Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-29084746

RESUMO

Pseudomonas aeruginosa is a major cause of morbidity and mortality in chronically infected cystic fibrosis patients. Novel in vitro biofilm models which reliably predict the therapeutic success of antimicrobial therapies against biofilm bacteria should be implemented. The activity of fosfomycin, tobramycin, and the fosfomycin-tobramycin combination against 6 susceptible P. aeruginosa strains isolated from respiratory samples from cystic fibrosis patients was tested by using two in vitro biofilm models: a closed system (Calgary device) and an open model based on microfluidics (BioFlux). All but one of the isolates formed biofilms. The fosfomycin and tobramycin minimal biofilm inhibitory concentrations (MBIC) were 1,024 to >1,024 µg/ml and 8 to 32 µg/ml, respectively. According to fractional inhibitory concentration analysis, the combination behaved synergistically against all the isolates except the P. aeruginosa ATCC 27853 strain. The dynamic formation of the biofilm was also studied with the BioFlux system, and the MIC and MBIC of each antibiotic were tested. For the combination, the lowest tobramycin concentration that was synergistic with fosfomycin was used. The captured images were analyzed by measuring the intensity of the colored pixels, which was proportional to the biofilm biomass. A statistically significant difference was found when the intensity of the inoculum was compared with the intensity of the microchannel in which the MBIC of tobramycin, fosfomycin, or their combination was used (P < 0.01) but not when the MIC was applied (P > 0.01). Fosfomycin-tobramycin was demonstrated to be synergistic against cystic fibrosis P. aeruginosa strains in the biofilm models when both the Calgary and the microfluidic BioFlux systems were tested. These results support the clinical use of this combination.


Assuntos
Antibacterianos/farmacologia , Fibrose Cística/microbiologia , Fosfomicina/farmacologia , Testes de Sensibilidade Microbiana/instrumentação , Testes de Sensibilidade Microbiana/métodos , Pseudomonas aeruginosa/efeitos dos fármacos , Tobramicina/farmacologia , Biofilmes/efeitos dos fármacos , Combinação de Medicamentos , Sinergismo Farmacológico , Humanos , Microfluídica , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia
2.
J Microbiol Methods ; 198: 106493, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35643294

RESUMO

Coagulase-negative Staphylococcus hominis causes bloodstream infections and often can form biofilms on medical devices. This study aimed to improve the current methodology for antimicrobial susceptibility testing (AST) in biofilm-growing S. hominis isolates. Biofilm production of S. hominis was assessed using the crystal violet staining method in trypticase soy broth supplemented with 1% glucose (TSBglu1%), Mueller-Hinton broth (MHB), or MHBglu1% using flat-bottom plates or the Calgary device. Susceptibility to antibiotics was assessed using the broth microdilution method (MHB and TSBglu1%) in planktonic cells (round-bottom plates) and biofilm cells (flat-bottom plates and the Calgary device). Biofilm determination using TSBglu1% yielded better performance over MHB, and flat-bottom plates without agitation were preferred over the Calgary device. Higher fold dilution values between the minimum biofilm eradication concentration (MBEC) and the minimum inhibitory concentration (MIC) were obtained in MHB for almost all antibiotics, except for linezolid. TSBglu1% and flat-bottom polystyrene plates were preferred over MHB and the Calgary device for biofilm determination. AST in biofilm-growing S. hominis showed better performance using TSBglu1% compared to MHB. Therefore, when comparing MBEC and MIC values, AST in planktonic cells could also be performed using TSBglu1% instead of MHB.


Assuntos
Biofilmes , Staphylococcus hominis , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Plâncton , Staphylococcus
3.
Mater Sci Eng C Mater Biol Appl ; 68: 837-841, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27524086

RESUMO

The aim of this work was to analyze the activity of novel synthetic lactams on preventing biofilm formation on titanium surfaces. Titanium (Ti6Al4V) samples were exposed to Streptococcus mutans cultures in the presence or absence of a synthetic lactam. After 48h incubation, planktonic growth was determined by spectrophotometry. Biofilm was evaluated by crystal violet staining and colony forming units (CFU·ml(-)(1)), followed by scanning electron microscopy (SEM). Results showed that the average of adhered viable cells was approximately 1.5×10(2)CFU/ml in the presence of lactam and 4×10(2)CFU/ml in its absence. This novel compound was considerable active in reducing biofilm formation over titanium surfaces, indicating its potential for the development of antimicrobial drugs targeting the inhibition of the initial stages of bacterial biofilms on dental implants abutments.


Assuntos
Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Lactamas , Streptococcus mutans/fisiologia , Titânio/química , Ligas , Lactamas/química , Lactamas/farmacologia , Microscopia Eletroquímica de Varredura , Streptococcus mutans/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA