Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(16)2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37629137

RESUMO

Peripheral nerve injuries are common neurological disorders, and the available treatment options, such as conservative management and surgical repair, often yield limited results. However, there is growing interest in the potential of using chitosan-based biopolymers as a novel therapeutic approach to treating these injuries. Chitosan-based biopolymers possess unique characteristics, including biocompatibility, biodegradability, and the ability to stimulate cell proliferation, making them highly suitable for repairing nerve defects and promoting nerve regeneration and functional recovery. Furthermore, these biopolymers can be utilized in drug delivery systems to control the release of therapeutic agents and facilitate the growth of nerve cells. This comprehensive review focuses on the latest advancements in utilizing chitosan-based biopolymers for peripheral nerve regeneration. By harnessing the potential of chitosan-based biopolymers, we can pave the way for innovative treatment strategies that significantly improve the outcomes of peripheral nerve injury repair, offering renewed hope and better prospects for patients in need.


Assuntos
Quitosana , Traumatismos dos Nervos Periféricos , Humanos , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Quitosana/uso terapêutico , Tratamento Conservador , Biopolímeros/uso terapêutico , Proliferação de Células
2.
Macromol Res ; 30(9): 599-608, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35762006

RESUMO

'New-Gen Vaccines' are grabbing the attention of scientists as they are much suitable for an immune-compromised group of individuals as well as infants. The major drawbacks of these vaccines are lower immunogenicity and instability. The need for a convenient and safe adjuvant is still under exploration. On the other hand, thermal instability leads to the inactivation of the vaccine and becomes detrimental in many cases. Thus, there is a need to incorporate new kinds of excipients into vaccine formulation to enhance the potency/immunogenicity of vaccine antigens and also act as stabilizers. A limited or single excipient in providing the required dual-activity is vital to break the stereotypical usage of the well-entrenched adverse ingredients. In the proposed review, the efficiency of naturally occurring biocompatible carbohydrate polymers and osmolytes and their 'dual-role' is briefed. In addition, the information on the possible mechanisms of action of carbohydrate polymers in vaccines as adjuvants and stabilizers are also discussed.

3.
Molecules ; 26(3)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513925

RESUMO

The capability of some polymers, such as chitosan, to form low cost gels under mild conditions is of great application interest. Ionotropic gelation of chitosan has been used predominantly for the preparation of gel beads for biomedical application. Only in the last few years has the use of this method been extended to the fabrication of chitosan-based flat structures. Herein, after an initial analysis of the major applications of chitosan flat membranes and films and their usual methods of synthesis, the process of ionotropic gelation of chitosan and some recently proposed novel procedures for the synthesis of flat structures are presented.


Assuntos
Quitosana/química , Géis/química , Humanos , Polímeros/química
4.
Macromol Rapid Commun ; 38(10)2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28266096

RESUMO

Aggregation-induced emission (AIE) is an abnormal phenomenon that has sparked great attention for diverse applications in different fields. In particular, the fabrication and biological imaging applications of AIE-active fluorescent organic nanoparticles (FONs) have become a focus in the emerging and promising fields. A large number of AIE-active polymeric nanoprobes have recently been fabricated through different strategies. The advances and progress in this direction have also recently been summarized by some groups. However, the fabrication and biomedical applications of AIE-active FONs based on carbohydrate polymers and AIE-active dyes are quite rare and limited. In this feature article, the recently reported AIE-active FONs with different structures and applications based on AIE-active dyes and carbohydrate polymers are highlighted, and the major current limitations and development tendencies are also discussed.


Assuntos
Carboidratos/química , Corantes Fluorescentes/química , Nanopartículas/química , Polímeros/química , Coloração e Rotulagem/tendências
5.
J Biomed Mater Res A ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38721841

RESUMO

The worldwide health burden of colorectal cancer is still substantial, and traditional chemotherapeutic drugs sometimes have poor selectivity, which can result in systemic toxicity and unfavorable side effects. For colon-specific medication delivery, bioengineered carbohydrate polymers have shown promise as carriers. They may enhance treatment effectiveness while minimizing systemic exposure and associated side effects. The unique properties of these manufactured or naturally occurring biopolymers, such as hyaluronic acid, chitosan, alginate, and pectin, enable targeted medicine release. These qualities can be changed to meet the physiological needs of the colon. In the context of colorectal cancer therapy, this article provides a comprehensive overview of current developments and prospective future directions in the field of bioengineered carbohydrate polymer synthesis for colon-specific drug delivery. We discuss numerous techniques for achieving colon-targeted drug release, including enzyme-sensitive polymers, pH-responsive devices, and microbiota-activated processes. To increase tumor selectivity and cellular uptake, we also examine the inclusion of active targeting approaches, such as conjugating specific ligands. Furthermore, we discuss the potential of combination treatment strategies, which use the coadministration of numerous therapeutic medications to target multiple pathways implicated in cancer growth and address drug resistance mechanisms. We address recent biomimetic advances that potentially improve the biocompatibility, cellular uptake, and tumor penetration of carbohydrate polymer-based nanocarriers. These methods involve protein corona engineering and cell membrane coating. Furthermore, we look at the possibility of intelligent and sensitive systems that may adjust their behaviors in response to certain inputs or feedback loops, allowing for precise and regulated drug distribution.

6.
Biomed Mater ; 19(5)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39105493

RESUMO

Bone is a dynamic tissue that can always regenerate itself through remodeling to maintain biofunctionality. This tissue performs several vital physiological functions. However, bone scaffolds are required for critical-size damages and fractures, and these can be addressed by bone tissue engineering. Bone tissue engineering (BTE) has the potential to develop scaffolds for repairing critical-size damaged bone. BTE is a multidisciplinary engineered scaffold with the desired properties for repairing damaged bone tissue. Herein, we have provided an overview of the common carbohydrate polymers, fundamental structural, physicochemical, and biological properties, and fabrication techniques for bone tissue engineering. We also discussed advanced biofabrication strategies and provided the limitations and prospects by highlighting significant issues in bone tissue engineering. There are several review articles available on bone tissue engineering. However, we have provided a state-of-the-art review article that discussed recent progress and trends within the last 3-5 years by emphasizing challenges and future perspectives.


Assuntos
Materiais Biocompatíveis , Osso e Ossos , Carboidratos , Cerâmica , Engenharia Tecidual , Alicerces Teciduais , Engenharia Tecidual/métodos , Cerâmica/química , Humanos , Osso e Ossos/metabolismo , Alicerces Teciduais/química , Animais , Carboidratos/química , Materiais Biocompatíveis/química , Regeneração Óssea , Substitutos Ósseos/química , Polímeros/química
7.
Front Chem ; 12: 1330810, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38370094

RESUMO

This study introduces environmentally-friendly nanocellulose-based membranes for AZO dye (methylene blue, MB) removal from wastewater. These membranes, made of cellulose nanocrystals (CNCs), carboxymethyl cellulose (CMC), zeolite, and citric acid, aim to offer eco-friendly water treatment solutions. CNCs, obtained from sugarcane bagasse, act as the foundational material for the membranes. The study aims to investigate both the composition of the membranes (CMC/CNC/zeolite/citric acid) and the critical adsorption factors (initial MB concentration, contact time, temperature, and pH) that impact the removal of the dye. After systematic experimentation, the optimal membrane composition is identified as 60% CNC, 15% CMC, 20% zeolites, and 5% citric acid. This composition achieved a 79.9% dye removal efficiency and a 38.3 mg/g adsorption capacity at pH 7. The optimized membrane exhibited enhanced MB dye removal under specific conditions, including a 50 mg adsorbent mass, 50 ppm dye concentration, 50 mL solution volume, 120-min contact time, and a temperature of 25°C. Increasing pH from neutral to alkaline enhances MB dye removal efficiency from 79.9% to 94.5%, with the adsorption capacity rising from 38.3 mg/g to 76.5 mg/g. The study extended to study the MB adsorption mechanisms, revealing the chemisorption of MB dye with pseudo-second-order kinetics. Chemical thermodynamic experiments determine the Freundlich isotherm as the apt model for MB dye adsorption on the membrane surface. In conclusion, this study successfully develops nanocellulose-based membranes for efficient AZO dye removal, contributing to sustainable water treatment technologies and environmental preservation efforts.

8.
Methods Mol Biol ; 2788: 49-66, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656508

RESUMO

Calibrated size exclusion chromatography (SEC) is a useful tool for the analysis of molecular dimensions of polysaccharides. The calibration takes place with a set of narrow distributed dextran standards and peak position technique. Adapted columns systems and dissolving processes enable for the adequate separation of carbohydrate polymers. Plant-extracted fructan (a homopolymer with low molar mass and excellent water solubility) and mucilage (differently structured, high molar mass heteropolysaccarides that include existing supramolecular structures, and require a long dissolving time) are presented as examples of the versatility of this technique. Since narrow standards similar to the samples (chemically and structurally) are often unavailable, it must be noted that the obtained molar mass values and distributions by this method are only apparent (relative) values, expressed as dextran equivalents.


Assuntos
Cromatografia em Gel , Peso Molecular , Polissacarídeos , Cromatografia em Gel/métodos , Polissacarídeos/química , Polissacarídeos/análise , Dextranos/química , Frutanos/química , Frutanos/análise , Calibragem
9.
Int J Biol Macromol ; 278(Pt 1): 134676, 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39137855

RESUMO

The convergence of polymer and pharmaceutical sciences has advanced drug delivery systems significantly. Carbohydrate polymers, especially carboxymethylated ones, offer versatile benefits for pharmaceuticals. Interpenetrating polymer networks (IPNs) combine synthetic and natural polymers to enhance drug delivery. The study aims to develop IPN beads using sodium carboxymethyl cellulose (SCMC) and carboxymethyl konjac glucomannan (CMKGM) for controlled release of ibuprofen (IB) after oral administration. Objectives include formulation optimization, characterization of physicochemical properties, evaluation of pH-dependent swelling and drug release behaviors to advance biocompatible and efficient oral drug delivery systems. The beads were analyzed using SEM, FTIR, DSC, and XRD techniques. Different ratio of polymers (CMKGM:SCMS) and crosslinker concentrations (2&4 %w/v) were used, significantly impacting bead size, swelling, drug encapsulation, and release characteristics. DSC results indicated higher thermal stability in IPN beads compared to native polymers. XRD revealed IB dispersion within the polymer matrix. IPN beads size ranged from 580 ± 0.56 to 324 ± 0.27 µm, with a nearly spherical shape. IPN beads exhibited continuous release in alkaline conditions (pH 7.4) and minimal release in acidic media (pH 1.2). These findings suggest that the formulated IPN beads can modulate drug release in both acidic and alkaline environments, potentially mitigating the gastric adverse effects often associated with oral administration of IB.

10.
Biomed Pharmacother ; 168: 115695, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37839113

RESUMO

The convergence of carbohydrate polymers and metal nanoparticles (MNPs) holds great promise for biomedical applications. Researchers aim to exploit the capability of carbohydrate matrices to modulate the physicochemical properties of MNPs, promote their therapeutic efficiency, improve targeted drug delivery, and enhance their biocompatibility. Therefore, understanding various attributes of both carbohydrates and MNPs is the key to harnessing them for biomedical applications. The many distinct types of carbohydrate-MNP systems confer unique capabilities for drug delivery, wound healing, tissue engineering, cancer treatment, and even food packaging. Here, we introduce distinct physicochemical/biological properties of carbohydrates and MNPs, and discuss their potentials and shortcomings (alone and in combination) for biomedical applications. We then offer an overview on carbohydrate-MNP systems and how they can be utilized to improve biomedical outcomes. Last but not least, future perspectives toward the application of such systems are highlighted.


Assuntos
Nanopartículas de Magnetita , Nanopartículas Metálicas , Nanopartículas , Nanopartículas de Magnetita/química , Polímeros , Sistemas de Liberação de Medicamentos , Engenharia Tecidual , Carboidratos
11.
Food Chem ; 399: 133967, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35998495

RESUMO

Hydrocolloids are a group of polysaccharides that act as thickeners, gelling agents, emulsion stabilizers, inhibitors of the growth and expansion of ice crystals in frozen materials, and inhibitors of the growth of sugar crystals in different industries. Hydrocolloids are used both to improve the rheological and textural properties of food products and also as fat substitutes. Also hydrocolloids are used in the production of low-calorie foods and also their beneficial nutritional properties causes their extensive application in the food industry. Food hydrocolloids or gums are high molecular weight hydrophilic biopolymers that are used as functional compounds in the food industry. Hydrocolloids are obtained from plants, animals, microorganisms, and modified biopolymers. The purpose of this article is to review hydrocolloids and their application in food, pharmaceutical and agricultural industries. Therefore, this article discusses the structure, origin, preparation methods, extraction and the applications of hydrocoloids in various industries.


Assuntos
Coloides , Polissacarídeos , Animais , Biopolímeros , Coloides/química , Indústria Alimentícia , Polissacarídeos/química , Reologia
12.
Carbohydr Polym ; 321: 121296, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37739529

RESUMO

Due to low-cost, sustainability and good mechanical stability, cellulose-based materials are frequently used in fabrication of polymeric gas separation membrane as potential carbohydrate polymers to substitute traditional petrochemical-based materials. In this review, the performance of cellulose-based polymeric membranes i.e. cellulose acetate, cellulose diacetate, cellulose triacetate, ethyl cellulose and carboxymethyl cellulose in the separation of different gases were investigated. This review paper provides the main features and advantages in the fabrication of cellulose-based gas separation membranes. The influence of the functionalization of cellulose on gas separation and permeability performance of related membranes is considered. Influence of different modification procedures such as blending with polymers, nanomaterials and ionic liquids on the gas separation ability of cellulose-based membranes were reviewed. Moreover, a brief inquiry of the potential of cellulose-based gas separation membranes for industrial applications, by examining the performance of different cellulose derivatives and identifying potential strategies for membrane modification and optimization are given, along with the current restrictions and the future perspectives are discussed.

13.
Int J Biol Macromol ; 251: 126283, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37582431

RESUMO

During orthodontic treatment, the patients are susceptible to dental caries as a result of the bacterial adhesion and biofilm formation around the orthodontic brackets. Prevention of the caries-related biofilm formation is of significance for maintaining both aesthetics and health of the teeth. Herein, the brackets were functionalized with antibacterial activity via coating a layer of non-crosslinked chitosan (CS). We firstly demonstrated the ability of free CS scaffolds (not coated on brackets) to inhibit the formation of Streptococcus mutans biofilms (inhibition rate 94.3 % for CS-0.3 mg) and to eradicate the mature biofilms (biofilm loss rate 99.8 % for CS-1.2 mg). Further, the inhibition of S. mutans biofilm formation on brackets by CS coating was investigated for the first time. As a result, the CS-coated brackets (Br-CS) kept the great biofilm inhibition capacity of free CS scaffolds. In detail, the Br-CS, prepared by immersing brackets in CS solutions (containing 1.0, 2.5, 5.0 and 10 mg/mL CS) and freeze-drying, showed the biofilm inhibition rate of 48.5 %, 88.6 %, 96.4 % and 99.6 %, respectively. In conclusion, coating orthodontic brackets with the non-crosslinked CS is a potential approach for inhibiting biofilm formation and protecting patients from dental caries.

14.
Polymers (Basel) ; 15(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36850177

RESUMO

Herein, the inhibition impacts of chitin, pectin, and amylopectin as carbohydrate polymers on the corrosion of mild steel in 0.5 M HCl were researched utilizing various experimental and theoretical tools. The acquired outcomes showed that the inhibition efficiencies (% IEs) of the tested carbohydrate polymers were increased by raising their concentrations and these biopolymers acting as mixed-kind inhibitors with major anodic ones. The acquired % IEs values were reduced with rising temperature. The higher % IEs of the tested polymers were inferred via powerful adsorption of the polymeric molecules on the steel surface and such adsorption obeyed the Langmuir isotherm. The computed thermodynamic and kinetic quantities confirmed the mechanism of physical adsorption. The kinetics and mechanisms of corrosion and its protection by polymeric compounds were illuminated. The results obtained from all the techniques used confirmed that there was good agreement with each other, and that the % of IEs followed the sequence: chitin > amylopectin > pectin.

15.
Bioeng Transl Med ; 8(4): e10503, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37476065

RESUMO

3D printing is a state-of-the-art technology for the fabrication of biomaterials with myriad applications in translational medicine. After stimuli-responsive properties were introduced to 3D printing (known as 4D printing), intelligent biomaterials with shape configuration time-dependent character have been developed. Polysaccharides are biodegradable polymers sensitive to several physical, chemical, and biological stimuli, suited for 3D and 4D printing. On the other hand, engineering of mechanical strength and printability of polysaccharide-based scaffolds along with their aneural, avascular, and poor metabolic characteristics need to be optimized varying printing parameters. Multiple disciplines such as biomedicine, chemistry, materials, and computer sciences should be integrated to achieve multipurpose printable biomaterials. In this work, 3D and 4D printing technologies are briefly compared, summarizing the literature on biomaterials engineering though printing techniques, and highlighting different challenges associated with 3D/4D printing, as well as the role of polysaccharides in the technological shift from 3D to 4D printing for translational medicine.

16.
Heliyon ; 9(10): e20304, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37810837

RESUMO

A biodegradable polysaccharide-based inhibitor is grafted with polyacrylamide (PAM) for oilfields' sweet corrosion. The green properties of agar and PAM were incorporated to synthesize an agar-grafted-PAM (AGGPAM) inhibitor. Electrochemical tests of Tafel and AC impedance, were used to determine the corrosion rate of carbon steel (C-steel) and protection efficiency in CO2-saturated 3.5 wt% NaCl solution. The surface morphology was characterized using FESEM coupled with EDX. Results demonstrated the promising performance of AGGPAM in improving steel resistivity, achieving 85% efficiency at 500 mg L-1 and reducing the corrosion rate from 33 to 4.9 mils per year at 25 °C. The electrochemical tests classified AGGPAM as a mixed-type inhibitor, yet with a larger potential to inhibit the cathodic hydrogen evolution. Kinetics study at a temperature of 50 °C revealed a deteriorated AGGPAM inhibition attributed to electrolyte diffusion through the weakly adsorbed AGGPAM film. Nevertheless, the AGGPAM-inhibited solution exhibited a corrosion rate of 26.7 mils per year at 50 °C, which is still lower than that of blank at 25 °C. The steel resistance was diminished from 1436 to 355 Ω cm2 at 50 °C. Implementing AGGPAM coating reduced the steel corrosion rate to 9.6 mils per year, achieving 71% efficiency. AGGPAM inhibitor toxicity was evaluated using ADMETlab, which predicted negligible hazardous impacts. Lastly, potentiostatic testing of steel with AGGPAM at an applied potential of 50 mV illustrated surface protection and decreased current over a prolonged time. Herein, the experimental investigation revealed the promising capabilities of AGGPAM as an efficient corrosion inhibitor in oilfields.

17.
Carbohydr Polym ; 312: 120797, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37059536

RESUMO

Now-a-days, the polysaccharides are extensively employed for the delivery of small-molecule drugs ascribed to their excellent biocompatibility, biodegradability and modifiability. An array of drug molecules is often chemically conjugated with different polysaccharides to augment their bio-performances. As compared to their therapeutic precursors, these conjugates could typically demonstrate an improved intrinsic solubility, stability, bioavailability and pharmacokinetic profiles of the drugs. In current years, various stimuli-responsive particularly pH and enzyme-sensitive linkers or pendants are also exploited to integrate the drug molecules into the polysaccharide backbone. The resulting conjugates could experience a rapid molecular conformational change upon exposure to the microenvironmental pH and enzyme changes of the diseased states, triggering the release of the bioactive cargos at the targeted sites and eventually minimize the systemic side effects. Herein, the recent advances in pH and enzyme -responsive polysaccharide-drug conjugates and their therapeutic benefits are systematically reviewed, following a brief description on the conjugation chemistry of the polysaccharides and drug molecules. The challenges and future perspectives of these conjugates are also precisely discussed.


Assuntos
Sistemas de Liberação de Medicamentos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Preparações Farmacêuticas , Sistemas de Liberação de Medicamentos/métodos , Polissacarídeos/química , Concentração de Íons de Hidrogênio , Portadores de Fármacos/química
18.
Carbohydr Polym ; 314: 120936, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37173012

RESUMO

Recently, the development and consumption of metal/metal oxide carbohydrate polymer nanocomposites (M/MOCPNs) are withdrawing significant attention because of their numerous salient features. Metal/metal oxide carbohydrate polymer nanocomposites are being used as environmentally friendly alternatives for traditional metal/metal oxide carbohydrate polymer nanocomposites exhibit variable properties that make them excellent prospects for a variety of biological and industrial uses. In metal/metal oxide carbohydrate polymer nanocomposites, carbohydrate polymers bind with metallic atoms and ions using coordination bonding in which heteroatoms of polar functional groups behave as adsorption centers. Metal/metal oxide carbohydrate polymer nanocomposites are widely used in woundhealing, additional biological uses and drug delivery, heavy ions removal or metal decontamination, and dye removal. The present review article features the collection of some major biological and industrial applications of metal/metal oxide carbohydrate polymer nanocomposites. The binding affinity of carbohydrate polymers with metal atoms and ions in metal/metal oxide carbohydrate polymer nanocomposites has also been described.


Assuntos
Nanocompostos , Polímeros , Polímeros/química , Óxidos , Metais , Nanocompostos/química , Íons
19.
Int J Biol Macromol ; 253(Pt 2): 126581, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37652322

RESUMO

Carbohydrate polymers-based surface-modified nano-delivery systems have gained significant attention in recent years for enhancing targeted delivery to colon cancer. These systems leverage carbohydrate polymers' unique properties, such as biocompatibility, biodegradability, and controlled release. These properties make them suitable candidates for drug delivery applications. Nano-delivery systems loaded with bioactive compounds are well-studied for targeted colorectal cancer delivery. However, those drugs' target reach is still limited in various nano-delivery systems. To overcome this limitation, surface modification of nanoparticles with carbohydrate polymers like chitosan, pectin, alginate, and guar gum showed enhanced target-reaching capacity along with enhanced anticancer efficacy. Recently, a chitosan-decorated PLGA nanoparticle was constructed with tannic acid and vitamin E and showed long-term release of specific targets along with higher anticancer efficacy. Similarly, Chitosan-conjugated glucuronic acid-coated silica nanoparticles loaded with capecitabine were studied against colon cancer and found to be the pH-responsive controlled release of capecitabine with higher anticancer efficacy. Surface-modified carbohydrate polymers have promising potential for improving colon cancer target delivery. By leveraging the unique properties of these polymers, such as surface modification, pH responsiveness, mucoadhesion, controlled drug release, and combination therapy, researchers are working toward developing more effective and targeted treatment strategies for colon cancer.


Assuntos
Quitosana , Neoplasias do Colo , Humanos , Polímeros/química , Sistemas de Liberação de Fármacos por Nanopartículas , Preparações de Ação Retardada , Quitosana/química , Capecitabina , Neoplasias do Colo/tratamento farmacológico
20.
ADMET DMPK ; 11(4): 561-572, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37937242

RESUMO

Background and purpose: Polycaprolactone nanocapsules incorporated with triazole derivatives in the presence and absence of selenium nanoparticles were prepared and evaluated as antiproliferative and anticancer agents. Polycaprolactone nanoparticles were prepared using the emulsion technique. Experimental approach: The prepared capsules were characterized using FT-IR, TEM and DLS measurements. The synthesized triazolopyrimidine derivative in the presence and absence of selenium nanoparticles encapsulated in polycaprolactone was tested for its in vitro antiproliferative efficiency towards human breast cancer cell line (MCF7) and murine fibroblast normal cell line (BALB/3T3) in comparison to doxorubicin as a standard anticancer drug. Key results: The results indicated that encapsulated polycaprolactone with selenium nanoparticles (SeNPs) and triazole-SeNPs were the most potent samples against the tested breast cancer cell line (MCF7). On the other hand, all compounds showed weak or moderate activities towards the tested murine fibroblast normal cell line (BALB/3T3). Conclusion: As the safety index (SI) was higher than 1.0, it expanded the way for newly synthesized compounds to express antiproliferative efficacy against tumour cells. Hence, these compounds may be considered promising ones. However, they should be examined through further in-vivo and pharmacokinetic studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA