Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; : e2400527, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39137308

RESUMO

With the widespread application of highly integrated electronic devices, the urgent development of multifunctional polymer-based composite materials with high electromagnetic interference shielding effectiveness (EMI SE) and thermal conductivity capabilities is critically essential. Herein, a graphene/carbon felt/polyimide (GCF/PI) composite is prepared through constructing 3D van der Waals heterostructure by heating carbon felt and graphene at high temperature. The GCF-3/PI composite exhibits the highest through-plane thermal conductivity with 1.31 W·m-1·K-1, when the content of carbon felt and graphene is 14.1 and 1.4 wt.%, respectively. The GCF-3/PI composite material achieves a thermal conductivity that surpasses pure PI by 4.9 times. Additionally, GCF-3/PI composite shows an outstanding EMI SE of 69.4 dB compared to 33.1 dB for CF/PI at 12 GHz. The 3D van der Waals heterostructure constructed by carbon felt and graphene sheets is conducive to the formation of continuous networks, providing fast channels for the transmission of phonons and carriers. This study provides a guidance on the impact of 3D van der Waals heterostructures on the thermal and EMI shielding properties of composites.

2.
Sci Technol Adv Mater ; 25(1): 2327274, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529018

RESUMO

Vanadium redox flow batteries (VRFBs) have received significant attention for use in large-scale energy storage systems (ESSs) because of their long cycle life, flexible capacity, power design, and safety. However, the poor electrochemical activity of the conventionally used carbon felt electrode results in low energy efficiency of the VRFBs and consequently impedes their commercialization. In this study, a carbon felt (CF) electrode with numerous nanopores and robust oxygen-containing functional groups at its edge sites is designed to improve the electrochemical activity of a carbon felt electrode. To achieve this, Ni metal nanoparticles were initially precipitated on the surface of the CF electrode, followed by etching of the precipitated Ni nanoparticles on the CF electrode using sulfuric acid. The resulting CF electrode had a specific surface area eight times larger than that of the pristine CF electrode. In addition, the oxygen-containing functional groups anchored at the graphite edge sites of the nanopores can act as robust electrocatalysts for VO2+/VO2+ and V2+/V3+ redox reactions. Consequently, the VRFB cell with the resulting carbon felt electrode can deliver a high energy efficiency of 86.2% at the current density of 60 mA cm-2, which is 20% higher than that of the VRFB cell with the conventionally heat-treated CF electrode. Furthermore, the VRFB cell with the resultant carbon felt electrodes showed stable cycling performance with no considerable energy efficiency loss over 200 charge-discharge cycles. In addition, even at a high current density of 160 mA cm-2 , the developed carbon felt electrode can achieve an energy efficiency of 70.1%.


This work reveals the importance of the robust graphite edge-site oxygen functional group and the holey structure of the ET-CF electrode, emphasizing that high VRFB efficiency can be achieved by engineering both the structure and surface properties of the carbon felt electrode.

3.
Environ Res ; 204(Pt A): 111994, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34487696

RESUMO

A heterogeneous electro-Fenton (hetero-EF) system can effectively broaden the applicable pH range, although the decreased electrogeneration efficiency of H2O2 at elevated pH (especially neutral conditions) is unfavorable for the efficient removal of organic pollutants. Herein, a tannic acid-Fe complex derivative-modified carbon felt (TFD@CF) cathode was prepared for hetero-EF treatment of organic pollutants over a wide pH range. Interestingly, the as-prepared hetero-EF cathode could act as a pH regulator that acidified the solution over a wide pH range. As expected, the TFD@CF cathode exhibited excellent hetero-EF activity for the removal of diverse organic pollutants (such as methyl orange, methylene blue, sulfamerazine, bisphenol A and 2,4-dichlorophenoxyacetic acid) at neutral and even alkaline pH (removal efficiency >90 %). A total of 2.98 kWh kg-1 COD-1 with 83.2 % COD removal could be achieved by the TFD@CF cathode for the treatment of actual textile dyeing secondary wastewater. Electrochemical characterizations proved that the TFD@CF cathode had excellent electrochemical properties with improved electron transfer ability and a well-pronounced Fe(III) electroreductive response. Meanwhile, more acidic groups were newly generated during the electrochemical reaction (an increase of 30.1 %), thus dissociating more H+ into solution. The identification of reactive oxygen species suggested that OH and 1O2 could be responsible for the removal of organic pollutants in the TFD@CF EF system. These interesting findings may provide new insights into the design of multifunctional hetero-EF cathodes for the removal of refractory organic pollutants.


Assuntos
Recuperação e Remediação Ambiental , Poluentes Químicos da Água , Eletrodos , Compostos Férricos , Peróxido de Hidrogênio , Concentração de Íons de Hidrogênio , Oxirredução , Taninos , Poluentes Químicos da Água/análise
4.
Bioprocess Biosyst Eng ; 44(6): 1119-1130, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33555380

RESUMO

The anode electrode of microbial fuel cell (MFC) is the key component to determine its power generation performance because it is the habitat and electron transfer center of the electricity-producing microorganisms. Carbon-based anodes have been confirmed to improve MFC performance. Its large surface area, excellent conductivity and low cost make it very suitable for electrode materials used in MFC. However, the low biocompatibility and instability of common carbon-based materials restrict their practical application in MFC. In this work, a bimetal oxide MnFe2O4 was prepared and used to modify carbon felt anode by a simple drop coating method. The influence of the amount of MnFe2O4 material on the performance of MFC was systematically studied. The results showed that the power density of the carbon felt anode with a MnFe2O4 modified amount of 1 mg/cm2 increased by 66.9% compared with the unmodified anode. Meanwhile, the MFC cycle using MnFe2O4 modified anode was more stable. After 6 months of long-term operation, the power density reached 3836 mW/m2. The anode modified by MnFe2O4 has capacitance characteristics, good biocompatibility and fast electron transmission rate, which significantly improves the power generation performance of MFC. In addition, the use of a simple drop coating method to prepare electrodes can reduce the difficulty of electrode fabrication and the cost of MFC, laying a certain foundation for the industrialization of MFC.


Assuntos
Fontes de Energia Bioelétrica , Carbono/química , Compostos Férricos/química , Compostos de Manganês/química , Eletrodos
5.
Biotechnol Lett ; 42(6): 965-978, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32144559

RESUMO

OBJECTIVE: An electro-active biofilm of Fruit Peeling (FP) leachate was formed onto the Carbon Felt (CF) bio-anode in a Microbial Fuel Cell (MFC), after functioning for a long time. The electro active-biofilm thus formed was then scratched by ultrasound and re-inoculated in a new leachate to be transplanted onto the bio-anode. This procedure allowed the microbial electron charge transfer and therefore the enhancement of the bio-energy production of the fuel cell. RESULTS: By using the repetitive mechanical biofilm removal, re-suspension and electrochemically facilitated biofilm formation, the voltage was substantially increased. In effect, the voltage of the 1st G of biofilm, rose gradually and reached its maximum value of 65 mV after 10 days. Whilst the 2nd generation allowed to obtain the maximum voltage 276 mV and without any lag time. The DCO abatement using the 1st G biofilm was 68% greater than the 3rd G 26%. Besides, the electrochemical impedance spectroscopy characterization and cyclic voltammetry of bio-anode with 2nd G biofilm confirmed the ability of electro-active biofilm formation on a new support. The biofilm transplanted showed thus greater kinetic performance, with reduced lag time demonstrating the interest of the selection that took place during the formation of successive biofilms. CONCLUSIONS: Despite the transplantation of the electro-active biofilm onto the bio-anode, the MFC still produced relatively lower power output. Nevertheless, it has been tested successfully for monitoring and detecting the oxidation of sodium acetate substrate in the very wide concentration range 0.0025-35 g/l.


Assuntos
Fontes de Energia Bioelétrica , Biofilmes/efeitos da radiação , Frutas/microbiologia , Carbono/química , Eletricidade , Desenho de Equipamento , Oxirredução , Acetato de Sódio/análise , Sonicação
6.
Molecules ; 25(24)2020 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-33322793

RESUMO

This paper studies the degradation of methiocarb, a highly hazardous pesticide found in waters and wastewaters, through an electro-Fenton process, using a boron-doped diamond anode and a carbon felt cathode; and evaluates its potential to reduce toxicity towards the model organism Daphnia magna. The influence of applied current density and type and concentration of added iron source, Fe2(SO4)3·5H2O or FeCl3·6H2O, is assessed in the degradation experiments of methiocarb aqueous solutions. The experimental results show that electro-Fenton can be successfully used to degrade methiocarb and to reduce its high toxicity towards D. magna. Total methiocarb removal is achieved at the applied electric charge of 90 C, and a 450× reduction in the acute toxicity towards D. magna, on average, from approximately 900 toxic units to 2 toxic units, is observed at the end of the experiments. No significant differences are found between the two iron sources studied. At the lowest applied anodic current density, 12.5 A m-2, an increase in iron concentration led to lower methiocarb removal rates, but the opposite is found at the highest applied current densities. The highest organic carbon removal is obtained at the lowest applied current density and added iron concentration.


Assuntos
Biodegradação Ambiental , Inseticidas/metabolismo , Metiocarb/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Daphnia/efeitos dos fármacos , Ecotoxicologia/métodos , Eletroquímica/métodos , Eletrodos , Inseticidas/química , Inseticidas/toxicidade , Metiocarb/química , Metiocarb/toxicidade
7.
J Environ Manage ; 249: 109376, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31437708

RESUMO

Fabrication of superior and cost-effective cathodic materials is vital in manufacturing sustainable microbial electrolysis cells (MECs) for biofuels production. In the present study, a novel manganese dioxide (MnO2) coated felt cathode (Mn/CF) has been developed for MECs using electrodeposition method via potentiostat. MnO2 is considered to encourage exogenous electron exchange and, in this way, improves the reduction of carbon dioxide (CO2). MnO2, as a cathodic catalyst, enhances the rate of biofuel production, electron transfer, and significantly reduces the cost of MECs. A maximum stabilized current density of 3.70 ±â€¯0.5 mA/m2 was obtained in case of MnO2-coated Mn/CF based MEC, which was more than double the non-coated carbon felt (CF) cathode (1.70 ±â€¯0.5 mA/m2). The dual chamber Mn/CF-MEC achieved the highest production rate of acetic acid (37.9 mmol/L) that was significantly higher (43.0%) in comparison to the non-coated CF-MEC. The cyclic voltammograms further verified the substantial enhancement in the electron transfer between the MnO2 coated cathode and microbes. The obtained results demonstrate that MnO2 interacted electrochemically with microbial cells and enhanced the extracellular electron transfer, therefore validating its potential role in biofuel production. The MnO2 coated CF further offered higher electrode surface area and better electron transfer efficiency, suggesting its applicability in the large-scale MECs.


Assuntos
Biocombustíveis , Dióxido de Carbono , Fibra de Carbono , Eletrodos , Eletrólise
8.
Angew Chem Int Ed Engl ; 56(11): 2893-2897, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28157264

RESUMO

In this study, we proposed high-performance chemically regenerative redox fuel cells (CRRFCs) using NO3- /NO with a nitrogen-doped carbon-felt electrode and a chemical regeneration reaction of NO to NO3- via O2 . The electrochemical cell using the nitrate reduction to NO at the cathode on the carbon felt and oxidation of H2 as a fuel at the anode showed a maximal power density of 730 mW cm-2 at 80 °C and twofold higher power density of 512 mW cm-2 at 0.8 V, than the target power density of 250 mW cm-2 at 0.8 V in the H2 /O2 proton exchange membrane fuel cells (PEMFCs). During the operation of the CRRFCs with the chemical regeneration reactor for 30 days, the CRRFCs maintained 60 % of the initial performance with a regeneration efficiency of about 92.9 % and immediately returned to the initial value when supplied with fresh HNO3 .

9.
Waste Manag Res ; 34(7): 619-29, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27231132

RESUMO

The organic content of municipal solid waste has long been an attractive source of renewable energy, mainly as a solid fuel in waste-to-energy plants. This study focuses on the potential to use microbial fuel cells to convert municipal solid waste organics into energy using various operational conditions. The results showed that two-chamber microbial fuel cells with carbon felt and carbon felt allocation had a higher maximal power density (20.12 and 30.47 mW m(-2) for 1.5 and 4 L, respectively) than those of other electrode plate allocations. Most two-chamber microbial fuel cells (1.5 and 4 L) had a higher maximal power density than single-chamber ones with corresponding electrode plate allocations. Municipal solid waste with alkali hydrolysis pre-treatment and K3Fe(CN)6 as an electron acceptor improved the maximal power density to 1817.88 mW m(-2) (~0.49% coulomb efficiency, from 0.05-0.49%). The maximal power density from experiments using individual 1.5 and 4 L two-chamber microbial fuel cells, and serial and parallel connections of 1.5 and 4 L two-chamber microbial fuel cells, was found to be in the order of individual 4 L (30.47 mW m(-2)) > serial connection of 1.5 and 4 L (27.75) > individual 1.5 L (20.12) > parallel connection of 1.5 and 4 L (17.04) two-chamber microbial fuel cells . The power density using municipal solid waste microbial fuel cells was compared with information in the literature and discussed.


Assuntos
Eletricidade , Resíduos Sólidos , Fontes de Energia Bioelétrica , Esgotos
10.
Heliyon ; 10(13): e33561, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39035514

RESUMO

All-vanadium redox flow batteries (VRFB) have the advantages of high safety and long life, and have broad application prospects in the field of large-scale power energy storage. Low energy density is the main factor restricting its development. In this study, the carbon felt used as the electrode was pretreated in various ways to improve the performance of the vanadium redox flow battery. The pretreatment conditions of carbon felt were compared to the performance of carbon felt after treatment at different temperatures and different times. The properties of the pretreated carbon felt were investigated and their effect on cell performance was tested.Next, by introducing a noble metal catalyst into the carbon felt, the characteristics of the carbon felt were studied and the effect on the performance of the vanadium redox flow battery was investigated. It was found that Carbon felt thermal-treated at 500 °C for 2 h showed the best characteristics and had the longest charge/discharge time and the lowest resistance. The results also show that Carbon felt with catalyst introduced without PTFE(Polytetrafluoroethylene) binder showed larger BET(Brunauer-Emmett-Teller) surface area and electrical conductivity compared to PTFE mixed, and cell performance was also excellent.

11.
Chemosphere ; 346: 140534, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37926166

RESUMO

Electrochemical activation of persulfate (EA-PS) is gradually attracting attention as an emerging method for wastewater treatment. In this study, a novelty flow-through EA-PS system was first attempted for pollutants degradation using boron and cobalt co-doping carbon felt (B, Co-CF) as the cathode. SEM images, XPS and XRD spectra of B, Co-CF were investigated. The optimal doping ration between B and Co was 1:2. Increasing current density, PS concentration and flow rate, decreasing initial pH accelerated the removal of AO7. The mechanism involved in EA-PS were the comprehensive effect of DET, •OH and SO4•-. B, Co-CF cathode for flow-through system was stable with five cycles efficient AO7 decay performance. EA-PS in flow-through system was an efficient method with low cost and efficient pollutants degradation. This work provides a feasible strategy for synergistically enhancing PS activation and promoting the degradation of organic pollutants.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Carbono , Fibra de Carbono , Oxirredução , Poluentes Químicos da Água/análise
12.
Small Methods ; : e2400174, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594890

RESUMO

Non-flow aqueous zinc-bromine batteries (AZBBs) are highly attractive owing to their lightweight construction and largely reduced cost compared with the flow ones. Yet, their development is restricted by the sluggish reaction kinetics of Br2/Br-, the shuttle of soluble polybromide species (Brn -, n is odd), and the poor stability of Zn-based anode. Herein, an effective alkaline-neutral electrolyte decoupling system is constructed to mitigate these issues, where nitrogen-doped carbon felt with high catalytic activity to Br2/Br- reaction is developed for cathode, a cost-effective cation exchange membrane (CEM) of polyethersulfone/sulfonated polyether ether ketone (PES/SPEEK-M) that can stop Brn - is used as separator, and glucose that can inhibit dendrites is introduced as anolyte additive. The constructed flowless AZBB mainly consists of two separate redox couples, including Zn/Zn(OH)4 2- in alkaline anolyte and Br2/Br- in neutral media, where non-cations (e.g. OH-, Zn(OH)4 2-, H2O,  and Brn -) can be restricted to their respective chamber by the PES/SPEEK-M while cations can pass by. In the optimized system, good electrochemical performance is achieved, mainly including a surprising discharge voltage of 2.01 V, a high average Coulombic efficiency of 96.7%, and a good cycling life of ≈1000 cycles without obvious capacity decay at a fixed charge capacity of 2 mAh cm-2.

13.
Artigo em Inglês | MEDLINE | ID: mdl-38684068

RESUMO

Aqueous zinc-bromine batteries (ZBBs) are highly promising because of the advantages of safety and cost. Compared with flow ZBBs, static ones without the assistance of pumping and tank components possess decreased cost and increased energy density and efficiency. Yet, the issues of Zn dendrites and shuttle effect of polybromide ions (Brn-) are more serious in nonflow ZBBs. Meanwhile, the hydrogen evolution reaction (HER) and the sluggish kinetics of the Br2/Br- couple are also in-negligible. Herein, a compressive approach, the cation-exchange membrane (CEM) coating on Zn anodes and N-defect decoration toward carbon felt cathodes, is developed. The CEM with cation-only function can inhibit the formation of Zn dendrites via tuning the Zn2+ flow at the interface, block the noncationic substances, and hence prevent the shuttle of Br2/Brn- and the water decomposition-concerned HER. The optimized nonflow ZBBs can deliver high Coulombic, voltage, and energy efficiencies of 94.1, 92.8, and 87.4%, respectively, which can be well remained in 1000 cycles. Meanwhile, the output voltage is as high as 1.7 V at 10 mA cm-2 with a high areal capacity of 2 mA h cm-2, and a LED with a rated voltage of 1.6 V can be powered successfully, exhibiting high application value.

14.
J Environ Sci (China) ; 25 Suppl 1: S151-4, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25078820

RESUMO

Electroreductive dechlorination of chlorophenols with Pd catalyst supported on solidelectrode was studied. As solid electrodes, carbon cloth (CC), carbon felt (CF) and titanium mesh were used, and palladium was plated on solid electrodes by either electrolytic or electroless method. On each electrode with Pd, chlorophenols were qualitatively dechlorinated to phenol, while they were entirely intact on electrodes without Pd. Moreover, neither base electrode nor plating method significantly affected the activity of Pd as far as it was sufficiently loaded on the electrode. Based on the results in the experiments using one electrode repeatedly, Pd catalyst proved to possess a satisfactory duarability under the present condition. It was suggested that the reactive species responsinble for the dechlorination of chlorophenols could be formed during preliminary electrolysis. Thus, (Pd)x-H resulting from the adsorption of electrogenerated hydrogen on metallic Pd might be assumed most probable.


Assuntos
Clorofenóis/química , Eletrólise/métodos , Halogenação , Paládio/química , Carbono/química , Fibra de Carbono , Catálise , Cromatografia Líquida de Alta Pressão , Eletrodos , Microscopia Eletrônica de Varredura , Oxirredução
15.
Environ Sci Pollut Res Int ; 30(44): 99473-99483, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37612553

RESUMO

Despite its great potential to recover energy from waste sludge, anaerobic digestion (AD) still needs to solve issues such as slow hydrolysis and H2 inhibition. This study investigated the effects of coupling microbial electrolysis cell (MEC) with AD on the CH4 yield. Results and analysis show that the CH4 yield was significantly improved in MEC-AD reactors by two factors, i.e., enhanced and accelerated hydrolysis and acidogenesis, and enrichment of hydrogenotrophic methanogens in suspended culture. Compared with graphite rod and carbon fiber brush, carbon felt (CF) as an electrode showed the best performance in terms of net energy output. The CH4 yield of MEC-AD-CF was 40.2 L CH4/kg VS, 92.3% higher than in the control group, and the VS removal rate was also increased by 47.2%. Acetoclastic methanogens were dominant in the control AD reactor, while the relative abundance of Methanobacterium, which is electroactive and known as hydrogenotrophic methanogen, increased to 24.6% in MEC-AD with CF as electrodes.


Assuntos
Reatores Biológicos , Esgotos , Anaerobiose , Reatores Biológicos/microbiologia , Esgotos/microbiologia , Metano , Eletrodos
16.
Artigo em Inglês | MEDLINE | ID: mdl-36901583

RESUMO

In this study, MIL-53(Fe) was innovatively incorporated into carbon felt (CF) by growing in-situ using the solvothermal method. MIL-53(Fe)@carbon felt (MIL-53(Fe)@CF) was prepared and used for the degradation of rhodamine B (RhB). As a new photocatalytic membrane, MIL-53(Fe)@CF photocatalytic membrane has the characteristics of high degradation efficiency and recyclability. Influence of various parameters including MIL-53(Fe)@CF loading, light, electron trapper type, and starting pH on RhB degradation were investigated. The morphology, structure, and degradation properties of MIL-53(Fe)@CF photocatalytic membrane were characterized. Corresponding reaction mechanisms were explored. The results indicated that pH at 4.5 and 1 mmol/L H2O2, 150 mg MIL-53(Fe)@CF could photocatalytically degrade 1 mg/L RhB by 98.8% within 120 min, and the reaction rate constant (k) could reach 0.03635 min-1. The clearance rate of RhB decreased by only 2.8% after three operations. MIL-53(Fe)@CF photocatalytic membrane was found to be stable.


Assuntos
Fibra de Carbono , Rodaminas , Carbono , Fibra de Carbono/química , Peróxido de Hidrogênio/química , Rodaminas/química , Processos Fotoquímicos
17.
J Hazard Mater ; 451: 131055, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-36870126

RESUMO

The widely applied aromatic nitration in modern industry leads to toxic p-nitrophenol (PNP) in environment. Exploring its efficient degradation routes is of great interests. In this study, a novel four-step sequential modification procedure was developed to increase the specific surface area, functional group, hydrophilicity, and conductivity of carbon felt (CF). The implementation of the modified CF promoted reductive PNP biodegradation, attaining 95.2 ± 0.8% of removal efficiency with less accumulation of highly toxic organic intermediates (e.g., p-aminophenol), compared to carrier-free and CF-packed biosystems. The constructed anaerobic-aerobic process with modified CF in 219-d continuous operation achieved further removal of carbon and nitrogen containing intermediates and partial mineralization of PNP. The modified CF promoted the secretion of extracellular polymeric substances (EPS) and cytochrome c (Cyt c), which were essential components to facilitate direct interspecies electron transfer (DIET). Synergistic relationship was deduced that glucose was converted into volatile fatty acids by fermenters (e.g., Longilinea and Syntrophobacter), which donated electrons to the PNP degraders (e.g., Bacteroidetes_vadinHA17) through DIET channels (CF, Cyt c, EPS) to complete PNP removal. This study proposes a novel strategy using engineered conductive material to enhance the DIET process for efficient and sustainable PNP bioremediation.


Assuntos
Carbono , Elétrons , Fibra de Carbono , Biodegradação Ambiental , Nitrofenóis/metabolismo
18.
Environ Sci Pollut Res Int ; 30(56): 118736-118753, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37917268

RESUMO

In this work, different iron-based cathode materials were prepared using two different approaches: a novel one-step approach, which involved the incorporation of iron oxide with Printex® L6 carbon/PTFE (PL6C/PTFE) on bare carbon felt (CF) and a two-step approach, where iron oxide is deposited onto CF previously modified with PL6C/PTFE. The results obtained from the physical characterization indicated that the presence of iron oxide homogeneously dispersed on the felt fibers with the CF 3-D network kept intact in the one-step approach; whereas the formation of iron oxide aggregates between the felt fibers for material obtained using the two-step approach. Among the iron oxide-based cathodes investigated, the iron-incorporated electrode exhibited the greatest efficiency in terms of the removal and mineralization of norfloxacin (NOR) under neutral pH (complete NOR removal in less than 30 min with around 50% mineralization after 90 min). The findings of this study show that the low cost and simple-to-prepare iron-modified carbon-based materials in HEF process led to the enhanced degradation of organic contaminants in aqueous solutions.


Assuntos
Carbono , Poluentes Químicos da Água , Norfloxacino , Oxirredução , Poluentes Químicos da Água/análise , Peróxido de Hidrogênio/química , Ferro/química , Eletrodos , Politetrafluoretileno/química
19.
Chemosphere ; 338: 139510, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37454991

RESUMO

This study utilizes artificial intelligence and statistical modelling to optimize the operating parameters of a carbon-based electro-Fenton process for purifying model dye (RB19)-contaminated wastewater. Multilevel experimental Box-Behnken and uniform deisgns (BBD, UD) with four variables were analysed using polynomial regression analysis (PRA) and artificial neural networks (ANN), while the process optimisation was done using desirability function. For the given testing range but different design matrices and runs, both designs predicted a maximum RB19 removal (RB19-RR) of 90 ± 2.1% at lowest energy consumption (EC) of 0.44 ± 2.5 Wh, when voltage, Na2SO4, FeSO4, and time were maintained as follows: 4-5.3 V, 7-11 mM, 0.4-0.6 mM, and 35-40 min, respectively. All the design-model combinations portrayed the similar senitivity analyses, revealing that RB19 degradation and EC are primarily influenced by electrolysis time and voltage. The performance assessment demonstrated that all the design-model combinations also excellently predicted for unseen conditions as the maximum root mean squared error (RMSE) value for RB19-RR was 4.07, while it was 0.072 for EC, however, BBD-ANN performance proved to be slightly better than others. Having ∼57% less experimentation, UD based models managed to accurately predict the results for unseen conditions as the statistical errors were quite insignificant, even in some cases, RMSE found to be less for UD compared to BBD, elucidating the potential of uniform design as an alternative of conventional factorial designs. Nevertheless, the prediction accuracy is also dependent on modelling approach, as in some cases ANN failed to predict the response precisely specially when dealing with small data. Furthermore, techno-economic evaluation results spell out the efficacy of carbon felt based enhanced electro-Fenton process as promising environmental remediation technology and highlight its practical implication from view of operational cost.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Carbono , Fibra de Carbono , Inteligência Artificial , Eletrólise , Poluentes Químicos da Água/análise , Peróxido de Hidrogênio/análise , Oxirredução
20.
ACS Appl Mater Interfaces ; 15(40): 46775-46789, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37768857

RESUMO

Carbon electrodes are one of the key components of vanadium redox flow batteries (VRFBs), and their wetting behavior, electrochemical performance, and tendency to side reactions are crucial for cell efficiency. Herein, we demonstrate three different types of electrode modifications: poly(o-toluidine) (POT), Vulcan XC 72R, and an iron-doped carbon-nitrogen base material (Fe-N-C + carbon nanotube (CNT)). By combining synchrotron X-ray imaging with traditional characterization approaches, we give thorough insights into changes caused by each modification in terms of the electrochemical performance in both half-cell reactions, wettability and permeability, and tendency toward the hydrogen evolution side reaction. The limiting performance of POT and Vulcan XC 72R could mainly be ascribed to hindered electrolyte transport through the electrode. Fe-N-C + CNT displayed promising potential in the positive half-cell with improved electrochemical performance and wetting behavior but catalyzed the hydrogen evolution side reaction in the negative half-cell.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA