Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 223
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Cell Dev Biol ; 38: 179-218, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-35804477

RESUMO

Mitochondria are traditionally known as the powerhouse of the cell, but their functions extend far beyond energy production. They are vital in cellular and organismal pathways that direct metabolism, stress responses, immunity, and cellular fate. To accomplish these tasks, mitochondria have established networks of both intra- and extracellular communication. Intracellularly, these communication routes comprise direct contacts between mitochondria and other subcellular components as well as indirect vesicle transport of ions, metabolites, and other intracellular messengers. Extracellularly, mitochondria can induce stress responses or other cellular changes that secrete mitochondrial cytokine (mitokine) factors that can travel between tissues as well as respond to immune challenges from extracellular sources. Here we provide a current perspective on the major routes of communication for mitochondrial signaling, including their mechanisms and physiological impact. We also review the major diseases and age-related disorders associated with defects in these signaling pathways. An understanding of how mitochondrial signaling controls cellular homeostasis will bring greater insight into how dysfunctional mitochondria affect health in disease and aging.


Assuntos
Mitocôndrias , Transdução de Sinais , Citocinas/metabolismo , Homeostase , Mitocôndrias/metabolismo
2.
Immunity ; 56(8): 1809-1824.e10, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37499656

RESUMO

Complement factor H (CFH) negatively regulates consumption of complement component 3 (C3), thereby restricting complement activation. Genetic variants in CFH predispose to chronic inflammatory disease. Here, we examined the impact of CFH on atherosclerosis development. In a mouse model of atherosclerosis, CFH deficiency limited plaque necrosis in a C3-dependent manner. Deletion of CFH in monocyte-derived inflammatory macrophages propagated uncontrolled cell-autonomous C3 consumption without downstream C5 activation and heightened efferocytotic capacity. Among leukocytes, Cfh expression was restricted to monocytes and macrophages, increased during inflammation, and coincided with the accumulation of intracellular C3. Macrophage-derived CFH was sufficient to dampen resolution of inflammation, and hematopoietic deletion of CFH in atherosclerosis-prone mice promoted lesional efferocytosis and reduced plaque size. Furthermore, we identified monocyte-derived inflammatory macrophages expressing C3 and CFH in human atherosclerotic plaques. Our findings reveal a regulatory axis wherein CFH controls intracellular C3 levels of macrophages in a cell-autonomous manner, evidencing the importance of on-site complement regulation in the pathogenesis of inflammatory diseases.


Assuntos
Aterosclerose , Complemento C3 , Animais , Humanos , Camundongos , Aterosclerose/metabolismo , Complemento C3/genética , Complemento C3/metabolismo , Fator H do Complemento/genética , Fator H do Complemento/metabolismo , Inflamação , Macrófagos/metabolismo
3.
Cell ; 171(4): 809-823.e13, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29056340

RESUMO

Constitutive cell-autonomous immunity in metazoans predates interferon-inducible immunity and comprises primordial innate defense. Phagocytes mobilize interferon-inducible responses upon engagement of well-characterized signaling pathways by pathogen-associated molecular patterns (PAMPs). The signals controlling deployment of constitutive cell-autonomous responses during infection have remained elusive. Vita-PAMPs denote microbial viability, signaling the danger of cellular exploitation by intracellular pathogens. We show that cyclic-di-adenosine monophosphate in live Gram-positive bacteria is a vita-PAMP, engaging the innate sensor stimulator of interferon genes (STING) to mediate endoplasmic reticulum (ER) stress. Subsequent inactivation of the mechanistic target of rapamycin mobilizes autophagy, which sequesters stressed ER membranes, resolves ER stress, and curtails phagocyte death. This vita-PAMP-induced ER-phagy additionally orchestrates an interferon response by localizing ER-resident STING to autophagosomes. Our findings identify stress-mediated ER-phagy as a cell-autonomous response mobilized by STING-dependent sensing of a specific vita-PAMP and elucidate how innate receptors engage multilayered homeostatic mechanisms to promote immunity and survival after infection.


Assuntos
Bactérias Gram-Positivas/fisiologia , Infecções por Bactérias Gram-Positivas/imunologia , Proteínas de Membrana/metabolismo , Fagócitos/imunologia , Animais , Autofagia , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Feminino , Masculino , Camundongos , Moléculas com Motivos Associados a Patógenos/metabolismo , Serina-Treonina Quinases TOR/metabolismo
4.
Cell ; 167(2): 382-396.e17, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27693356

RESUMO

The inflammasome is an intracellular signaling complex, which on recognition of pathogens and physiological aberration, drives activation of caspase-1, pyroptosis, and the release of the pro-inflammatory cytokines IL-1ß and IL-18. Bacterial ligands must secure entry into the cytoplasm to activate inflammasomes; however, the mechanisms by which concealed ligands are liberated in the cytoplasm have remained unclear. Here, we showed that the interferon-inducible protein IRGB10 is essential for activation of the DNA-sensing AIM2 inflammasome by Francisella novicida and contributed to the activation of the LPS-sensing caspase-11 and NLRP3 inflammasome by Gram-negative bacteria. IRGB10 directly targeted cytoplasmic bacteria through a mechanism requiring guanylate-binding proteins. Localization of IRGB10 to the bacterial cell membrane compromised bacterial structural integrity and mediated cytosolic release of ligands for recognition by inflammasome sensors. Overall, our results reveal IRGB10 as part of a conserved signaling hub at the interface between cell-autonomous immunity and innate immune sensing pathways.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Francisella/imunologia , GTP Fosfo-Hidrolases/metabolismo , Infecções por Bactérias Gram-Negativas/imunologia , Interações Hospedeiro-Patógeno/imunologia , Inflamassomos/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Linfócitos B/imunologia , Caspases/metabolismo , Caspases Iniciadoras , Citosol/imunologia , Citosol/microbiologia , GTP Fosfo-Hidrolases/genética , Infecções por Bactérias Gram-Negativas/microbiologia , Imunidade Celular , Imunidade Inata , Inflamassomos/metabolismo , Ligantes , Camundongos , Camundongos Mutantes , Células Mieloides/imunologia , Linfócitos T/imunologia
5.
Mol Cell ; 83(20): 3642-3658.e4, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37788673

RESUMO

The human ataxia telangiectasia mutated and Rad3-related (ATR) kinase functions in the nucleus to protect genomic integrity. Micronuclei (MN) arise from genomic and chromosomal instability and cause aneuploidy and chromothripsis, but how MN are removed is poorly understood. Here, we show that ATR is active in MN and promotes their rupture in S phase by phosphorylating Lamin A/C at Ser395, which primes Ser392 for CDK1 phosphorylation and destabilizes the MN envelope. In cells harboring MN, ATR or CDK1 inhibition reduces MN rupture. Consequently, ATR inhibitor (ATRi) diminishes activation of the cytoplasmic DNA sensor cGAS and compromises cGAS-dependent autophagosome accumulation in MN and clearance of micronuclear DNA. Furthermore, ATRi reduces cGAS-mediated senescence and killing of MN-bearing cancer cells by natural killer cells. Thus, in addition to the canonical ATR signaling pathway, an ATR-CDK1-Lamin A/C axis promotes MN rupture to clear damaged DNA and cells, protecting the genome in cell populations through unexpected cell-autonomous and cell-non-autonomous mechanisms.


Assuntos
Dano ao DNA , Lamina Tipo A , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Fosforilação , Nucleotidiltransferases/genética , DNA/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
6.
Annu Rev Cell Dev Biol ; 30: 207-33, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25288113

RESUMO

Development in multicellular organisms requires the coordinated production of a large number of specialized cell types through sophisticated signaling mechanisms. Non-cell-autonomous signals are one of the key mechanisms by which organisms coordinate development. In plants, intercellular movement of transcription factors and other mobile signals, such as hormones and peptides, is essential for normal development. Through a combination of different approaches, a large number of non-cell-autonomous signals that control plant development have been identified. We review some of the transcriptional regulators that traffic between cells, as well as how changes in symplasmic continuity affect and are affected by development. We also review current models for how mobile signals move via plasmodesmata and how movement is inhibited. Finally, we consider challenges in and new tools for studying protein movement.


Assuntos
Comunicação Celular/fisiologia , Desenvolvimento Vegetal/fisiologia , Proteínas de Plantas/metabolismo , Plasmodesmos/fisiologia , Transporte Proteico/fisiologia , Parede Celular/ultraestrutura , Cloroplastos/fisiologia , Florígeno , Glucanos/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Plasmodesmos/ultraestrutura , RNA de Plantas/fisiologia , Transdução de Sinais , Fatores de Transcrição/metabolismo , Tricomas/metabolismo
7.
Proc Natl Acad Sci U S A ; 120(15): e2216028120, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37023136

RESUMO

The gamma-interferon (IFNγ)-inducible guanylate-binding proteins (GBPs) promote host defense against gram-negative cytosolic bacteria in part through the induction of an inflammatory cell death pathway called pyroptosis. To activate pyroptosis, GBPs facilitate sensing of the gram-negative bacterial outer membrane component lipopolysaccharide (LPS) by the noncanonical caspase-4 inflammasome. There are seven human GBP paralogs, and it is unclear how each GBP contributes to LPS sensing and pyroptosis induction. GBP1 forms a multimeric microcapsule on the surface of cytosolic bacteria through direct interactions with LPS. The GBP1 microcapsule recruits caspase-4 to bacteria, a process deemed essential for caspase-4 activation. In contrast to GBP1, closely related paralog GBP2 is unable to bind bacteria on its own but requires GBP1 for direct bacterial binding. Unexpectedly, we find that GBP2 overexpression can restore gram-negative-induced pyroptosis in GBP1KO cells, without GBP2 binding to the bacterial surface. A mutant of GBP1 that lacks the triple arginine motif required for microcapsule formation also rescues pyroptosis in GBP1KO cells, showing that binding to bacteria is dispensable for GBPs to promote pyroptosis. Instead, we find that GBP2, like GBP1, directly binds and aggregates "free" LPS through protein polymerization. We demonstrate that supplementation of either recombinant polymerized GBP1 or GBP2 to an in vitro reaction is sufficient to enhance LPS-induced caspase-4 activation. This provides a revised mechanistic framework for noncanonical inflammasome activation where GBP1 or GBP2 assembles cytosol-contaminating LPS into a protein-LPS interface for caspase-4 activation as part of a coordinated host response to gram-negative bacterial infections.


Assuntos
Proteínas de Ligação ao GTP , Lipopolissacarídeos , Humanos , Cápsulas , Proteínas de Transporte , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Inflamassomos/metabolismo , Interferon gama/metabolismo , Lipopolissacarídeos/metabolismo , Piroptose , Caspases Iniciadoras/metabolismo
8.
Int Immunol ; 36(5): 199-210, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38175650

RESUMO

Toxoplasma gondii is a pathogenic protozoan parasite of the Apicomplexa family that affects approximately 30% of the world's population. Symptoms are usually mild in immunocompetent hosts, but it can pose significant health risks to immunosuppressed patients and pregnant women. Current treatment options are limited, and new therapies and vaccines are needed. The innate immune system is the first to recognize T. gondii infection and activates pro-inflammatory cytokines and chemokines to promote acquired immunity. The IL-12/IFN-γ axis is particularly important, and when this pathway is inhibited, infection becomes uncontrolled and lethal. In mice, receptors such as Toll-like receptor 11 (TLR11), TLR12, and chemokine receptors are involved in T. gondii recognition and the modulation of immune responses. In humans, where TLR11 and TLR12 are absent, other mechanisms have been reported as the innate immune sensing system in T. gondii infection. Immune cells activated in response to infection produce interleukin (IL)-12, which stimulates the proliferation of natural killer cells and T cells and promotes the production of interferon (IFN)-γ. Several IFN-γ-induced anti-T. gondii defense mechanisms inhibit parasite growth. These include nitric oxide (NO) production, indoleamine 2,3-dioxygenase, and the destruction of parasitophorous vacuoles by IFN-γ-inducible immunity related GTPase groups (IRGs and GBPs). Recent studies focusing on the diversity of IRGs in rodents and effector molecules in T. gondii suggest that host immune mechanisms and pathogen immune evasion mechanisms have co-evolved. Furthermore, it has been suggested that cysts are not simply dormant during chronic infection. This review summarizes recent findings on anti-T. gondii innate, adaptive, and cell-autonomous immune responses.


Assuntos
Toxoplasma , Toxoplasmose , Humanos , Gravidez , Feminino , Camundongos , Animais , Interleucina-12 , Imunidade Celular , Proteínas de Transporte
9.
Biochem Biophys Res Commun ; 716: 150024, 2024 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-38701555

RESUMO

Macro-autophagy (autophagy hereafter) is an evolutionarily conserved cellular process that has long been recognized as an intracellular mechanism for maintaining cellular homeostasis. It involves the formation of a membraned structure called the autophagosome, which carries cargo that includes toxic protein aggregates and dysfunctional organelles to the lysosome for degradation and recycling. Autophagy is primarily considered and studied as a cell-autonomous mechanism. However, recent studies have illuminated an underappreciated facet of autophagy, i.e., non-autonomously regulated autophagy. Non-autonomously regulated autophagy involves the degradation of autophagic components, including organelles, cargo, and signaling molecules, and is induced in neighboring cells by signals from primary adjacent or distant cells/tissues/organs. This review provides insight into the complex molecular mechanisms governing non-autonomously regulated autophagy, highlighting the dynamic interplay between cells within tissue/organ or distinct cell types in different tissues/organs. Emphasis is placed on modes of intercellular communication that include secreted molecules, including microRNAs, and their regulatory roles in orchestrating this phenomenon. Furthermore, we explore the multidimensional roles of non-autonomously regulated autophagy in various physiological contexts, spanning tissue development and aging, as well as its importance in diverse pathological conditions, including cancer and neurodegeneration. By studying the complexities of non-autonomously regulated autophagy, we hope to gain insights into the sophisticated intercellular dynamics within multicellular organisms, including mammals. These studies will uncover novel avenues for therapeutic intervention to modulate intercellular autophagic pathways in altered human physiology.


Assuntos
Autofagia , Humanos , Autofagia/fisiologia , Animais , Comunicação Celular , MicroRNAs/metabolismo , MicroRNAs/genética , Neoplasias/patologia , Neoplasias/metabolismo , Neoplasias/genética , Transdução de Sinais , Autofagossomos/metabolismo
10.
Int J Mol Sci ; 25(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474088

RESUMO

Members of the phloem protein 16 (PP16) gene family are induced by elicitors in rice and the corresponding proteins from cucurbits, which display RNA binding and intercellular transport activities, are accumulated in phloem sap. These proteins facilitate the movement of protein complexes through the phloem translocation flow and may be involved in the response to water deficit, among other functions. However, there is scant information regarding their function in other plants, including the identification of paralog genes in non-vascular plants and chlorophytes. In the present work, an evolutionary and structural analysis of the PP16 family in green plants (Viridiplantae) was carried out. Data mining in different databases indicated that PP16 likely originated from a larger gene present in an ancestral lineage that gave rise to chlorophytes and multicellular plants. This gene encodes a protein related to synaptotagmin, which is involved in vesicular transport in animal systems, although other members of this family play a role in lipid turnover in endomembranes and organelles. These proteins contain a membrane-binding C2 domain shared with PP16 proteins in vascular plants. In silico analysis of the predicted structure of the PP16 protein family identified several ß-sheets, one α-helix, and intrinsically disordered regions. PP16 may have been originally involved in vesicular trafficking and/or membrane maintenance but specialized in long-distance signaling during the emergence of the plant vascular system.


Assuntos
Proteínas de Plantas , Viridiplantae , Proteínas de Plantas/genética , Floema/metabolismo , Plantas/metabolismo , Transporte Biológico , Viridiplantae/metabolismo
11.
Apoptosis ; 28(3-4): 326-334, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36346539

RESUMO

As a cellular intrinsic mechanism leading to cellular demise, apoptosis was thoroughly characterized from a mechanistic perspective. Nowadays there is an increasing interest in describing the non-cell autonomous or community effects of apoptosis, especially in the context of resistance to cancer treatments. Transitioning from cell-centered to cell population-relevant mechanisms adds a layer of complexity for imaging and analyzing an enormous number of apoptotic events. In addition, the community effect between apoptotic and living cells is difficult to be taken into account for complex analysis. We describe here a robust and easy to implement method to analyze the interactions between cancer cells, while under apoptotic pressure. Using this approach we showed as proof-of-concept that apoptosis is insensitive to cellular density, while the proximity to apoptotic cells increases the probability of a given cell to undergo apoptosis.


Assuntos
Apoptose , Neoplasias , Neoplasias/patologia , Contagem de Células
12.
EMBO J ; 38(11)2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-30979778

RESUMO

Apoptosis is a frequent form of programmed cell death, but the apoptotic signaling pathway can also be engaged at a low level, in the absence of cell death. We here report that such sub-lethal engagement of mitochondrial apoptosis signaling causes the secretion of cytokines from human epithelial cells in a process controlled by the Bcl-2 family of proteins. We further show that sub-lethal signaling of the mitochondrial apoptosis pathway is initiated by infections with all tested viral, bacterial, and protozoan pathogens and causes damage to the genomic DNA. Epithelial cells infected with these pathogens secreted cytokines, and this cytokine secretion upon microbial infection was substantially reduced if mitochondrial sub-lethal apoptosis signaling was blocked. In the absence of mitochondrial pro-apoptotic signaling, the ability of epithelial cells to restrict intracellular bacterial growth was impaired. Triggering of the mitochondrial apoptosis apparatus thus not only causes apoptosis but also has an independent role in immune defense.


Assuntos
Apoptose/fisiologia , Imunidade/fisiologia , Mitocôndrias/fisiologia , Animais , Morte Celular/imunologia , Células Cultivadas , Células Epiteliais/fisiologia , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Camundongos , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia , Serina Endopeptidases/fisiologia , Transdução de Sinais/fisiologia , Proteína Killer-Antagonista Homóloga a bcl-2/fisiologia , Proteína X Associada a bcl-2/fisiologia
13.
J Exp Bot ; 74(15): 4401-4414, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37210666

RESUMO

Plasmodesmata (PD) are plasma membrane-lined cytoplasmic nanochannels that mediate cell-to-cell communication across the cell wall. A range of proteins are embedded in the PD plasma membrane and endoplasmic reticulum (ER), and function in regulating PD-mediated symplasmic trafficking. However, knowledge of the nature and function of the ER-embedded proteins in the intercellular movement of non-cell-autonomous proteins is limited. Here, we report the functional characterization of two ER luminal proteins, AtBiP1/2, and two ER integral membrane proteins, AtERdj2A/B, which are located within the PD. These PD proteins were identified as interacting proteins with cucumber mosaic virus (CMV) movement protein (MP) in co-immunoprecipitation studies using an Arabidopsis-derived plasmodesmal-enriched cell wall protein preparation (PECP). The AtBiP1/2 PD location was confirmed by TEM-based immunolocalization, and their AtBiP1/2 signal peptides (SPs) function in PD targeting. In vitro/in vivo pull-down assays revealed the association between AtBiP1/2 and CMV MP, mediated by AtERdj2A, through the formation of an AtBiP1/2-AtERdj2-CMV MP complex within PD. The role of this complex in CMV infection was established, as systemic infection was retarded in bip1/bip2w and erdj2b mutants. Our findings provide a model for a mechanism by which the CMV MP mediates cell-to-cell trafficking of its viral ribonucleoprotein complex.


Assuntos
Arabidopsis , Cucumovirus , Infecções por Citomegalovirus , Arabidopsis/metabolismo , Plasmodesmos/metabolismo , Cucumovirus/metabolismo , Retículo Endoplasmático/metabolismo , Infecções por Citomegalovirus/metabolismo , Proteínas do Movimento Viral em Plantas/genética , Proteínas do Movimento Viral em Plantas/metabolismo , Nicotiana/metabolismo
14.
Cell Mol Neurobiol ; 43(5): 2149-2163, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36219378

RESUMO

The Wobbler mouse is an accepted model of sporadic amyotrophic lateral sclerosis. The spinal cord of clinically symptomatic animals (3-5 months old) shows vacuolar motoneuron degeneration, inflammation, and gliosis accompanied by motor impairment. However, data are not conclusive concerning pathological changes appearing early after birth. To answer this question, we used postnatal day (PND) 6 genotyped Wobbler pups to determine abnormalities of glia and neurons at this early age period in the spinal cord. We found astrogliosis, microgliosis with morphophenotypic changes pointing to active ameboid microglia, enhanced expression of the proinflammatory markers TLR4, NFkB, TNF, and inducible nitric oxide synthase. The astrocytic enzyme glutamine synthase and the glutamate-aspartate transporter GLAST were also reduced in PND 6 Wobbler pups, suggesting excitotoxicity due to impaired glutamate homeostasis. At the neuronal level, PND 6 Wobblers showed swollen soma, increased choline acetyltransferase immunofluorescence staining, and low expression of the neuronal nuclear antigen NeuN. However, vacuolated motoneurons, a typical signature of older clinically symptomatic Wobbler mice, were absent in the spinal cord of PND 6 Wobblers. The results suggest predominance of neuroinflammation and abnormalities of microglia and astrocytes at this early period of Wobbler life, accompanied by some neuronal changes. Data support the non-cell autonomous hypothesis of the Wobbler disorder, and bring useful information with regard to intervening molecular inflammatory mechanisms at the beginning stage of human motoneuron degenerative diseases.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Animais , Camundongos , Lactente , Doenças Neuroinflamatórias , Neurônios Motores , Inflamação , Neuroglia , Modelos Animais de Doenças , Gliose , Medula Espinal , Camundongos Mutantes Neurológicos
15.
Cell Biol Int ; 47(10): 1667-1683, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37554060

RESUMO

Leukemic cells (LCs) arise from the hematopoietic stem/and progenitor cells (HSCs/HSPCs) and utilize cues from the bone marrow microenvironment (BMM) for their regulation in the same way as their normal HSC counterparts. Mesenchymal stromal cells (MSCs), a vital component of the BMM promote leukemogenesis by creating a protective and immune-tolerant microenvironment that can support the survival of LCs, helping them escape chemotherapy, thereby resulting in the relapse of leukemia. Conversely, MSCs also induce apoptosis in the LCs and inhibit their proliferation by interfering with their self-renewal potential. This review discusses the work done so far on cell-autonomous (intrinsic) and MSCs-mediated non-cell-autonomous (extrinsic) regulation of myeloid leukemia with a special focus on the need to investigate the extrinsic regulation of myeloid leukemia to understand the contrasting role of MSCs in leukemogenesis. These mechanisms could be exploited to formulate novel therapeutic strategies that specifically target the leukemic microenvironment.


Assuntos
Leucemia Mieloide Aguda , Leucemia , Humanos , Nicho de Células-Tronco/fisiologia , Medula Óssea , Células-Tronco Hematopoéticas , Microambiente Tumoral
16.
Brain ; 145(2): 481-489, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-35042241

RESUMO

Amyotrophic lateral sclerosis is a rapidly progressive and fatal disease. Although astrocytes are increasingly recognized contributors to the underlying pathogenesis, the cellular autonomy and uniformity of astrocyte reactive transformation in different genetic forms of amyotrophic lateral sclerosis remain unresolved. Here we systematically examine these issues by using highly enriched and human induced pluripotent stem cell-derived astrocytes from patients with VCP and SOD1 mutations. We show that VCP mutant astrocytes undergo cell-autonomous reactive transformation characterized by increased expression of complement component 3 (C3) in addition to several characteristic gene expression changes. We then demonstrate that isochronic SOD1 mutant astrocytes also undergo a cell-autonomous reactive transformation, but that this is molecularly distinct from VCP mutant astrocytes. This is shown through transcriptome-wide analyses, identifying divergent gene expression profiles and activation of different key transcription factors in SOD1 and VCP mutant human induced pluripotent stem cell-derived astrocytes. Finally, we show functional differences in the basal cytokine secretome between VCP and SOD1 mutant human induced pluripotent stem cell-derived astrocytes. Our data therefore reveal that reactive transformation can occur cell autonomously in human amyotrophic lateral sclerosis astrocytes and with a striking degree of early molecular and functional heterogeneity when comparing different disease-causing mutations. These insights may be important when considering astrocyte reactivity as a putative therapeutic target in familial amyotrophic lateral sclerosis.


Assuntos
Esclerose Lateral Amiotrófica , Células-Tronco Pluripotentes Induzidas , Esclerose Lateral Amiotrófica/metabolismo , Astrócitos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação/genética , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/genética
17.
Proc Natl Acad Sci U S A ; 117(46): 29101-29112, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33127758

RESUMO

Patients with amyotrophic lateral sclerosis (ALS) can have abnormal TDP-43 aggregates in the nucleus and cytosol of their surviving neurons and glia. Although accumulating evidence indicates that astroglial dysfunction contributes to motor neuron degeneration in ALS, the normal function of TDP-43 in astrocytes are largely unknown, and the role of astroglial TDP-43 loss to ALS pathobiology remains to be clarified. Herein, we show that TDP-43-deleted astrocytes exhibit a cell-autonomous increase in GFAP immunoreactivity without affecting astrocyte or microglia proliferation. At the transcriptomic level, TDP-43-deleted astrocytes resemble A1-reactive astrocytes and induce microglia to increase C1q expression. These astrocytic changes do not cause loss of motor neurons in the spinal cord or denervation at the neuromuscular junction. In contrast, there is a selective reduction of mature oligodendrocytes, but not oligodendrocyte precursor cells, suggesting triglial dysfunction mediated by TDP-43 loss in astrocytes. Moreover, mice with astroglial TDP-43 deletion develop motor, but not sensory, deficits. Taken together, our results demonstrate that TDP-43 is required to maintain the protective functions of astrocytes relevant to the development of motor deficits in mice.


Assuntos
Astrócitos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fenótipo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Proliferação de Células , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Feminino , Deleção de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , Neurônios Motores/metabolismo , Junção Neuromuscular/metabolismo , Oligodendroglia/metabolismo , Transcriptoma
18.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36769182

RESUMO

Cell-intrinsic immune mechanisms control intracellular pathogens that infect eukaryotes. The intracellular pathogen Mycobacterium tuberculosis (Mtb) evolved to withstand cell-autonomous immunity to cause persistent infections and disease. A potent inducer of cell-autonomous immunity is the lymphocyte-derived cytokine IFNγ. While the production of IFNγ by T cells is essential to protect against Mtb, it is not capable of fully eradicating Mtb infection. This suggests that Mtb evades a subset of IFNγ-mediated antimicrobial responses, yet what mechanisms Mtb resists remains unclear. The IFNγ-inducible Guanylate binding proteins (GBPs) are key host defense proteins able to control infections with intracellular pathogens. GBPs were previously shown to directly restrict Mycobacterium bovis BCG yet their role during Mtb infection has remained unknown. Here, we examine the importance of a cluster of five GBPs on mouse chromosome 3 in controlling Mycobacterial infection. While M. bovis BCG is directly restricted by GBPs, we find that the GBPs on chromosome 3 do not contribute to the control of Mtb replication or the associated host response to infection. The differential effects of GBPs during Mtb versus M. bovis BCG infection is at least partially explained by the absence of the ESX1 secretion system from M. bovis BCG, since Mtb mutants lacking the ESX1 secretion system become similarly susceptible to GBP-mediated immune defense. Therefore, this specific genetic interaction between the murine host and Mycobacteria reveals a novel function for the ESX1 virulence system in the evasion of GBP-mediated immunity.


Assuntos
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculose , Camundongos , Animais , Mycobacterium tuberculosis/metabolismo , Tuberculose/microbiologia , Proteínas de Transporte/metabolismo , Vacina BCG
19.
Immunol Rev ; 287(1): 50-61, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30565243

RESUMO

The human adaptive immune system recognizes almost all the pathogens that we encounter and all the tumor antigens that may arise during our lifetime. Primary immunodeficiencies affecting lymphocyte development or function therefore lead to severe infections and tumor susceptibility. Furthermore, the fact that autoimmunity is a frequent feature of primary immunodeficiencies reveals a third function of the adaptive immune system: its self-regulation. Indeed, the generation of a broad repertoire of antigen receptors (via a unique strategy of random somatic rearrangements of gene segments in T cell and B cell receptor loci) inevitably creates receptors with specificity for self-antigens and thus leads to the presence of autoreactive lymphocytes. There are many different mechanisms for controlling the emergence or action of autoreactive lymphocytes, including clonal deletion in the primary lymphoid organs, receptor editing, anergy, suppression of effector lymphocytes by regulatory lymphocytes, and programmed cell death. Here, we review the genetic defects affecting lymphocyte apoptosis and that are associated with lymphoproliferation and autoimmunity, together with the role of somatic mutations and their potential involvement in more common autoimmune diseases.


Assuntos
Apoptose/genética , Autoimunidade/genética , Linfócitos B/imunologia , Leucemia/genética , Linfócitos T/imunologia , Receptor fas/genética , Proteínas ras/genética , Animais , Autoantígenos/imunologia , Humanos , Mutação/genética , Receptores de Antígenos/genética
20.
Dev Biol ; 470: 10-20, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33160939

RESUMO

VAMP/synaptobrevin-associated protein B (VAP-B) is a type II ER membrane protein, but its N-terminal MSP domain (MSPd) can be cleaved and secreted. Mutations preventing the cleavage and secretion of MSPd have been implicated in cases of human neurodegenerative diseases. The site of VAP cleavage and the tissues capable in releasing the processed MSPd are not understood. In this study, we analyze the C. elegans VAP-B homolog, VPR-1, for its processing and secretion from the intestine. We show that intestine-specific expression of an N-terminally FLAG-tagged VPR-1 rescues underdeveloped gonad and sterility defects in vpr-1 null hermaphrodites. Immunofluorescence studies reveal that the tagged intestinal expressed VPR-1 is present at the distal gonad. Mass spectrometry analysis of a smaller product of the N-terminally tagged VPR-1 identifies a specific cleavage site at Leu156. Mutation of the leucine results in loss of gonadal MSPd signal and reduced activity of the mutant VPR-1. Thus, we report for the first time the cleavage site of VPR-1 and provide direct evidence that intestinally expressed VPR-1 can be released and signal in the distal gonad. These results establish the foundation for further exploration of VAP cleavage, MSPd secretion, and non-cell-autonomous signaling in development and diseases.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Helminto/metabolismo , Proteínas de Membrana/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Retículo Endoplasmático/metabolismo , Genes de Helmintos , Gônadas/química , Gônadas/crescimento & desenvolvimento , Gônadas/metabolismo , Proteínas de Helminto/química , Organismos Hermafroditas/genética , Organismos Hermafroditas/metabolismo , Organismos Hermafroditas/fisiologia , Infertilidade , Intestinos/citologia , Intestinos/fisiologia , Leucina/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Fenótipo , Mutação Puntual , Domínios Proteicos , Processamento de Proteína Pós-Traducional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA