Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.295
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Cell ; 180(6): 1228-1244.e24, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32142649

RESUMO

Transcription-coupled nucleotide excision repair (TC-NER) is initiated by the stalling of elongating RNA polymerase II (RNAPIIo) at DNA lesions. The ubiquitination of RNAPIIo in response to DNA damage is an evolutionarily conserved event, but its function in mammals is unknown. Here, we identified a single DNA damage-induced ubiquitination site in RNAPII at RPB1-K1268, which regulates transcription recovery and DNA damage resistance. Mechanistically, RPB1-K1268 ubiquitination stimulates the association of the core-TFIIH complex with stalled RNAPIIo through a transfer mechanism that also involves UVSSA-K414 ubiquitination. We developed a strand-specific ChIP-seq method, which revealed RPB1-K1268 ubiquitination is important for repair and the resolution of transcriptional bottlenecks at DNA lesions. Finally, RPB1-K1268R knockin mice displayed a short life-span, premature aging, and neurodegeneration. Our results reveal RNAPII ubiquitination provides a two-tier protection mechanism by activating TC-NER and, in parallel, the processing of DNA damage-stalled RNAPIIo, which together prevent prolonged transcription arrest and protect against neurodegeneration.


Assuntos
Reparo do DNA/fisiologia , RNA Polimerase II/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , DNA/metabolismo , Dano ao DNA/fisiologia , DNA Helicases/metabolismo , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Feminino , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Polimerase II/genética , Ubiquitinação
2.
Cell ; 177(5): 1319-1329.e11, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-30955888

RESUMO

Cell fate decisions are governed by sequence-specific transcription factors (TFs) that act in small populations of cells within developing embryos. To understand their functions in vivo, it is important to identify TF binding sites in these cells. However, current methods cannot profile TFs genome-wide at or near the single-cell level. Here we adapt the cleavage under targets and release using nuclease (CUT&RUN) method to profile TFs in low cell numbers, including single cells and individual pre-implantation embryos. Single-cell experiments suggest that only a fraction of TF binding sites are occupied in most cells, in a manner broadly consistent with measurements of peak intensity from multi-cell studies. We further show that chromatin binding by the pluripotency TF NANOG is highly dependent on the SWI/SNF chromatin remodeling complex in individual blastocysts but not in cultured cells. Ultra-low input CUT&RUN (uliCUT&RUN) therefore enables interrogation of TF binding from rare cell populations of particular importance in development or disease.


Assuntos
Blastocisto/metabolismo , Montagem e Desmontagem da Cromatina/fisiologia , Cromatina/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Fatores de Transcrição/metabolismo , Animais , Feminino , Camundongos
3.
Cell ; 176(4): 882-896.e18, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30639098

RESUMO

T helper type 2 (Th2) cells are important regulators of mammalian adaptive immunity and have relevance for infection, autoimmunity, and tumor immunology. Using a newly developed, genome-wide retroviral CRISPR knockout (KO) library, combined with RNA-seq, ATAC-seq, and ChIP-seq, we have dissected the regulatory circuitry governing activation and differentiation of these cells. Our experiments distinguish cell activation versus differentiation in a quantitative framework. We demonstrate that these two processes are tightly coupled and are jointly controlled by many transcription factors, metabolic genes, and cytokine/receptor pairs. There are only a small number of genes regulating differentiation without any role in activation. By combining biochemical and genetic data, we provide an atlas for Th2 differentiation, validating known regulators and identifying factors, such as Pparg and Bhlhe40, as part of the core regulatory network governing Th2 helper cell fates.


Assuntos
Receptor Cross-Talk/imunologia , Células Th2/imunologia , Células Th2/metabolismo , Animais , Sistemas CRISPR-Cas/genética , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Cromatina , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T Auxiliares-Indutores/metabolismo , Fatores de Transcrição/metabolismo
4.
Mol Cell ; 84(10): 1826-1841.e5, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38657614

RESUMO

In meiotic cells, chromosomes are organized as chromatin loop arrays anchored to a protein axis. This organization is essential to regulate meiotic recombination, from DNA double-strand break (DSB) formation to their repair. In mammals, it is unknown how chromatin loops are organized along the genome and how proteins participating in DSB formation are tethered to the chromosome axes. Here, we identify three categories of axis-associated genomic sites: PRDM9 binding sites, where DSBs form; binding sites of the insulator protein CTCF; and H3K4me3-enriched sites. We demonstrate that PRDM9 promotes the recruitment of MEI4 and IHO1, two proteins essential for DSB formation. In turn, IHO1 anchors DSB sites to the axis components HORMAD1 and SYCP3. We discovered that IHO1, HORMAD1, and SYCP3 are associated at the DSB ends during DSB repair. Our results highlight how interactions of proteins with specific genomic elements shape the meiotic chromosome organization for recombination.


Assuntos
Quebras de DNA de Cadeia Dupla , Histona-Lisina N-Metiltransferase , Meiose , Meiose/genética , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Animais , Camundongos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Histonas/metabolismo , Histonas/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Sítios de Ligação , Cromossomos/genética , Cromossomos/metabolismo , Cromatina/metabolismo , Cromatina/genética , Fator de Ligação a CCCTC/metabolismo , Fator de Ligação a CCCTC/genética , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Recombinação Genética , Masculino
5.
Mol Cell ; 84(5): 867-882.e5, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38295804

RESUMO

The structural maintenance of chromosomes (SMC) protein complexes-cohesin, condensin, and the Smc5/6 complex (Smc5/6)-are essential for chromosome function. At the molecular level, these complexes fold DNA by loop extrusion. Accordingly, cohesin creates chromosome loops in interphase, and condensin compacts mitotic chromosomes. However, the role of Smc5/6's recently discovered DNA loop extrusion activity is unknown. Here, we uncover that Smc5/6 associates with transcription-induced positively supercoiled DNA at cohesin-dependent loop boundaries on budding yeast (Saccharomyces cerevisiae) chromosomes. Mechanistically, single-molecule imaging reveals that dimers of Smc5/6 specifically recognize the tip of positively supercoiled DNA plectonemes and efficiently initiate loop extrusion to gather the supercoiled DNA into a large plectonemic loop. Finally, Hi-C analysis shows that Smc5/6 links chromosomal regions containing transcription-induced positive supercoiling in cis. Altogether, our findings indicate that Smc5/6 controls the three-dimensional organization of chromosomes by recognizing and initiating loop extrusion on positively supercoiled DNA.


Assuntos
Proteínas de Ciclo Celular , Proteínas de Saccharomyces cerevisiae , Proteínas de Ciclo Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , DNA Super-Helicoidal/genética , Coesinas , DNA/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Cromossomos/metabolismo
6.
Mol Cell ; 83(21): 3801-3817.e8, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37922872

RESUMO

Histones shape chromatin structure and the epigenetic landscape. H1, the most diverse histone in the human genome, has 11 variants. Due to the high structural similarity between the H1s, their unique functions in transferring information from the chromatin to mRNA-processing machineries have remained elusive. Here, we generated human cell lines lacking up to five H1 subtypes, allowing us to characterize the genomic binding profiles of six H1 variants. Most H1s bind to specific sites, and binding depends on multiple factors, including GC content. The highly expressed H1.2 has a high affinity for exons, whereas H1.3 binds intronic sequences. H1s are major splicing regulators, especially of exon skipping and intron retention events, through their effects on the elongation of RNA polymerase II (RNAPII). Thus, H1 variants determine splicing fate by modulating RNAPII elongation.


Assuntos
Histonas , RNA Polimerase II , Humanos , Histonas/genética , Histonas/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Splicing de RNA , Transcrição Gênica , Cromatina/genética , Processamento Alternativo
7.
Genes Dev ; 37(5-6): 218-242, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36931659

RESUMO

Pioneer transcription factors are thought to play pivotal roles in developmental processes by binding nucleosomal DNA to activate gene expression, though mechanisms through which pioneer transcription factors remodel chromatin remain unclear. Here, using single-cell transcriptomics, we show that endogenous expression of neurogenic transcription factor ASCL1, considered a classical pioneer factor, defines a transient population of progenitors in human neural differentiation. Testing ASCL1's pioneer function using a knockout model to define the unbound state, we found that endogenous expression of ASCL1 drives progenitor differentiation by cis-regulation both as a classical pioneer factor and as a nonpioneer remodeler, where ASCL1 binds permissive chromatin to induce chromatin conformation changes. ASCL1 interacts with BAF SWI/SNF chromatin remodeling complexes, primarily at targets where it acts as a nonpioneer factor, and we provide evidence for codependent DNA binding and remodeling at a subset of ASCL1 and SWI/SNF cotargets. Our findings provide new insights into ASCL1 function regulating activation of long-range regulatory elements in human neurogenesis and uncover a novel mechanism of its chromatin remodeling function codependent on partner ATPase activity.


Assuntos
Regulação da Expressão Gênica , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Diferenciação Celular/genética , Montagem e Desmontagem da Cromatina , Cromatina , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
8.
Mol Cell ; 82(16): 3061-3076.e6, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35948010

RESUMO

Lactate accumulates to a significant amount in glioblastomas (GBMs), the most common primary malignant brain tumor with an unfavorable prognosis. However, it remains unclear whether lactate is metabolized by GBMs. Here, we demonstrated that lactate rescued patient-derived xenograft (PDX) GBM cells from nutrient-deprivation-mediated cell death. Transcriptome analysis, ATAC-seq, and ChIP-seq showed that lactate entertained a signature of oxidative energy metabolism. LC/MS analysis demonstrated that U-13C-lactate elicited substantial labeling of TCA-cycle metabolites, acetyl-CoA, and histone protein acetyl-residues in GBM cells. Lactate enhanced chromatin accessibility and histone acetylation in a manner dependent on oxidative energy metabolism and the ATP-citrate lyase (ACLY). Utilizing orthotopic PDX models of GBM, a combined tracer experiment unraveled that lactate carbons were substantially labeling the TCA-cycle metabolites. Finally, pharmacological blockage of oxidative energy metabolism extended overall survival in two orthotopic PDX models in mice. These results establish lactate metabolism as a novel druggable pathway for GBM.


Assuntos
Glioblastoma , Acetilação , Animais , Linhagem Celular Tumoral , Epigênese Genética , Glioblastoma/genética , Glioblastoma/patologia , Histonas/metabolismo , Humanos , Ácido Láctico/metabolismo , Camundongos
9.
Mol Cell ; 82(24): 4611-4626.e7, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36476474

RESUMO

PALI1 is a newly identified accessory protein of the Polycomb repressive complex 2 (PRC2) that catalyzes H3K27 methylation. However, the roles of PALI1 in cancer are yet to be defined. Here, we report that PALI1 is upregulated in advanced prostate cancer (PCa) and competes with JARID2 for binding to the PRC2 core subunit SUZ12. PALI1 further interacts with the H3K9 methyltransferase G9A, bridging the formation of a unique G9A-PALI1-PRC2 super-complex that occupies a subset of G9A-target genes to mediate dual H3K9/K27 methylation and gene repression. Many of these genes are developmental regulators required for cell differentiation, and their loss in PCa predicts poor prognosis. Accordingly, PALI1 and G9A drive PCa cell proliferation and invasion in vitro and xenograft tumor growth in vivo. Collectively, our study shows that PALI1 harnesses two central epigenetic mechanisms to suppress cellular differentiation and promote tumorigenesis, which can be targeted by dual EZH2 and G9A inhibition.


Assuntos
Neoplasias , Complexo Repressor Polycomb 2 , Humanos , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Cromatina/genética , Histonas/genética , Histonas/metabolismo , Neoplasias/genética , Epigênese Genética
10.
Genes Dev ; 36(17-18): 985-1001, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36302553

RESUMO

Genome-wide, little is understood about how proteins organize at inducible promoters before and after induction and to what extent inducible and constitutive architectures depend on cofactors. We report that sequence-specific transcription factors and their tethered cofactors (e.g., SAGA [Spt-Ada-Gcn5-acetyltransferase], Mediator, TUP, NuA4, SWI/SNF, and RPD3-L) are generally bound to promoters prior to induction ("poised"), rather than recruited upon induction, whereas induction recruits the preinitiation complex (PIC) to DNA. Through depletion and/or deletion experiments, we show that SAGA does not function at constitutive promoters, although a SAGA-independent Gcn5 acetylates +1 nucleosomes there. When inducible promoters are poised, SAGA catalyzes +1 nucleosome acetylation but not PIC assembly. When induced, SAGA catalyzes acetylation, deubiquitylation, and PIC assembly. Surprisingly, SAGA mediates induction by creating a PIC that allows TFIID (transcription factor II-D) to stably associate, rather than creating a completely TFIID-independent PIC, as generally thought. These findings suggest that inducible systems, where present, are integrated with constitutive systems.


Assuntos
Proteínas de Saccharomyces cerevisiae , Fator de Transcrição TFIID , Fator de Transcrição TFIID/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transativadores/genética , Transativadores/metabolismo , Regiões Promotoras Genéticas/genética , Nucleossomos/genética , Nucleossomos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo
11.
Genes Dev ; 36(1-2): 23-37, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34916302

RESUMO

The regenerative potential of neural stem cells (NSCs) declines during aging, leading to cognitive dysfunctions. This decline involves up-regulation of senescence-associated genes, but inactivation of such genes failed to reverse aging of hippocampal NSCs. Because many genes are up-regulated or down-regulated during aging, manipulation of single genes would be insufficient to reverse aging. Here we searched for a gene combination that can rejuvenate NSCs in the aged mouse brain from nuclear factors differentially expressed between embryonic and adult NSCs and their modulators. We found that a combination of inducing the zinc finger transcription factor gene Plagl2 and inhibiting Dyrk1a, a gene associated with Down syndrome (a genetic disorder known to accelerate aging), rejuvenated aged hippocampal NSCs, which already lost proliferative and neurogenic potential. Such rejuvenated NSCs proliferated and produced new neurons continuously at the level observed in juvenile hippocampi, leading to improved cognition. Epigenome, transcriptome, and live-imaging analyses indicated that this gene combination induces up-regulation of embryo-associated genes and down-regulation of age-associated genes by changing their chromatin accessibility, thereby rejuvenating aged dormant NSCs to function like juvenile active NSCs. Thus, aging of NSCs can be reversed to induce functional neurogenesis continuously, offering a way to treat age-related neurological disorders.


Assuntos
Células-Tronco Neurais , Rejuvenescimento , Animais , Hipocampo , Camundongos , Neurogênese/genética , Neurônios
12.
Immunity ; 52(6): 1057-1074.e7, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32362324

RESUMO

Tissue-resident and recruited macrophages contribute to both host defense and pathology. Multiple macrophage phenotypes are represented in diseased tissues, but we lack deep understanding of mechanisms controlling diversification. Here, we investigate origins and epigenetic trajectories of hepatic macrophages during diet-induced non-alcoholic steatohepatitis (NASH). The NASH diet induced significant changes in Kupffer cell enhancers and gene expression, resulting in partial loss of Kupffer cell identity, induction of Trem2 and Cd9 expression, and cell death. Kupffer cell loss was compensated by gain of adjacent monocyte-derived macrophages that exhibited convergent epigenomes, transcriptomes, and functions. NASH-induced changes in Kupffer cell enhancers were driven by AP-1 and EGR that reprogrammed LXR functions required for Kupffer cell identity and survival to instead drive a scar-associated macrophage phenotype. These findings reveal mechanisms by which disease-associated environmental signals instruct resident and recruited macrophages to acquire distinct gene expression programs and corresponding functions.


Assuntos
Microambiente Celular/genética , Reprogramação Celular/genética , Epigênese Genética , Regulação da Expressão Gênica , Células Mieloides/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Biomarcadores , Sequenciamento de Cromatina por Imunoprecipitação , Dieta , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Células de Kupffer/imunologia , Células de Kupffer/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Hepatopatia Gordurosa não Alcoólica/patologia , Especificidade de Órgãos/genética , Especificidade de Órgãos/imunologia , Ligação Proteica , Transdução de Sinais , Análise de Célula Única
13.
Mol Cell ; 81(24): 5007-5024.e9, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34767771

RESUMO

As cells enter mitosis, chromatin compacts to facilitate chromosome segregation yet remains transcribed. Transcription supercoils DNA to levels that can impede further progression of RNA polymerase II (RNAPII) unless it is removed by DNA topoisomerase 1 (TOP1). Using ChIP-seq on mitotic cells, we found that TOP1 is required for RNAPII translocation along genes. The stimulation of TOP1 activity by RNAPII during elongation allowed RNAPII clearance from genes in prometaphase and enabled chromosomal segregation. Disruption of the TOP1-RNAPII interaction impaired RNAPII spiking at promoters and triggered defects in the post-mitotic transcription program. This program includes factors necessary for cell growth, and cells with impaired TOP1-RNAPII interaction are more sensitive to inhibitors of mTOR signaling. We conclude that TOP1 is necessary for assisting transcription during mitosis with consequences for growth and gene expression long after mitosis is completed. In this sense, TOP1 ensures that cellular memory is preserved in subsequent generations.


Assuntos
Proliferação de Células , Montagem e Desmontagem da Cromatina , Neoplasias Colorretais/enzimologia , DNA Topoisomerases Tipo I/metabolismo , Fase G1 , Mitose , RNA Polimerase II/metabolismo , Transcrição Gênica , Proliferação de Células/efeitos dos fármacos , Sequenciamento de Cromatina por Imunoprecipitação , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , DNA Topoisomerases Tipo I/genética , Fase G1/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Humanos , Inibidores de MTOR/farmacologia , Mitose/efeitos dos fármacos , RNA Polimerase II/genética
14.
Immunity ; 50(1): 106-120.e10, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30650370

RESUMO

CD4+ T helper (Th) differentiation is regulated by diverse inputs, including the vitamin A metabolite retinoic acid (RA). RA acts through its receptor RARα to repress transcription of inflammatory cytokines, but is also essential for Th-mediated immunity, indicating complex effects of RA on Th specification and the outcome of the immune response. We examined the impact of RA on the genome-wide transcriptional response during Th differentiation to multiple subsets. RA effects were subset-selective and were most significant in Th9 cells. RA globally antagonized Th9-promoting transcription factors and inhibited Th9 differentiation. RA directly targeted the extended Il9 locus and broadly modified the Th9 epigenome through RARα. RA-RARα activity limited murine Th9-associated pulmonary inflammation, and human allergic inflammation was associated with reduced expression of RA target genes. Thus, repression of the Th9 program is a major function of RA-RARα signaling in Th differentiation, arguing for a role for RA in interleukin 9 (IL-9) related diseases.


Assuntos
Hipersensibilidade/imunologia , Pulmão/fisiologia , Pneumonia/imunologia , Receptor alfa de Ácido Retinoico/metabolismo , Linfócitos T Auxiliares-Indutores/fisiologia , Animais , Repressão Epigenética , Células HEK293 , Humanos , Hipersensibilidade/genética , Interleucina-9/metabolismo , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pneumonia/genética , Receptor alfa de Ácido Retinoico/genética , Transdução de Sinais , Transcrição Gênica , Tretinoína/metabolismo
15.
Mol Cell ; 78(6): 1096-1113.e8, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32416067

RESUMO

BET bromodomain inhibitors (BBDIs) are candidate therapeutic agents for triple-negative breast cancer (TNBC) and other cancer types, but inherent and acquired resistance to BBDIs limits their potential clinical use. Using CRISPR and small-molecule inhibitor screens combined with comprehensive molecular profiling of BBDI response and resistance, we identified synthetic lethal interactions with BBDIs and genes that, when deleted, confer resistance. We observed synergy with regulators of cell cycle progression, YAP, AXL, and SRC signaling, and chemotherapeutic agents. We also uncovered functional similarities and differences among BRD2, BRD4, and BRD7. Although deletion of BRD2 enhances sensitivity to BBDIs, BRD7 loss leads to gain of TEAD-YAP chromatin binding and luminal features associated with BBDI resistance. Single-cell RNA-seq, ATAC-seq, and cellular barcoding analysis of BBDI responses in sensitive and resistant cell lines highlight significant heterogeneity among samples and demonstrate that BBDI resistance can be pre-existing or acquired.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Proteínas/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Azepinas/farmacologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proteínas Cromossômicas não Histona/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos NOD , Proteínas Nucleares/metabolismo , Proteínas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Triazóis/farmacologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo
16.
Mol Cell ; 78(1): 152-167.e11, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32053778

RESUMO

Eukaryotic transcription factors (TFs) form complexes with various partner proteins to recognize their genomic target sites. Yet, how the DNA sequence determines which TF complex forms at any given site is poorly understood. Here, we demonstrate that high-throughput in vitro DNA binding assays coupled with unbiased computational analysis provide unprecedented insight into how different DNA sequences select distinct compositions and configurations of homeodomain TF complexes. Using inferred knowledge about minor groove width readout, we design targeted protein mutations that destabilize homeodomain binding both in vitro and in vivo in a complex-specific manner. By performing parallel systematic evolution of ligands by exponential enrichment sequencing (SELEX-seq), chromatin immunoprecipitation sequencing (ChIP-seq), RNA sequencing (RNA-seq), and Hi-C assays, we not only classify the majority of in vivo binding events in terms of complex composition but also infer complex-specific functions by perturbing the gene regulatory network controlled by a single complex.


Assuntos
DNA/química , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , DNA/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/genética , Mutação , Conformação de Ácido Nucleico , Ligação Proteica , Fatores de Transcrição/química , Fatores de Transcrição/genética
17.
Immunol Rev ; 323(1): 209-226, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38491845

RESUMO

Microglia, the major population of brain-resident macrophages, are now recognized as a heterogeneous population comprising several cell subtypes with different (so far mostly supposed) functions in health and disease. A number of studies have performed molecular characterization of these different microglial activation states over the last years making use of "omics" technologies, that is transcriptomics, proteomics and, less frequently, epigenomics profiling. These approaches offer the possibility to identify disease mechanisms, discover novel diagnostic biomarkers, and develop new therapeutic strategies. Here, we focus on epigenetic profiling as a means to understand microglial immune responses beyond what other omics methods can offer, that is, revealing past and present molecular responses, gene regulatory networks and potential future response trajectories, and defining cell subtype-specific disease relevance through mapping non-coding genetic variants. We review the current knowledge in the field regarding epigenetic regulation of microglial identity and function, provide an exemplary analysis that demonstrates the advantages of performing joint transcriptomic and epigenomic profiling of single microglial cells and discuss how comprehensive epigenetic analyses may enhance our understanding of microglial pathophysiology.


Assuntos
Epigênese Genética , Microglia , Microglia/imunologia , Microglia/metabolismo , Humanos , Animais , Epigenômica/métodos , Transcriptoma , Imunidade/genética , Redes Reguladoras de Genes , Perfilação da Expressão Gênica , Encéfalo/imunologia , Encéfalo/metabolismo
18.
EMBO J ; 41(1): e106459, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34806773

RESUMO

In mammals, histone 3 lysine 4 methylation (H3K4me) is mediated by six different lysine methyltransferases. Among these enzymes, SETD1B (SET domain containing 1b) has been linked to syndromic intellectual disability in human subjects, but its role in the mammalian postnatal brain has not been studied yet. Here, we employ mice deficient for Setd1b in excitatory neurons of the postnatal forebrain, and combine neuron-specific ChIP-seq and RNA-seq approaches to elucidate its role in neuronal gene expression. We observe that Setd1b controls the expression of a set of genes with a broad H3K4me3 peak at their promoters, enriched for neuron-specific genes linked to learning and memory function. Comparative analyses in mice with conditional deletion of Kmt2a and Kmt2b histone methyltransferases show that SETD1B plays a more pronounced and potent role in regulating such genes. Moreover, postnatal loss of Setd1b leads to severe learning impairment, suggesting that SETD1B-dependent regulation of H3K4me levels in postnatal neurons is critical for cognitive function.


Assuntos
Regulação da Expressão Gênica , Histona-Lisina N-Metiltransferase/metabolismo , Aprendizagem/fisiologia , Neurônios/metabolismo , Animais , Animais Recém-Nascidos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Núcleo Celular/metabolismo , Epigênese Genética , Hipocampo/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Integrases/metabolismo , Memória/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína de Leucina Linfoide-Mieloide/metabolismo , Sítio de Iniciação de Transcrição , Transcriptoma/genética
19.
Immunity ; 46(6): 983-991.e4, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28623086

RESUMO

Host defense requires the specification of CD4+ helper T (Th) cells into distinct fates, including Th1 cells that preferentially produce interferon-γ (IFN-γ). IFN-γ, a member of a large family of anti-pathogenic and anti-tumor IFNs, induces T-bet, a lineage-defining transcription factor for Th1 cells, which in turn supports IFN-γ production in a feed-forward manner. Herein, we show that a cell-intrinsic role of T-bet influences how T cells perceive their secreted product in the environment. In the absence of T-bet, IFN-γ aberrantly induced a type I IFN transcriptomic program. T-bet preferentially repressed genes and pathways ordinarily activated by type I IFNs to ensure that its transcriptional response did not evoke an aberrant amplification of type I IFN signaling circuitry, otherwise triggered by its own product. Thus, in addition to promoting Th1 effector commitment, T-bet acts as a repressor in differentiated Th1 cells to prevent abberant autocrine type I IFN and downstream signaling.


Assuntos
Comunicação Autócrina , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Proteínas com Domínio T/metabolismo , Células Th1/imunologia , Toxoplasma/imunologia , Toxoplasmose/imunologia , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Humanos , Interferon Tipo I/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Proteínas com Domínio T/genética , Células Th1/microbiologia , Células Th1/virologia , Transcriptoma
20.
EMBO Rep ; 25(3): 1589-1622, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38297188

RESUMO

Embryonic genome activation (EGA) occurs during preimplantation development and is characterized by the initiation of de novo transcription from the embryonic genome. Despite its importance, the regulation of EGA and the transcription factors involved in this process are poorly understood. Paired-like homeobox (PRDL) family proteins are implicated as potential transcriptional regulators of EGA, yet the PRDL-mediated gene regulatory networks remain uncharacterized. To investigate the function of PRDL proteins, we are identifying the molecular interactions and the functions of a subset family of the Eutherian Totipotent Cell Homeobox (ETCHbox) proteins, seven PRDL family proteins and six other transcription factors (TFs), all suggested to participate in transcriptional regulation during preimplantation. Using mass spectrometry-based interactomics methods, AP-MS and proximity-dependent biotin labeling, and chromatin immunoprecipitation sequencing we derive the comprehensive regulatory networks of these preimplantation TFs. By these interactomics tools we identify more than a thousand high-confidence interactions for the 21 studied bait proteins with more than 300 interacting proteins. We also establish that TPRX2, currently assigned as pseudogene, is a transcriptional activator.


Assuntos
Proteínas de Homeodomínio , Fatores de Transcrição , Humanos , Fatores de Transcrição/metabolismo , Proteínas de Homeodomínio/genética , Genes Homeobox , Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA