Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 437
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Biol Chem ; 299(6): 104768, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37142228

RESUMO

Cholesterol is the precursor of bioactive plant metabolites such as steroidal saponins. An Australian plant, Dioscorea transversa, produces only two steroidal saponins: 1ß-hydroxyprotoneogracillin and protoneogracillin. Here, we used D. transversa as a model in which to elucidate the biosynthetic pathway to cholesterol, a precursor to these compounds. Preliminary transcriptomes of D. transversa rhizome and leaves were constructed, annotated, and analyzed. We identified a novel sterol side-chain reductase as a key initiator of cholesterol biosynthesis in this plant. By complementation in yeast, we determine that this sterol side-chain reductase reduces Δ24,28 double bonds required for phytosterol biogenesis as well as Δ24,25 double bonds. The latter function is believed to initiate cholesterogenesis by reducing cycloartenol to cycloartanol. Through heterologous expression, purification, and enzymatic reconstitution, we also demonstrate that the D. transversa sterol demethylase (CYP51) effectively demethylates obtusifoliol, an intermediate of phytosterol biosynthesis and 4-desmethyl-24,25-dihydrolanosterol, a postulated downstream intermediate of cholesterol biosynthesis. In summary, we investigated specific steps of the cholesterol biosynthetic pathway, providing further insight into the downstream production of bioactive steroidal saponin metabolites.


Assuntos
Colesterol , Dioscorea , Fitosteróis , Austrália , Colesterol/biossíntese , Família 51 do Citocromo P450/genética , Família 51 do Citocromo P450/isolamento & purificação , Família 51 do Citocromo P450/metabolismo , Dioscorea/classificação , Dioscorea/enzimologia , Dioscorea/genética , Oxirredutases/metabolismo , Fitosteróis/biossíntese , Fitosteróis/química , Fitosteróis/genética , Saccharomyces cerevisiae/genética , Saponinas/biossíntese , Saponinas/genética , Transcriptoma
2.
J Biol Chem ; 299(7): 104841, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37209823

RESUMO

Cytochrome P450 (P450, CYP) family 51 enzymes catalyze the 14α-demethylation of sterols, leading to critical products used for membranes and the production of steroids, as well as signaling molecules. In mammals, P450 51 catalyzes the 3-step, 6-electron oxidation of lanosterol to form (4ß,5α)-4,4-dimethyl-cholestra-8,14,24-trien-3-ol (FF-MAS). P450 51A1 can also use 24,25-dihydrolanosterol (a natural substrate in the Kandutsch-Russell cholesterol pathway). 24,25-Dihydrolanosterol and the corresponding P450 51A1 reaction intermediates, the 14α-alcohol and -aldehyde derivatives of dihydrolanosterol, were synthesized to study the kinetic processivity of the overall 14α-demethylation reaction of human P450 51A1. A combination of steady-state kinetic parameters, steady-state binding constants, dissociation rates of P450-sterol complexes, and kinetic modeling of the time course of oxidation of a P450-dihydrolanosterol complex showed that the overall reaction is highly processive, with koff rates of P450 51A1-dihydrolanosterol and the 14α-alcohol and 14α-aldehyde complexes being 1 to 2 orders of magnitude less than the forward rates of competing oxidations. epi-Dihydrolanosterol (the 3α-hydroxy analog) was as efficient as the common 3ß-hydroxy isomer in the binding and formation of dihydro FF-MAS. The common lanosterol contaminant dihydroagnosterol was found to be a substrate of human P450 51A1, with roughly one-half the activity of dihydrolanosterol. Steady-state experiments with 14α-methyl deuterated dihydrolanosterol showed no kinetic isotope effect, indicating that C-14α C-H bond breaking is not rate-limiting in any of the individual steps. The high processivity of this reaction generates higher efficiency and also renders the reaction less sensitive to inhibitors.


Assuntos
Sistema Enzimático do Citocromo P-450 , Desmetilação , Lanosterol , Humanos , Catálise , Sistema Enzimático do Citocromo P-450/metabolismo , Cinética , Lanosterol/química , Lanosterol/metabolismo , Oxirredução
3.
Appl Environ Microbiol ; 90(4): e0001724, 2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38534143

RESUMO

The emergence of azole-resistant Aspergillus fumigatus (ARAf) across the world is an important public health concern. We sought to determine if propiconazole, a demethylase inhibitor (DMI) fungicide, exerted a selective pressure for ARAf in a tomato production environment following multiple exposures to the fungicide. A tomato field trial was established in 2019 and propiconazole was applied weekly until harvest. Soil, leaf, and fruit (when present) samples were collected at baseline and after each propiconazole application. A. fumigatus isolates (n, 178) were recovered and 173 were tested for susceptibility to itraconazole, posaconazole, voriconazole, and propiconazole in accordance with CLSI M38 guidelines. All the isolates were susceptible to medical triazoles and the propiconazole MIC ranged from 0.25 to 8 mg/L. A linear regression model was fitted that showed no longitudinal increment in the log2-fold azole MIC of the isolates collected after each propiconazole exposure compared to the baseline isolates. AsperGenius real-time multiplex assay ruled out TR34/L98H and TR46/Y121F/T289A cyp51A resistance markers in these isolates. Sequencing of a subset of isolates (n, 46) demonstrated widespread presence of F46Y/M172V/E427K and F46Y/M172V/N248T/D255E/E427K cyp51A mutations previously associated with reduced susceptibility to triazoles. IMPORTANCE: The agricultural use of azole fungicides to control plant diseases has been implicated as a major contributor to ARAf infections in humans. Our study did not reveal imposition of selection pressure for ARAf in a vegetable production system. However, more surveillance studies for ARAf in food crop production and other environments are warranted in understanding this public and One Health issue.


Assuntos
Fungicidas Industriais , Solanum lycopersicum , Humanos , Aspergillus fumigatus/genética , Azóis/farmacologia , Antifúngicos/farmacologia , Proteínas Fúngicas/genética , Farmacorresistência Fúngica/genética , Triazóis/farmacologia , Fungicidas Industriais/farmacologia , Verduras , Testes de Sensibilidade Microbiana
4.
Bioorg Med Chem ; 97: 117543, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38071944

RESUMO

In order to develop antifungal drugs, a series of novel azole analogues were designed and synthesized based on our previous work. Most of the target compounds had broad-spectrum antifungal activity, which showed excellent to moderate inhibitory activity against the tested strains, except A. fum 0504656. Among these, compounds B3, B7, B8, B11, B12 and E9 showed excellent activity against C. alb Y0109 and C. alb SC5314 (with the MIC80: 0.0156 ug/mL). In addition, compound B3 showed the best inhibitory activity against fluconazole-resistant strains C. alb 901 and C. alb 904, and had low toxicity against NIH/3T3 cells at the effective MIC range against fungi. Structure-activity relationship and docking studies of the derivatives suggest that the presence of the 2-fluoro-4-hydroxyphenyl and 1,2,3-triazole group enhance the antifungal activity of the compounds, which may be related to the interaction of the key groups with the amino acids surrounding the target enzyme.


Assuntos
Antifúngicos , Azóis , Animais , Camundongos , Antifúngicos/química , Azóis/farmacologia , Candida albicans , Testes de Sensibilidade Microbiana , Fluconazol/farmacologia , Relação Estrutura-Atividade
5.
Bioorg Med Chem ; 113: 117907, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39288704

RESUMO

CYP5122A1, an enzyme involved in sterol biosynthesis in Leishmania, was recently characterized as a sterol C4-methyl oxidase. Screening of a library of compounds against CYP5122A1 and CYP51 from Leishmania resulted in the identification of two structurally related classes of inhibitors of these enzymes. Analogs of screening hit N-(3,5-dimethylphenyl)-4-(pyridin-4-ylmethyl)piperazine-1-carboxamide (4a) were generally strong inhibitors of CYP51 but were less potent against CYP5122A1 and typically displayed weak inhibition of L. donovani promastigote growth. Analogs of screening hit N-(4-(benzyloxy)phenyl)-4-(2-(pyridin-4-yl)ethyl)piperazine-1-carboxamide (18a) were stronger inhibitors of both CYP5122A1 and L. donovani promastigote proliferation but also remained selective for inhibition of CYP51. Two compounds in this series, N-(4-((3,5-bis(trifluoromethyl)benzyl)oxy)phenyl)-4-(2-(pyridin-4-yl)ethyl)piperazine-1-carboxamide (18e) and N-(4-((3,5-di-tert-butylbenzyl)oxy)phenyl)-4-(2-(pyridin-4-yl)ethyl)piperazine-1-carboxamide (18i) showed modest selectivity for inhibiting L. donovani promastigote proliferation compared to J774 macrophages and were effective against intracellular L. donovani with EC50 values in the low micromolar range. Replacement of the 4-pyridyl ring present in 18e with imidazole resulted in a compound (4-(2-(1H-imidazol-1-yl)ethyl)-N-(4-((3,5-bis(trifluoromethyl)benzyl)oxy)phenyl)piperazine-1-carboxamide, 18p) with approximately fourfold selectivity for CYP5122A1 over CYP51 that inhibited both enzymes with IC50 values ≤ 1 µM, although selective potency against L. donovani promastigotes was lost. Compound 18p also inhibited the proliferation of L. major promastigotes and caused the accumulation of 4-methylated sterols in L. major membranes, indicating that this compound blocks sterol demethylation at the 4-position in Leishmania parasites. The molecules described here may therefore be useful for the future identification of dual inhibitors of CYP51 and CYP5122A1 as potential antileishmanial drug candidates and as probes to shed further light on sterol biosynthesis in Leishmania and related parasites.

6.
Bioorg Chem ; 153: 107785, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39255609

RESUMO

Invasive fungal infections have high morbidity and mortality rates and have become one of the most serious threats to human health. In the present study, a series of triazole antifungal derivatives with phenylthiophene backbone were obtained by structural modification of the lead compound using Iodiconazole as the lead compound. Among them, compound 19g is a triazole antifungal compound with 4-chloro-2-fluoro phenylthiophene backbone, which showed optimal antifungal activity against Candida albicans, Cryptococcus neoformans, and Aspergillus, with a MIC80 value of 0.0625 µg/mL. In addition, compounds 19e, 19f, 19g, 19h, 19i and 19k exhibited different levels of inhibitory activity against fluconazole-resistant strains with MIC80 values ranging from 0.0625 µg/mL to 32 µg/mL. Since compound 19g had optimal in vitro antifungal activity, we selected 19g for human liver microsomal stability and CYP enzyme inhibition assays as well as further evaluated the inhibitory activity of compound 19g on normal and cancerous cells in humans. Finally, we verified the inhibitory effect of compound 19g on the filamentation of Candida albicans and determined the mechanism of action by sterol composition analysis.

7.
Phytopathology ; : PHYTO01240034R, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39007764

RESUMO

Cercospora leaf spot, caused by the fungus Cercospora beticola, is the most destructive foliar disease of sugarbeet worldwide. Resistance to the sterol demethylation inhibitor (DMI) fungicide tetraconazole has been previously correlated with synonymous and nonsynonymous mutations in CbCyp51. Here, we extend these analyses to the DMI fungicides prothioconazole, difenoconazole, and mefentrifluconazole in addition to tetraconazole to confirm whether the synonymous and nonsynonymous mutations at amino acid positions 144 and 170 are associated with resistance to these fungicides. Nearly half of the 593 isolates of C. beticola collected in the Red River Valley of North Dakota and Minnesota in 2021 were resistant to all four DMIs. Another 20% were resistant to tetraconazole and prothioconazole but sensitive to difenoconazole and mefentrifluconazole. A total of 13% of isolates were sensitive to all DMIs tested. We found five CbCyp51 haplotypes and associated them with phenotypes to the four DMIs. The most predominant haplotype (E170_A/L144F_C) correlated with resistance to all four DMIs with up to 97.6% accuracy. The second most common haplotype (E170_A/L144) consisted of isolates associated with resistance phenotypes to tetraconazole and prothioconazole while also exhibiting sensitive phenotypes to difenoconazole and mefentrifluconazole with up to 98.4% accuracy. Quantitative PCR did not identify differences in CbCyp51 expression between haplotypes. This study offers an understanding of the importance of codon usage in fungicide resistance and provides crop management acuity for fungicide application decision-making.

8.
Mycoses ; 67(7): e13766, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39007526

RESUMO

BACKGROUND: The resistance of Aspergillus flavus to the azole antifungal drugs is an emerging problem. Mutations in the molecular targets of the azole antifungals - CYP 51 A, B and C - are possible mechanisms of resistance, but data to confirm this hypothesis are scarce. In addition, the behaviour of resistant strains in vitro and in vivo is not yet understood. OBJECTIVES: This study had 3 objectives. The first was to compare the sequences of CYP51 A, B and C in resistant and susceptible strains of A. flavus. The second was to look for the existence of a fitness cost associated with resistance. The third was to evaluate the activity of voriconazole and posaconazole on resistant strains in the Galleria mellonella model. METHODS: The CYP51 A, B and C sequences of seven resistant strains with those of four susceptible strains are compared. Fitness costs were assessed by growing the strains in RPMI medium and testing their virulence in G. mellonella larvae. In addition, G. mellonella larvae infected with strains of A. flavus were treated with voriconazole and posaconazole. RESULTS: In the CYP51A sequences, we found the A91T, C708T and A1296T nucleotide substitutions only in the resistant strains. The resistant strains showed a fitness cost with reduced in vitro growth and reduced virulence in G. mellonella. In vivo resistance to posaconazole is confirmed in a strain with the highest MIC for this antifungal agent. CONCLUSIONS: These results allow to conclude that some substitutions in CYP51 genes, in particular CYP51A, contribute to resistance to azole drugs in A. flavus. The study of the relationship between drug dosage and treatment duration with resistance and the reduction of fitness costs in resistant strains is a major perspective of this study. This work could help to establish recommendations for the treatment of infections with resistant strains of A. flavus.


Assuntos
Antifúngicos , Aspergillus flavus , Azóis , Sistema Enzimático do Citocromo P-450 , Farmacorresistência Fúngica , Larva , Testes de Sensibilidade Microbiana , Voriconazol , Aspergillus flavus/efeitos dos fármacos , Aspergillus flavus/genética , Antifúngicos/farmacologia , Farmacorresistência Fúngica/genética , Animais , Voriconazol/farmacologia , Azóis/farmacologia , Sistema Enzimático do Citocromo P-450/genética , Larva/microbiologia , Triazóis/farmacologia , Proteínas Fúngicas/genética , Mariposas/microbiologia , Aspergilose/microbiologia , Aspergilose/tratamento farmacológico , Virulência , Aptidão Genética , Modelos Animais de Doenças
9.
Mycoses ; 67(9): e13791, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39239666

RESUMO

BACKGROUND: Cystic fibrosis (CF), an inherited autosomal recessive disorder, is linked with high morbidity and mortality rates due to bacteria, filamentous, yeast and black yeast-like fungi colonisation in the upper respiratory tract. Although Candida species are the most common fungi isolated from CF patients, azole-resistant Aspergillus fumigatus (ARAf) is a big concern for invasive aspergillosis. Notably, the exact prevalences of Aspergillus species and the prevalence of ARAf isolates among Iranian CF patients have yet to be previously reported and are unknown. We aimed to investigate the prevalence of ARAf isolates in CF patients among Iranian populations by focusing on molecular mechanisms of the mutations in the target gene. METHODS: The 1 year prospective study recovered 120 sputum samples from 103 CF patients. Of these, 55.1% (86/156) yielded Aspergillus species, screened for ARAf using plates containing itraconazole (4 mg/L) and voriconazole (1 mg/L). According to the CLSI-M38 guidelines, antifungal susceptibility testing was performed using the broth microdilution method. In all phenotypically resistant isolates, the target of azole agents, the cyp51A gene, was sequenced to detect any possible single nucleotide polymorphisms (SNP) mediating resistance. RESULTS: Of 120 samples, 101 (84.2%) were positive for filamentous fungi and yeast-like relatives, with 156 fungal isolates. The most common colonising fungi were Aspergillus species (55.1%, 86/156), followed by Candida species (39.8%, 62/156), Exophiala species (3.8%, 6/156) and Scedosporium species (1.3%, 2/156). Forty out of 86 (46.5%) were identified for section Fumigati, 36 (41.9%) for section Flavi, 6 (7%) for section Nigri and 4 (4.6%) for section Terrei. Fourteen out of 40 A. fumigatus isolates were phenotypically resistant. The overall proportion of ARAf in total fungal isolates was 9% (14/156). cyp51A gene analysis in resistant isolates revealed that 13 isolates harboured G448S, G432C, T289F, D255E, M220I, M172V, G138C, G54E and F46Y mutations and one isolate carried G448S, G432C, T289F, D255E, M220I, G138C, G54E and F46Y mutations. Additionally, this study detects two novel cyp51A single-nucleotide polymorphisms (I242V and D490E). CONCLUSIONS: This study first investigated ARAf isolates in Iranian CF patients. Due to a resistance rate of up to 9%, it is recommended that susceptibility testing of Aspergillus isolates from CF patients receiving antifungal treatment be a part of the routine diagnostic workup. However, extensive multicentre studies with a high volume of CF patients are highly warranted to determine the impact of ARAf on CF patients.


Assuntos
Antifúngicos , Aspergillus fumigatus , Azóis , Fibrose Cística , Sistema Enzimático do Citocromo P-450 , Farmacorresistência Fúngica , Proteínas Fúngicas , Testes de Sensibilidade Microbiana , Humanos , Fibrose Cística/microbiologia , Fibrose Cística/complicações , Irã (Geográfico)/epidemiologia , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/genética , Aspergillus fumigatus/isolamento & purificação , Farmacorresistência Fúngica/genética , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Estudos Prospectivos , Prevalência , Sistema Enzimático do Citocromo P-450/genética , Azóis/farmacologia , Azóis/uso terapêutico , Proteínas Fúngicas/genética , Masculino , Feminino , Aspergilose/microbiologia , Aspergilose/epidemiologia , Aspergilose/tratamento farmacológico , Adulto , Criança , Adolescente , Polimorfismo de Nucleotídeo Único , Adulto Jovem , Escarro/microbiologia , Itraconazol/farmacologia , Voriconazol/farmacologia , Voriconazol/uso terapêutico , Pré-Escolar , Mutação
10.
Mycoses ; 67(5): e13732, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38712846

RESUMO

BACKGROUND: Triazole-resistant Aspergillus fumigatus (TRAF) isolates are a growing public health problem with worldwide distribution. Epidemiological data on TRAF is limited in Africa, particularly in West Africa. OBJECTIVES: This study aimed to screen for the environmental presence of TRAF isolates in the indoor air of two hospitals in Burkina Faso. MATERIALS AND METHODS: Air samples were collected in wards housing patients at risk for invasive aspergillosis, namely infectious diseases ward, internal medicine ward, nephrology ward, pulmonology ward, medical emergency ward and paediatric ward. Sabouraud Dextrose Agar supplemented with triazoles was used to screen the suspected TRAF isolates and EUCAST method to confirm the resistance of suspected isolates. Sequencing of cyp51A gene was used to identify the resistance mechanism of confirmed TRAF isolates. RESULTS: Of the 198 samples collected and analysed, 67 showed growth of A. fumigatus isolates. The prevalence of TRAF isolates was 3.23% (4/124). One TRAF isolate exhibited a pan-triazole resistance. Sequencing of cyp51A gene identified the TR34/L98H mutation for this pan-triazole resistant isolate. This study showed for the first time the circulation of the pan-azole resistant isolate harbouring the TR34/L98H mutation in Burkina Faso. CONCLUSIONS: These findings emphasise the need to map these TRAF isolates in all parts of Burkina Faso and to establish local and national continuous surveillance of environmental and clinical TRAF isolates in this country.


Assuntos
Antifúngicos , Aspergillus fumigatus , Sistema Enzimático do Citocromo P-450 , Farmacorresistência Fúngica , Proteínas Fúngicas , Mutação , Triazóis , Aspergillus fumigatus/genética , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/isolamento & purificação , Farmacorresistência Fúngica/genética , Triazóis/farmacologia , Humanos , Burkina Faso/epidemiologia , Proteínas Fúngicas/genética , Antifúngicos/farmacologia , Sistema Enzimático do Citocromo P-450/genética , Testes de Sensibilidade Microbiana , Aspergilose/microbiologia , Aspergilose/epidemiologia , Microbiologia do Ar
11.
Artigo em Inglês | MEDLINE | ID: mdl-39260617

RESUMO

Low-temperature stress poses a significant risk to the survival of both cultivated and wild fish populations. Existing studies have found that the pre-acclimation of fishes to moderate cold stress can stimulate the activation of acclimation pathways, thereby enhancing their tolerance to cold stress. The fitness of fish relies heavily on appropriately controlled transcriptional reactions to environmental changes. Despite previous characterization of gene expression profiles in various fish species during cold acclimation, the specific genes responsible for essential functions in this process remain largely unknown, particularly the down-regulated genes induced by cold acclimation. To investigate the genes involved in cold acclimation, this study employed real-time quantitative PCR (RT-qPCR), molecular cloning, microinjection techniques, and cold stress experiments to determine the genes that play an essential part in cold acclimation. Consequently, 18 genes were discovered to be down-regulated in larval zebrafish experiencing cold stress. All 18 genes successfully detected overexpression in zebrafish at 96 and 126 hpf (fold change ≥3), which declined with the growth of zebrafish. Following microinjection, it was observed that her8a, cyp51, lss, txnipb, and bhlha9 had an adverse impact on the survival rate of zebrafish larvae under cold stress. These genes have been identified to play significant roles in various biological processes. For instance, bhlha9 has been found to be involved in both limb development and temperature sensing and her8a has been implicated in neural development. Additionally, cyp51 and lss have been identified as participants in the cholesterol synthesis pathway. Txnipb has been reported to induce cell apoptosis, thereby potentially influencing the survival rate of zebrafish larvae under cold stress. These findings offered crucial data for the analysis of molecular processes related to cold tolerance and the development of cold-resistant fish breeding.


Assuntos
Resposta ao Choque Frio , Regulação para Baixo , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/fisiologia , Resposta ao Choque Frio/genética , Clonagem Molecular , Temperatura Baixa , Aclimatação/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Larva/genética , Larva/fisiologia , Estresse Fisiológico/genética
12.
Pestic Biochem Physiol ; 200: 105828, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582592

RESUMO

Soybean root rot is a worldwide soil-borne disease threatening soybean production, causing large losses in soybean yield and quality. Fusarium species are the most detrimental pathogens of soybean root rot worldwide, causing large production losses. Fusarium root rot has been frequently reported in Heilongjiang Province of China, but the predominant Fusarium species and the sensitivity of these pathogens to different fungicides remain unclear. In this study, diseased soybean roots were collected from 14 regions of Heilongjiang province in 2021 and 2022. A total of 144 isolates of Fusarium spp. were isolated and identified as seven distinct species: F. scirpi, F. oxysporum, F. graminearum, F. clavum, F. acuminatum, F. avenaceum, and F. sporotrichioide. F. scirpi and F. oxysporum had high separation frequency and strong pathogenicity. The sensitivity of Fusarium spp. to five different fungicides was determined. Mefentrifluconazole and fludioxonil showed good inhibitory effects, and the sensitivity to pydiflumetofen and phenamacril varied between Fusarium species. In particular, the activity of DMI fungicide prothioconazole was lower than that of mefentrifluconazole. Molecular docking showed that mefentrifluconazole mainly bound to CYP51C, but prothioconazole mainly bound to CYP51B. Furthermore, the sensitivity to prothioconazole only significantly decreased in ΔFgCYP51B mutant, and the sensitivity to mefentrifluconazole changed in ΔFgCYP51C and ΔFgCYP51A mutants. The results demonstrated that the predominant Fusarium species causing soybean root rot in Heilongjiang province were F. scirpi and F. oxysporum and DMI fungicides had differences in binding cavity due to the diversity of CYP51 proteins in Fusarium.


Assuntos
Fungicidas Industriais , Fusarium , Fungicidas Industriais/farmacologia , Fusarium/genética , Glycine max , Simulação de Acoplamento Molecular , China
13.
Chem Biodivers ; 21(5): e202400316, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38422224

RESUMO

New 1H-1,2,4-triazolyl derivatives were synthesized, and six of them were selected based on docking prediction for the investigation of their antimicrobial activity against five bacterial and eight fungal strains. All compounds demonstrated antibacterial activity with MIC lower than that of the ampicillin and chloramphenicol. In general, the most sensitive bacteria appeared to be P. fluorescens, while the plant pathogen X. campestris was the most resistant. The antifungal activity of the compounds was much better than the antibacterial activity. All compounds were more potent (6 to 45 times) than reference drugs ketoconazole and bifonazole with the best activity achieved by compound 4 a. A. versicolor, A. ochraceus, A.niger, and T.viride showed the highest sensitivity to compound 4 b, while, T. viride, P. funiculosum, and P.ochrochloron showed good sensitivity to compound 4 a. Molecular docking studies suggest that the probable mechanism of antibacterial activity involves the inhibition of the MurB enzyme of E. coli, while CYP51 of C. albicans appears to be involved in the mechanism of antifungal activity. It is worth mentioning that none of the tested compounds violated Lipinski's rule of five.


Assuntos
Antibacterianos , Antifúngicos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Triazóis , Triazóis/química , Triazóis/farmacologia , Triazóis/síntese química , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/síntese química , Relação Estrutura-Atividade , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Fungos/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Estrutura Molecular , Relação Dose-Resposta a Droga , Escherichia coli/efeitos dos fármacos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/síntese química
14.
Plant Dis ; : PDIS04230743RE, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37682225

RESUMO

Botrytis cinerea is a broad-host-range necrotrophic phytopathogen responsible for serious diseases in leading crops worldwide. The novel sterol 14α-demethylase inhibitor (DMI) pyrisoxazole was recently registered for the control of tomato gray mold caused by B. cinerea in China. One hundred fifty-seven isolates of B. cinerea were collected from tomato greenhouses in 14 cities of Liaoning Province from 2016 to 2021 and examined for sensitivity to pyrisoxazole, with a mean EC50 value of 0.151 µg/ml. Three highly resistant isolates, XD-5, DG-4, and GQ-3, were screened, and the EC50 values were 0.734, 0.606, and 0.639 µg/ml with corresponding resistance factors of 12.88, 10.63, and 11.21, respectively. Compared with field-sensitive strains, the highly resistant isolate XD-5 exhibited fitness defects in traits, including mycelial growth, conidial production, and pathogenicity, but DG-4 and GQ-3 did not experience fitness costs. Positive cross-resistance was observed only between pyrisoxazole and the DMIs tebuconazole and prochloraz but not between pyrisoxazole and the non-DMIs iprodione, procymidone, pyrimethanil, fludioxonil, fluazinam, and fluopyram. Sequence alignment of the CYP51 gene indicated that three point mutations were observed in the highly resistant mutant, namely, V24I in XD-5, G461S in GQ-3, and R464K in DG-4. When exposed to pyrisoxazole, the induced expression levels of the ABC transporter AtrD and MFS transporter Mfs1 increased in the resistant isolates compared with those in the sensitive isolates, whereas the expression level of the CYP51 gene did not change significantly. Molecular docking suggested that the G461S and R464K mutations both led to a decrease in the binding energy between CYP51 and pyrisoxazole, whereas no change was found with the V24I mutation. Thus, two point mutations in the CYP51 protein combined with induced expression of the Mfs1 and AtrD genes appeared to mediate the pyrisoxazole resistance of the highly resistant mutants DG-4 and GQ-3, while the overexpression of the Mfs1 and AtrD genes was responsible for the highly resistant mutant XD-5.

15.
Plant Dis ; 108(2): 375-381, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37578371

RESUMO

Sterol demethylation inhibitor (DMI) fungicides continue to be essential components for the control of brown rot of peach caused by Monilinia fructicola in the United States and worldwide. In the southeastern United States, resistance to DMIs had been associated with overexpression of the cytochrome P450 14α-demethylase gene MfCYP51 as well as the genetic element Mona, a 65 bp in length nucleotide sequence located upstream of MfCYP51 in resistant isolates. About 20 years after the first survey, we reevaluated sensitivity of M. fructicola from South Carolina and Georgia to propiconazole and also evaluated isolates from Alabama for the first time. A total of 238 M. fructicola isolates were collected from various commercial and two experimental orchards, and sensitivity to propiconazole was determined based on a discriminatory dose of 0.3 µg/ml. Results indicated 16.2, 89.2, and 72.4% of isolates from Alabama, Georgia, and South Carolina, respectively, were resistant to propiconazole. The detection of resistance in Alabama is the first report for the state. All resistant isolates contained Mona, but it was absent from most sensitive isolates. It was unclear if the resistance frequency had increased in South Carolina and Georgia. However, the resistance levels (as assessed by the isolate frequency in discriminatory dose-based relative growth categories) did not change notably, and no evidence of other resistance genotypes was found. Analysis of the upstream MfCYP51 gene region in the resistant isolate CF010 revealed an insertion sequence described for the first time in this report. Our study suggests that current fungicide spray programs have been effective against increasing resistance levels in populations of M. fructicola and suppressing development of new resistant genotypes of the pathogen.


Assuntos
Ascomicetos , Fungicidas Industriais , Triazóis , Estados Unidos , Fungicidas Industriais/farmacologia , Ascomicetos/genética , Georgia
16.
Antimicrob Agents Chemother ; 67(8): e0022523, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37428039

RESUMO

Azole resistance in the human fungal pathogen Aspergillus fumigatus is becoming a major threat to global health. To date, mutations in the azole target-encoding cyp51A gene have been implicated in conferring azole resistance, but a steady increase in the number of A. fumigatus isolates with azole resistance resulting from non-cyp51A mutations has been recognized. Previous studies have revealed that some isolates with non-cyp51A mutation-induced azole resistance are related to mitochondrial dysfunction. However, knowledge of the molecular mechanism underlying the involvement of non-cyp51A mutations is limited. In this study, using next-generation sequencing, we found that nine independent azole-resistant isolates without cyp51A mutations had normal mitochondrial membrane potential. Among these isolates, a mutation in a mitochondrial ribosome-binding protein, Mba1, conferred multidrug resistance to azoles, terbinafine, and amphotericin B but not caspofungin. Molecular characterization verified that the TIM44 domain of Mba1 was crucial for drug resistance and that the N terminus of Mba1 played a major role in growth. Deletion of mba1 had no effect on Cyp51A expression but decreased the fungal cellular reactive oxygen species (ROS) content, which contributed to mba1-mediated drug resistance. The findings in this study suggest that some non-cyp51A proteins drive drug resistance mechanisms that result from reduced ROS production induced by antifungals.


Assuntos
Antifúngicos , Aspergillus fumigatus , Humanos , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Membrana/metabolismo , Azóis/farmacologia , Azóis/metabolismo , Mitocôndrias/metabolismo , Farmacorresistência Fúngica/genética , Testes de Sensibilidade Microbiana
17.
Antimicrob Agents Chemother ; 67(11): e0091823, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37815358

RESUMO

Azole antifungals remain the "gold standard" therapy for invasive aspergillosis. The world-wide emergence of isolates resistant to this drug class, however, developed into a steadily increasing threat to human health over the past years. In Aspergillus fumigatus, major mechanisms of resistance involve increased expression of cyp51A encoding one of two isoenzymes targeted by azoles. Yet, the level of resistance caused by cyp51A upregulation, driven by either clinically relevant tandem repeat mutations within its promoter or the use of high expressing heterologous promoters, is limited. Cytochrome P450 enzymes such as Cyp51A rely on redox partners that provide electrons for their activity. A. fumigatus harbors several genes encoding putative candidate proteins including two paralogous cytochrome P450 reductases, CprA and CprB, and the cytochrome b 5 CybE. In this work, we investigated the contribution of each cprA, cprB, and cybE overexpression to cyp51A-mediated resistance to different medical and agricultural azoles. Using the bidirectional promoter PxylP, we conditionally expressed these genes in combination with cyp51A, revealing cprA as the main limiting factor. Similar to this approach, we overexpressed cprA in an azole-resistant background strain carrying a cyp51A allele with TR34 in its promoter, which led to a further increase in its resistance. Employing sterol measurements, we demonstrate an enhanced eburicol turnover during upregulation of either cprA or cyp51A, which was even more pronounced during their simultaneous overexpression. In summary, our work suggests that mutations leading to increased Cyp51A activity through increased electron supply could be key factors that elevate azole resistance.


Assuntos
Aspergillus fumigatus , Azóis , Humanos , Azóis/farmacologia , Azóis/metabolismo , NADPH-Ferri-Hemoproteína Redutase/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Farmacorresistência Fúngica , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Testes de Sensibilidade Microbiana
18.
Fungal Genet Biol ; 168: 103814, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37343617

RESUMO

Continued use of fungicides provides a strong selection pressure towards strains with mutations to render these chemicals less effective. Previous research has shown that resistance to the demethylation inhibitor (DMI) fungicides, which target ergosterol synthesis, in the canola pathogen Leptosphaeria maculans has emerged in Australia and Europe. The change in fungicide sensitivity of individual isolates was found to be due to DNA insertions into the promoter of the erg11/CYP51 DMI target gene. Whether or not these were the only types of mutations and how prevalent they were in Australian populations was explored in the current study. New isolates with reduced DMI sensitivity were obtained from screens on DMI-treated plants, revealing eight independent insertions in the erg11 promoter. A novel deep amplicon sequencing approach applied to populations of ascospores fired from stubble identified an additional undetected insertion allele and quantified the frequencies of all known insertions, suggesting that, at least in the samples processed, the combined frequency of resistant alleles is between 0.0376% and 32.6%. Combined insertion allele frequencies positively correlated with population-level measures of in planta resistance to four different DMI treatments. Additionally, there was no evidence for erg11 coding mutations playing a role in conferring resistance in Australian populations. This research provides a key method for assessing fungicide resistance frequency in stubble-borne populations of plant pathogens and a baseline from which additional surveillance can be conducted in L. maculans. Whether or not the observed resistance allele frequencies are associated with loss of effective disease control in the field remains to be established.


Assuntos
Ascomicetos , Brassica napus , Fungicidas Industriais , Fungicidas Industriais/farmacologia , Alelos , Austrália , Doenças das Plantas
19.
Chembiochem ; 24(19): e202300406, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37382991

RESUMO

Current treatment for Chagas' disease is based on two drugs, Nifurtimox and Benznidazol, which have limitations that reduce the effectiveness and continuity of treatment. Thus, there is an urgent need to develop new, safe and effective drugs. In previous work, two new metal-based compounds with trypanocidal activity, Pd-dppf-mpo and Pt-dppf-mpo, were fully characterized. To unravel the mechanism of action of these two analogous metal-based drugs, high-throughput omics studies were performed. A multimodal mechanism of action was postulated with several candidates as molecular targets. In this work, we validated the ergosterol biosynthesis pathway as a target for these compounds through the determination of sterol levels by HPLC in treated parasites. To understand the molecular level at which these compounds participate, two enzymes that met eligibility criteria at different levels were selected for further studies: phosphomevalonate kinase (PMK) and lanosterol 14-α demethylase (CYP51). Molecular docking processes were carried out to search for potential sites of interaction for both enzymes. To validate these candidates, a gain-of-function strategy was used through the generation of overexpressing PMK and CYP51 parasites. Results here presented confirm that the mechanism of action of Pd-dppf-mpo and Pt-dppf-mpo compounds involves the inhibition of both enzymes.

20.
Med Mycol ; 61(9)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37580143

RESUMO

Aspergillus species is a widespread environmental mould that can cause aspergillosis. The purpose of this study was to investigate the antifungal susceptibility profile and genotypic characterization of clinical Aspergillus isolates from different provinces in Eastern China. The data included the antifungal susceptibility distributions with eight common antifungal drugs, cyp51A gene mutations of triazole-resistant Aspergillus fumigatus sensu stricto, and the genotypic relationships among the A. fumigatus sensu stricto isolates based on microsatellite typing. A. fumigatus sensu lato was the most common clinical Aspergillus species (n = 252), followed by A. flavus (n = 169), A. terreus (n = 37), A. niger (n = 29), and A. nidulans (n = 4). The modal minimum effective concentration values of micafungin and anidulafungin were lower than those of caspofungin for all Aspergillus species. The in vitro efficacy of isavuconazole was similar to that of voriconazole against most Aspergillus species. Sequencing revealed cyp51A gene mutations TR34/L98H, TR34/L98H/S297T/F495I, and TR46/Y121F/T289A in four triazole-resistant A. fumigatus sensu stricto. Phylogenetic analyses using microsatellite markers of A. fumigatus sensu stricto revealed that 211 unique genotypes clustered into two clades. The data demonstrate the diversity of clinically relevant Aspergillus species in Eastern China. Routine antifungal susceptibility testing should be performed to monitor the antifungal resistance and guide clinical therapy.


The 6-year multicenter study collected a total of 491 Aspergillus isolates from Eastern China to investigate the in vitro antifungal susceptibility to eight antifungal drugs, the cyp51A gene mutations of triazole-resistant A. fumigatus sensu stricto, and the genetic relatedness through microsatellite typing.


Assuntos
Antifúngicos , Infecções Fúngicas Invasivas , Animais , Antifúngicos/farmacologia , Aspergillus fumigatus , Filogenia , Proteínas Fúngicas/genética , Azóis/farmacologia , Farmacorresistência Fúngica/genética , Aspergillus , Triazóis/farmacologia , Genótipo , Infecções Fúngicas Invasivas/veterinária , Testes de Sensibilidade Microbiana/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA