Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biol Cell ; 111(2): 29-38, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30383886

RESUMO

BACKGROUND INFORMATION: In the "9+2"-type motile cilia, radial spokes (RSs) protruded from the nine peripheral microtubule doublets surround and interact with the central pair (CP) apparatus to regulate ciliary beat. RSPH9 is the human homologue of the essential protozoan RS head protein Rsp9. Its mutations in human primary ciliary dyskinesia patients, however, cause CP loss in a small portion of airway cilia without affecting the ciliary localization of other head proteins. RESULTS: We characterized mouse Rsph9 and investigated its function in ependymal motile cilia. Rsph9 was specifically expressed in mouse tissues containing motile cilia and upregulated during multiciliation. Its ciliary localization complied with its putative role as an RS subunit. Depletion of Rsph9 by RNAi in mouse ependymal cilia resulted in a near complete CP loss and altered the ciliary beat pattern from planar to rotational. Multiple RS proteins, including those in the head, were also markedly downregulated in the Rsph9-depleted cilia. CONCLUSION: Rsph9 is essential for both the RS head assembly and the CP maintenance in mammalian ependymal cilia. SIGNIFICANCE: Our results help to understand the assembly and functions of mammalian RS and pathology of RS-related ciliopathy.


Assuntos
Cílios/metabolismo , Proteínas do Citoesqueleto/metabolismo , Microtúbulos/metabolismo , Animais , Axonema/metabolismo , Axonema/ultraestrutura , Linhagem Celular , Cílios/ultraestrutura , Proteínas do Citoesqueleto/genética , Epêndima/metabolismo , Humanos , Camundongos , Microtúbulos/ultraestrutura , Interferência de RNA
2.
Artigo em Inglês | MEDLINE | ID: mdl-38899546

RESUMO

Motile cilia have a so-called "9 + 2" structure, which consists of nine doublet microtubules and a central pair apparatus. The central pair apparatus (CA) is thought to interact mechanically with radial spokes and to control the flagellar beating. Recently, the components of the CA have been identified by proteomic and genomic analyses. Still, the mechanism of how the CA contributes to ciliary motility has much to be revealed. Here, we focused on one CA component with a large molecular weight: FAP47, and its relationship with two other CA components with large molecular weight: HYDIN, and CPC1. The analyses of motility of the Chlamydomonas mutants revealed that in contrast to cpc1 or hydin, which swam more slowly than the wild type, fap47 cells displayed wild-type swimming velocity and flagellar beat frequency, yet interestingly, fap47 cells have phototaxis defects and swim straighter than the wild-type cells. Furthermore, the double mutant fap47cpc1 and fap47hydin showed significantly slower swimming than cpc1 and hydin cells, and the motility defect of fap47cpc1 was rescued to the cpc1 level with GFP-tagged FAP47, indicating that the lack of FAP47 makes the motility defect of cpc1 worse. Cryo-electron tomography demonstrated that the fap47 lacks a part of the C1-C2 bridge of CA. Taken together, these observations indicate that FAP47 maintains the structural stiffness of the CA, which is important for flagellar regulation.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38780123

RESUMO

In this review, we provide a condensed overview of what is currently known about the mechanical functioning of the flagellar/ciliary axoneme. We also present a list of 10 specific areas where our current knowledge is incomplete and explain the benefits of further experimental investigation. Many of the physical parameters of the axoneme and its component parts have not been determined. This limits our ability to understand how the axoneme structure contributes to its functioning in several regards. It restricts our ability to understand how the mechanics of the structure contribute to the regulation of motor function. It also confines our ability to understand the three-dimensional workings of the axoneme and how various beating modes are accomplished. Lastly, it prevents accurate computational modeling of the axoneme in three-dimensions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA