as the foundation for crafting tailored therapeutic strategies. METHODS: A model of bleomycin-induced pulmonary fibrosis was established, followed by treatment with bortezomib. Tissue samples were collected for analysis of immune cell subsets and functional assessment by flow cytometry and in vitro cell experiments. Additionally, multi-omics analysis was conducted to further elucidate the expression of chemokines and chemokine receptors, as well as the characteristics of cell populations. RESULTS: Here, we observed that the expression of CXCL16 and CXCR6 was elevated in the lung tissue of a pulmonary fibrosis model. In the context of pulmonary fibrosis or TGF-ß1 stimulation in vitro, macrophages exhibited an M2-polarized phenotype and secreted more CXCL16 than those of the control group. Moreover, flow cytometry revealed increased expression levels of CD69 and CXCR6 in pulmonary CD4 T cells during fibrosis progression. The administration of bortezomib alleviated bleomycin-induced pulmonary fibrosis, accompanied by reduced ratio of M2-polarized macrophages and decreased accumulation of CD4 T cells expressing CXCR6. CONCLUSIONS: Our findings provide insights into the key immune players involved in bleomycin-induced pulmonary fibrosis and offer preclinical evidence supporting the repurposing strategy and combination approaches to reduce lung fibrosis.


Assuntos
Bleomicina , Bortezomib , Linfócitos T CD4-Positivos , Quimiocina CXCL16 , Fibrose Pulmonar , Receptores CXCR6 , Animais , Masculino , Camundongos , Antígenos CD , Antígenos de Diferenciação de Linfócitos T/metabolismo , Bleomicina/efeitos adversos , Bortezomib/farmacologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/imunologia , Quimiocina CXCL16/metabolismo , Quimiotaxia/efeitos dos fármacos , Modelos Animais de Doenças , Lectinas Tipo C , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/tratamento farmacológico , Receptores CXCR6/metabolismo
6.
Trends Immunol ; 42(12): 1057-1059, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34772619

RESUMO

Di Pilato et al. demonstrate that CXCR6 positions TCF-1- transitory CD8+ cytotoxic lymphocytes (CTLs) with perivascular CCR7+ dendritic cells (DCs) within the tumor stroma to receive IL-15 survival signals. The requirement for CXCR6 and its strong prediction of overall patient survival highlight the importance of continued CTL-DC interactions in sustaining tumor immunity.


Assuntos
Neoplasias , Linfócitos T Citotóxicos , Linfócitos T CD8-Positivos , Células Dendríticas , Humanos , Neoplasias/terapia , Transdução de Sinais
7.
Exp Brain Res ; 242(8): 1917-1932, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38896294

RESUMO

Neuroinflammation and microglia polarization play pivotal roles in brain injury induced by intracerebral hemorrhage (ICH). Despite the well-established involvement of CXC motif chemokine ligand 16 (CXCL16) in regulating inflammatory responses across various diseases, its specific functions in the context of neuroinflammation and microglial polarization following ICH remain elusive. In this study, we investigated the impact of CXCL16 on neuroinflammation and microglia polarization using both mouse and cell models. Our findings revealed elevated CXCL16 expression in mice following ICH and in BV2 cells after lipopolysaccharide (LPS) stimulation. Specific silencing of CXCL16 using siRNA led to a reduction in the expression of neuroinflammatory factors, including IL-1ß and IL-6, as well as decreased expression of the M1 microglia marker iNOS. Simultaneously, it enhanced the expression of anti-inflammatory factors such as IL-10 and the M2 microglia marker Arg-1. These results were consistent across both mouse and cell models. Intriguingly, co-administration of the PI3K-specific agonist 740 Y-P with siRNA in LPS-stimulated cells reversed the effects of siRNA. In conclusion, silencing CXCL16 can positively alleviate neuroinflammation and M1 microglial polarization in BV2 inflammation models and ICH mice. Furthermore, in BV2 cells, this beneficial effect is mediated through the PI3K/Akt pathway. Inhibition of CXCL16 could be a novel approach for treating and diagnosing cerebral hemorrhage.


Assuntos
Hemorragia Cerebral , Quimiocina CXCL16 , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Microglia , Doenças Neuroinflamatórias , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Animais , Quimiocina CXCL16/metabolismo , Microglia/metabolismo , Microglia/efeitos dos fármacos , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Hemorragia Cerebral/metabolismo , Transdução de Sinais/fisiologia , Transdução de Sinais/efeitos dos fármacos , Doenças Neuroinflamatórias/metabolismo , Masculino , Polaridade Celular/fisiologia , Polaridade Celular/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Inativação Gênica , RNA Interferente Pequeno/farmacologia , RNA Interferente Pequeno/administração & dosagem
8.
J Pathol ; 259(2): 180-193, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36373877

RESUMO

Radiation enteritis (RE) is a prevalent complication of radiotherapy for pelvic malignant tumors, characterized by severe intestinal epithelial destruction and progressive submucosal fibrosis. However, little is known about the pathogenesis of this disease, and so far, there is no specific targeted therapy. Here, we report that CXCL16 is upregulated in the injured intestinal tissues of RE patients and in a mouse model. Genetic deletion of Cxcl16 mitigates fibrosis and promotes intestinal stem cell-mediated epithelial regeneration after radiation injury in mice. Mechanistically, CXCL16 functions on myofibroblasts through its receptor CXCR6 and activates JAK3/STAT3 signaling to promote fibrosis and, at the same time, to transcriptionally modulate the levels of BMP4 and hepatocyte growth factor (HGF) in myofibroblasts. Moreover, we find that CXCL16 and CXCR6 auto- and cross-regulate themselves in positive feedback loops. Treatment with CXCL16 neutralizing monoclonal antibody attenuates fibrosis and improves the epithelial repair in RE mouse model. Our findings emphasize the important role of CXCL16 in the progression of RE and suggest that CXCL16 signaling could be a potential therapeutic target for RE. © 2022 The Pathological Society of Great Britain and Ireland.


Assuntos
Quimiocina CXCL16 , Enterite , Lesões por Radiação , Animais , Camundongos , Quimiocina CXCL16/metabolismo , Enterite/etiologia , Enterite/metabolismo , Fibrose , Lesões por Radiação/genética , Receptores CXCR6 , Regeneração
9.
Genes Cells ; 27(5): 368-375, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35261108

RESUMO

Accumulating evidence demonstrates that bone marrow (BM)-derived mesenchymal stem cells (MSCs) play critical roles in regulating progression of various types of cancer. We have previously shown that Wnt5a-Ror2 signaling in MSCs induces expression of CXCL16, and that CXCL16 secreted from MSCs then binds to its cognate receptor CXCR6 on the surface of an undifferentiated gastric cancer cell line MKN45 cells, eventually leading to proliferation and migration of MKN45 cells. However, it remains unclear about a possible involvement of another (other) cytokine(s) in regulating progression of gastric cancer. Here, we show that CXCL16-CXCR6 signaling is also activated in MSCs through cell-autonomous machinery, leading to upregulated expression of CCL5. We further show that CCR1 and CCR3, receptors of CCL5, are expressed on the surface of MKN45 cells, and that CCL5 secreted from MSCs promotes migration of MKN45 cells presumably via its binding to CCR1/CCR3. These data indicate that cell-autonomous CXCL16-CXCR6 signaling activated in MSCs upregulates expression of CCL5, and that subsequent activation of CCL5-CCR1/3 signaling in MKN45 cells through intercellular machinery can promote migration of MKN45 cells. Collectively, these findings postulate the presence of orchestrated chemokine signaling emanated from MSCs to regulate progression of undifferentiated gastric cancer cells.


Assuntos
Células-Tronco Mesenquimais , Neoplasias Gástricas , Linhagem Celular Tumoral , Quimiocina CXCL16/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Transdução de Sinais , Neoplasias Gástricas/metabolismo
10.
J Med Virol ; 95(4): e28728, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37185869

RESUMO

As elevated levels of the soluble CXCL16 (sCXCL16) chemokine have been reported in severe coronavirus disease 2019 (COVID-19) patients, this study examined whether sCXCL16 concentration on the first day of hospitalization predicted death in COVID-19 patients. A total of 76 patients with COVID-19 were admitted to the Military Hospital of Tunis, Tunisia, between October 2020 and April 2021, and later classified as survivors or nonsurvivors based on their outcomes. At admission, the groups were matched by age, gender, comorbidities, and the percentage of patients with moderate conditions. On the first day of admission, serum's sCXCL16 concentrations were measured using a magnetic-bead assay. There was an eightfold increase in serum sCXCL16 levels in the nonsurvivors' group (3661.51 ± 2464.87 pg/mL vs. 454.3 ± 338.07 pg/mL, p < 0.0001). For the optimal cutoff value of sCXCL16 at 2095 pg/mL, we found a 94.6% sensitivity and a 97.4% specificity, with an area under curve of 0.981 (p = 5.03E-08; 95% confidence interval [95% CI]: 0.951-1.0114). Considering the risk of death at a concentration above the threshold, the unadjusted odds ratio was 36 (p < 0.0001). The adjusted odd ratio was estimated at 1.003 (p < 0.0001; 95% CI: 1.002-1.004). Finally, there was a significant difference between survival and nonsurvival groups in leukocyte numbers (p = 0.006), lymphocytes (p = 0.001), polymorphonuclear neutrophils (p = 0.001), and C-reactive protein levels (p = 0.007), except for monocytes (p = 0.881). Based on these results, sCXCL16 level could be used for detecting nonsurvival COVID-19 patients. Therefore, we recommend assessing this marker in hospitalized COVID-19 patients.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , Prognóstico , Quimiocina CXCL16 , Linfócitos , Biomarcadores
11.
Medicina (Kaunas) ; 60(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276038

RESUMO

Background and Objectives: To investigate associations among the aqueous humor levels of novel inflammatory factors, including FMS-related tyrosine kinase 3 ligand (Flt-3L), fractalkine, CXC chemokine ligand 16 (CXCL-16), and endocan-1; the severity of macular edema in central retinal vein occlusion (CRVO); and the prognosis of CRVO with macular edema after antivascular endothelial growth factor (VEGF) therapy. Materials and Methods: Aqueous humor was obtained during anti-VEGF treatment with intravitreal ranibizumab injection (IRI) in patients with CRVO and macular edema (n = 19) and during cataract surgery in patients with cataracts (controls, n = 20), and the levels of VEGF and novel inflammatory factors were measured. Macular edema was evaluated by central macular thickness (CMT) and neurosensory retinal thickness (TNeuro), and improvement was evaluated by calculating the percentage change in CMT and TNeuro from before to 1 month after IRI. Results: The levels of VEGF and the novel inflammatory factors were significantly higher in the CRVO group, and the levels of Flt-3L, CXCL-16, and endocan-1 were significantly correlated with each other and with the aqueous flare value. Baseline levels of Flt-3L, CXCL-16, and endocan-1 had a significantly negative correlation with the change in CMT, and the baseline level of CXCL-16 was significantly negatively correlated with the change in TNeuro. Conclusions: Relations among novel inflammatory factors should be further investigated. These findings may help improve understanding of macular edema in CRVO patients and aid the development of new treatments targeting novel inflammatory factors.


Assuntos
Edema Macular , Oclusão da Veia Retiniana , Humanos , Oclusão da Veia Retiniana/complicações , Oclusão da Veia Retiniana/tratamento farmacológico , Oclusão da Veia Retiniana/metabolismo , Edema Macular/tratamento farmacológico , Edema Macular/etiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ranibizumab , Prognóstico , Tomografia de Coerência Óptica
12.
J Transl Med ; 20(1): 384, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36042498

RESUMO

BACKGROUND: Metastasis is a major obstacle in the treatment of cervical cancer (CC), and SPOP-mediated regulatory effects are involved in metastasis. However, the mechanisms have not been fully elucidated. METHODS: Proteomic sequencing and SPOP immunohistochemistry (IHC) were performed for the pelvic lymph node (pLN)-positive and non-pLN groups of CC patients. The corresponding patients were stratified by SPOP expression level for overall survival (OS) and relapse-free survival (RFS) analysis. In vitro and in vivo tests were conducted to verify the causal relationship between SPOP expression and CC metastasis. Multiplex immunofluorescence (m-IF) and the HALO system were used to analyse the mechanism, which was further verified by in vitro experiments. RESULTS: SPOP is upregulated in CC with pLN metastasis and negatively associated with patient outcome. In vitro and in vivo, SPOP promotes CC proliferation and metastasis. According to m-IF and HALO analysis, SPOP may promote CC metastasis by promoting the separation of PD-1 from PD-L1. Finally, it was further verified that SPOP can achieve immune tolerance by promoting the movement of PD-1 away from PD-L1 in spatial location and function. CONCLUSION: This study shows that SPOP can inhibit the immune microenvironment by promoting the movement of PD-1 away from PD-L1, thereby promoting pLN metastasis of CC and resulting in worse OS and RFS.


Assuntos
Antígeno B7-H1 , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Neoplasias do Colo do Útero , Antígeno B7-H1/metabolismo , Feminino , Humanos , Metástase Linfática , Recidiva Local de Neoplasia , Receptor de Morte Celular Programada 1/metabolismo , Proteômica , Microambiente Tumoral , Neoplasias do Colo do Útero/genética
13.
Cytokine ; 152: 155810, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35121493

RESUMO

Genome-wide association studies have recently identified 3p21.31, with lead variant pointing to the CXCR6 gene, as the strongest thus far reported susceptibility risk locus for severe manifestation of COVID-19. In order the determine its role, we measured plasma levels of Chemokine (C-X-C motif) ligand 16 (CXCL16) in the plasma of COVID-19 hospitalized patients. CXCL16 interacts with CXCR6 promoting chemotaxis or cell adhesion. The CXCR6/CXCL16 axis mediates homing of T cells to the lungs in disease and hyper-expression is associated with localised cellular injury. To characterize the CXCR6/CXCL16 axis in the pathogenesis of severe COVID-19, plasma concentrations of CXCL16 collected at baseline from 115 hospitalized COVID-19 patients participating in ODYSSEY COVID-19 clinical trial were assessed together with a set of controls. We report elevated levels of CXCL16 in a cohort of COVID-19 hospitalized patients. Specifically, we report significant elevation of CXCL16 plasma levels in association with severity of COVID-19 (as defined by WHO scale) (P-value < 0.02). Our current study is the largest thus far study reporting CXCL16 levels in COVID-19 hospitalized patients (with whole-genome sequencing data available). The results further support the significant role of the CXCR6/CXCL16 axis in the immunopathogenesis of severe COVID-19 and warrants further studies to understand which patients would benefit most from targeted treatments.


Assuntos
COVID-19/sangue , Quimiocina CXCL16/sangue , SARS-CoV-2/metabolismo , Idoso , COVID-19/genética , COVID-19/imunologia , Quimiocina CXCL16/genética , Quimiocina CXCL16/imunologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Gravidade do Paciente , Receptores CXCR6/sangue , Receptores CXCR6/genética , Receptores CXCR6/imunologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia
14.
Cell Biol Int ; 46(3): 454-461, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34882892

RESUMO

This study aims to evaluate the effect of purinergic ligand-gated ion channel 7 receptor (P2X7R) antagonist A438079 in kidneys of children with primary nephrotic syndrome (PNS). In vitro, human podocytes were respectively stimulated with oxLDL (80 µg/ml), A438079 (10 µmol/L), or the compound oxLDL and A438079 together. CXC chemokine ligand 16 (CXCL16) and P2X7R expression levels were detected by Western blot and immunofluorescence assay, respectively. Immunofluorescence assay was used to detect Dil-oxLDL, and a Colorimetric Cholesterol Detection Kit was used for quantitative determination. Our results demonstrated that CXCL16 and P2X7R expression levels were remarkably increased in the renal tissue from children with PNS, particularly in the same location. Furthermore, in contrast to children with minimal change disease, the expressions of P2X7R and CXCL16 in renal tissue of children with focal segmental glomerulosclerosis were more obvious. In vitro, CXCL16 and P2X7R expression levels in human podocytes stimulated with oxLDL were markedly elevated accompanying higher intracellular lipid accumulation compared with the normal control group. In addition, pretreatment of human podocytes with A438079 before the start of oxLDL stimulation causes a significant reduction in CXCL16 expression and a decrease in lipid accumulation. Overall, CXCL16 and P2X7R may participate in the progression of PNS. The lipid accumulation reduction caused by A438079 may be through deregulating the CXCL16 pathway, suggesting that there is a potential role for P2X7R antagonists to remedy PNS.


Assuntos
Podócitos , Quimiocina CXCL16 , Criança , Humanos , Lipoproteínas LDL/metabolismo , Lipoproteínas LDL/farmacologia , Podócitos/metabolismo , Podócitos/patologia , Receptores Purinérgicos P2X7/metabolismo
15.
Ecotoxicol Environ Saf ; 238: 113582, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35512476

RESUMO

Cypermethrin (CYP), a widely-used composite pyrethroid pesticide, has underlying nephrotoxic effects. To elucidate potential roles of the MAPK pathway, the Jag/Notch pathway, and miRNAs in CYP-mediated kidney lesion, Sprague-Dawley rats and glomerular mesangial cells were used in this work. Results displayed that ß-CYP abnormally altered renal histomorphology and ultrastructures, induced renal DNA damage, and impaired renal functions, as evidenced by the increase in plasma levels of Cys-C and ß2-Mg. ß-CYP activated the JNK/c-Jun pathway by inducing ROS and oxidative stress. Meanwhile, ß-CYP changed the miRNA expression profile, miR-21-5p showing the most significant increase. Moreover, the Jag1/Notch2/Hes1 pathway was directly targeted by miR-21-5p, the mRNA and protein expression of Jag1, Notch2, and Hes1 being declined in vivo and in vitro. The chemokine CXCL16 was induced by ß-CYP, accompanied by the inflammatory factor production and inflammatory cell infiltration in kidneys. The specific JNK inhibitor, Jag1 overexpression, Hes1 overexpression, bidirectional Co-IP, ChIP, and CXCL16 silencing demonstrated that CXCL16 co-regulated by the JNK/c-Jun and Jag1/Notch2/Hes1 pathways elicited renal inflammation. Collectively, our findings indicate that ß-CYP is of nephrotoxicity and it not only directly changes renal histomorphology and ultrastructures, but induces CXCL16 to trigger renal inflammation via the JNK/c-Jun and Jag1/Notch2/Hes1 pathways, finally synergistically contributing to kidney damage.


Assuntos
Quimiocina CXCL16 , Proteína Jagged-1 , Rim , MAP Quinase Quinase 4 , MicroRNAs , Piretrinas , Animais , Quimiocina CXCL16/genética , Quimiocina CXCL16/metabolismo , Inflamação/genética , Inflamação/metabolismo , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , MAP Quinase Quinase 4/metabolismo , MicroRNAs/metabolismo , Piretrinas/toxicidade , Ratos , Ratos Sprague-Dawley , Receptor Notch2/genética , Receptor Notch2/metabolismo
16.
Int J Mol Sci ; 23(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36232370

RESUMO

Platelets express the transmembrane chemokine SR-PSOX/CXCL16, proteolytic cleavage of which generates the sCXCL16 soluble-(s) chemokine. The sCXCL16 engages CXCR6 on platelets to synergistically propagate degranulation, aggregation and thrombotic response. Currently, we have investigated the pro-thrombotic and prognostic association of platelet CXCL16−CXCR6 axis in CAD-(n = 240; CCS n = 62; ACS n = 178) patients. Platelet surface-associated-CXCL16 and CXCR6 surface expression ascertained by flow cytometry correlated significantly with platelet activation markers (CD62P denoting degranulation and PAC-1 binding denoting α2bß3-integrin activation). Higher platelet CXCL16 surface association (1st quartile vs. 2nd−4th quartiles) corresponded to significantly elevated collagen-induced platelet aggregation assessed by whole blood impedance aggregometry. Platelet-CXCL16 and CXCR6 expression did not alter with dyslipidemia, triglyceride, total cholesterol, or LDL levels, but higher (>median) plasma HDL levels corresponded with decreased platelet-CXCL16 and CXCR6. Although platelet-CXCL16 and CXCR6 expression did not change significantly with or correlate with troponin I levels, they corresponded with higher Creatine Kinase-(CK) activity and progressively deteriorating left ventricular ejection fraction (LVEF) at admission. Elevated-(4th quartile) platelet-CXCL16 (p = 0.023) and CXCR6 (p = 0.030) measured at admission were significantly associated with a worse prognosis. However, after Cox-PH regression analysis, only platelet-CXCL16 was ascertained as an independent predictor for all-cause of mortality. Therefore, the platelet CXCL16−CXCR6 axis may influence thrombotic propensity and prognosis in CAD patients.


Assuntos
Plaquetas , Quimiocinas CXC , Doença da Artéria Coronariana , Plaquetas/metabolismo , Quimiocina CXCL16 , Quimiocinas CXC/metabolismo , Colesterol , Creatina Quinase , Humanos , Integrinas , Receptores CXCR6/metabolismo , Receptores Depuradores , Receptores Virais , Volume Sistólico , Triglicerídeos , Troponina I , Função Ventricular Esquerda
17.
Int J Mol Sci ; 23(9)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35562947

RESUMO

G protein-coupled receptor 55 (GPR55) probably plays a role in innate immunity and tumor immunosurveillance through its effect on immune cells, such as T cells and NK cells. In this study, the prognostic value of GPR55 in colon cancer (CC) was investigated. mRNA expression levels of GPR55 were determined in 382 regional lymph nodes of 121 CC patients with 12 years observation time after curative surgery. The same clinical material had previously been analyzed for expression levels of CEA, CXCL16, CXCL17, GPR35 V2/3 and LGR5 mRNAs. Clinical cutoffs of 0.1365 copies/18S rRNA unit for GPR55 and 0.1481 for the GPR55/CEA ratio were applied to differentiate between the high- and low-GPR55 expression groups. Kaplan-Meier survival analysis and Cox regression risk analysis were used to determine prognostic value. Improved discrimination between the two groups was achieved by combining GPR55 with CEA, CXCL16 or CXCL17 compared with GPR55 alone. The best result was obtained using the GPR55/CEA ratio, with an increased mean survival time of 14 and 33 months at 5 and 12 years observation time, respectively (p = 0.0003 and p = 0.003) for the high-GPR55/CEA group. The explanation for the observed improvement is most likely that GPR55 is a marker for T cells and B cells in lymph nodes, whereas CEA, CXCL16 and CXCL17, are markers for tumor cells of epithelial origin.


Assuntos
Antígeno Carcinoembrionário , Neoplasias do Colo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Antígeno Carcinoembrionário/genética , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Humanos , Prognóstico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Canabinoides
18.
Expert Rev Mol Med ; 23: e4, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33880989

RESUMO

Today, cancer is one of the leading causes of death worldwide. Lately, cytokine and chemokine imbalances have gained attention amongst different involved pathways in cancer development and attracted much consideration in cancer research. CXCL16, as a member of the CXC subgroup of chemokines, has been attributed to be responsible for immune cell infiltration into the tumour microenvironment. The aberrant expression of CXCL16 has been observed in various cancers. This chemokine has been shown to play a conflicting role in tumour development through inducing pro-inflammatory conditions. The infiltration of various immune and non-immune cells such as lymphocytes, cancer-associated fibroblasts and myeloid-derived suppressor cells by CXCL16 into the tumour microenvironment has complicated the tumour fate. Given this diverse role of CXCL16 in cancer, a better understanding of its function might build-up our knowledge about tumour biology. Hence, this study aimed to review the impact of CXCL16 in cancer and explored its therapeutic application. Consideration of these findings might provide opportunities to achieve novel approaches in cancer treatment and its prognosis.


Assuntos
Quimiocinas CXC , Neoplasias , Animais , Quimiocina CXCL16 , Quimiocinas CXC/genética , Humanos , Neoplasias/genética , Receptores CXCR6 , Receptores de Quimiocinas , Receptores Depuradores , Receptores Virais , Microambiente Tumoral
19.
Eur J Clin Invest ; 51(3): e13414, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32974919

RESUMO

BACKGROUND: Podocytes apoptosis is a hallmark of membranous nephropathy (MN). Circ_0000524 has been reported to be associated with patients with MN, whereas the effect of circ_0000524 on podocytes apoptosis and the underlying mechanisms in MN have not been elaborated. METHODS: Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were performed to detect the expressions of circ_0000524, microRNA-500a-5p (miR-500a-5p), and C-X-C chemokine ligand 16 (CXCL16) in MN tissues and podocytes. Podocyte injury was induced by angiotensin II (AngII). Cell apoptosis was detected by flow cytometry. Caspase-3 or caspase-9 activity was evaluated using a caspase-3 or caspase-9 activity assay kit, respectively. Dual-luciferase reporter assay, RNA immunoprecipitation (RIP) and pull-down assay were used to address the relationship among circ_0000524,miR-500a-5p and CXCL16. RESULTS: Upregulation of circ_0000524 and CXCL16 and low expression of miR-500a-5p were observed in MN tissues. AngII treatment induced the overexpression of circ_0000524 and CXCL16, a decrease of miR-500a-5p, and induced cell apoptosis in podocytes. Circ_0000524 negatively modulated the expression of miR-500a-5p. Circ_0000524 depletion inhibited podocyte apoptosis, which was rescued by loss of miR-500a-5p. miR-500a-5p contained the binding sites with CXCL16. Circ_0000524 knockdown hampered CXCL16 expression by upregulating miR-500a-5p expression. Additionally, miR-500a-5p upregulation suppressed AngII-induced podocyte apoptosis, which was rescued by enhanced expression of CXCL16. CONCLUSION: Circ_0000524/miR-500a-5p/CXCL16 pathway regulated podocyte apoptosis in MN.


Assuntos
Apoptose/genética , Quimiocina CXCL16/genética , Glomerulonefrite Membranosa/genética , MicroRNAs/genética , Podócitos/metabolismo , RNA Circular/genética , Adulto , Idoso , Linhagem Celular , Quimiocina CXCL16/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Glomerulonefrite Membranosa/metabolismo , Glomerulonefrite Membranosa/patologia , Humanos , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Podócitos/patologia , RNA Circular/metabolismo
20.
Respir Res ; 22(1): 42, 2021 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-33549109

RESUMO

Alveolar epithelial cells play an essential role in the initiation and progression of pulmonary fibrosis, and the occurrence of epithelial-mesenchymal transition (EMT) may be the early events of pulmonary fibrosis. Recent studies have shown chemokines are involved in the complex process of EMT, and CXC chemokine ligand 16 (CXCL16) is also associated with many fibrosis-related diseases. However, whether CXCL16 is dysregulated in alveolar epithelial cells and the role of CXCL16 in modulating EMT in pulmonary fibrosis has not been reported. In this study, we found that CXCL16 and its receptor C-X-C motif chemokine receptor 6 (CXCR6) were upregulated in bleomycin induced EMT in human alveolar type II-like epithelial A549 cells. Synergistic effect of CXCL16 and bleomycin in promoting EMT occurrence, extracellular matrix (ECM) excretion, as well as the pro-inflammatory and pro-fibrotic cytokines productions in A549 cells were observed, and those biological functions were impaired by CXCL16 siRNA. We further confirmed that CXCL16 regulated EMT in A549 cells via the TGF-ß1/Smad3 pathways. These results indicated that CXCL16 could promote pulmonary fibrosis by promoting the process of EMT via the TGF-ß1/Smad3 signaling pathway.


Assuntos
Bleomicina/toxicidade , Quimiocina CXCL16/biossíntese , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/fisiologia , Células A549 , Antibióticos Antineoplásicos/toxicidade , Relação Dose-Resposta a Droga , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA