Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.169
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
EMBO J ; 42(24): e114838, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37984321

RESUMO

Chromosome biorientation on the mitotic spindle is prerequisite to errorless genome inheritance. CENP-E (kinesin-7) and dynein-dynactin (DD), microtubule motors with opposite polarity, promote biorientation from the kinetochore corona, a polymeric structure whose assembly requires MPS1 kinase. The corona's building block consists of ROD, Zwilch, ZW10, and the DD adaptor Spindly (RZZS). How CENP-E and DD are scaffolded and mutually coordinated in the corona remains unclear. Here, we show that when corona assembly is prevented through MPS1 inhibition, CENP-E is absolutely required to retain RZZS at kinetochores. An RZZS phosphomimetic mutant bypasses this requirement, demonstrating the existence of a second receptor for polymeric RZZS. With active MPS1, CENP-E is dispensable for corona expansion, but strictly required for physiological kinetochore accumulation of DD. Thus, we identify the corona as an integrated scaffold where CENP-E kinesin controls DD kinetochore loading for coordinated bidirectional transport of chromosome cargo.


Assuntos
Dineínas , Cinetocoros , Dineínas/genética , Dineínas/metabolismo , Cinetocoros/metabolismo , Cinesinas/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Fuso Acromático/metabolismo , Microtúbulos/metabolismo , Complexo Dinactina/genética , Mitose , Segregação de Cromossomos
2.
Proc Natl Acad Sci U S A ; 121(11): e2319634121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38442162

RESUMO

Autoimmune and inflammatory diseases are highly complex, limiting treatment and the development of new therapies. Recent work has shown that cell-free DNA bound to biological microparticles is linked to systemic lupus erythematosus, a prototypic autoimmune disease. However, the heterogeneity and technical challenges associated with the study of biological particles have hindered a mechanistic understanding of their role. Our goal was to develop a well-controlled DNA-particle model system to understand how DNA-particle complexes affect cells. We first characterized the adsorption of DNA on the surface of polystyrene nanoparticles (200 nm and 2 µm) using transmission electron microscopy, dynamic light scattering, and colorimetric DNA concentration assays. We found that DNA adsorbed on the surface of nanoparticles was resistant to degradation by DNase 1. Macrophage cells incubated with the DNA-nanoparticle complexes had increased production of pro-inflammatory cytokines tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6). We probed two intracellular DNA sensing pathways, toll-like receptor 9 (TLR9) and cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING), to determine how cells sense the DNA-nanoparticle complexes. We found that the cGAS-STING pathway is the primary route for the interaction between DNA-nanoparticles and macrophages. These studies provide a molecular and cellular-level understanding of DNA-nanoparticle-macrophage interactions. In addition, this work provides the mechanistic information necessary for future in vivo experiments to elucidate the role of DNA-particle interactions in autoimmune diseases, providing a unique experimental framework to develop novel therapeutic approaches.


Assuntos
Doenças Autoimunes , Lúpus Eritematoso Sistêmico , Humanos , DNA , Fator de Necrose Tumoral alfa , Nucleotidiltransferases
3.
Proc Natl Acad Sci U S A ; 121(11): e2307803120, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38437542

RESUMO

Lipid nanoparticle (LNP) formulations are a proven method for the delivery of nucleic acids for gene therapy as exemplified by the worldwide rollout of LNP-based RNAi therapeutics and mRNA vaccines. However, targeting specific tissues or cells is still a major challenge. After LNP administration, LNPs interact with biological fluids (i.e., blood), components of which adsorb onto the LNP surface forming a layer of biomolecules termed the "biomolecular corona (BMC)" which affects LNP stability, biodistribution, and tissue tropism. The mechanisms by which the BMC influences tissue- and cell-specific targeting remains largely unknown, due to the technical challenges in isolating LNPs and their corona from complex biological media. In this study, we present a new technique that utilizes magnetic LNPs to isolate LNP-corona complexes from unbound proteins present in human serum. First, we developed a magnetic LNP formulation, containing >40 superparamagnetic iron oxide nanoparticles (IONPs)/LNP, the resulting LNPs containing iron oxide nanoparticles (IOLNPs) displayed a similar particle size and morphology as LNPs loaded with nucleic acids. We further demonstrated the isolation of the IOLNPs and their corresponding BMC from unbound proteins using a magnetic separation (MS) system. The BMC profile of LNP from the MS system was compared to size exclusion column chromatography and further analyzed via mass spectrometry, revealing differences in protein abundances. This new approach enabled a mild and versatile isolation of LNPs and its corona, while maintaining its structural integrity. The identification of the BMC associated with an intact LNP provides further insight into LNP interactions with biological fluids.


Assuntos
Lipossomos , Nanopartículas , Ácidos Nucleicos , Humanos , Distribuição Tecidual , Fenômenos Magnéticos
4.
Proc Natl Acad Sci U S A ; 121(28): e2403034121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38954547

RESUMO

Nanomaterials acquire a biomolecular corona upon introduction to biological media, leading to biological transformations such as changes in protein function, unmasking of epitopes, and protein fibrilization. Ex vivo studies to investigate the effect of nanoparticles on protein-protein interactions are typically performed in buffer and are rarely measured quantitatively in live cells. Here, we measure the differential effect of silica nanoparticles on protein association in vitro vs. in mammalian cells. BtubA and BtubB are a pair of bacterial tubulin proteins identified in Prosthecobacter strains that self-assemble like eukaryotic tubulin, first into dimers and then into microtubules in vitro or in vivo. Förster resonance energy transfer labeling of each of the Btub monomers with a donor (mEGFP) and acceptor (mRuby3) fluorescent protein provides a quantitative tool to measure their binding interactions in the presence of unfunctionalized silica nanoparticles in buffer and in cells using fluorescence spectroscopy and microscopy. We show that silica nanoparticles enhance BtubAB dimerization in buffer due to protein corona formation. However, these nanoparticles have little effect on bacterial tubulin self-assembly in the complex mammalian cellular environment. Thus, the effect of nanomaterials on protein-protein interactions may not be readily translated from the test tube to the cell in the absence of particle surface functionalization that can enable targeted protein-nanoparticle interactions to withstand competitive binding in the nanoparticle corona from other biomolecules.


Assuntos
Proteínas de Bactérias , Nanopartículas , Dióxido de Silício , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/química , Nanopartículas/química , Dióxido de Silício/química , Dióxido de Silício/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Transferência Ressonante de Energia de Fluorescência , Humanos , Microtúbulos/metabolismo , Multimerização Proteica , Ligação Proteica
5.
EMBO J ; 41(9): e110411, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35373361

RESUMO

In metazoans, a ≈1 megadalton (MDa) multiprotein complex comprising the dynein-dynactin adaptor Spindly and the ROD-Zwilch-ZW10 (RZZ) complex is the building block of a fibrous biopolymer, the kinetochore fibrous corona. The corona assembles on mitotic kinetochores to promote microtubule capture and spindle assembly checkpoint (SAC) signaling. We report here a high-resolution cryo-EM structure that captures the essential features of the RZZ complex, including a farnesyl-binding site required for Spindly binding. Using a highly predictive in vitro assay, we demonstrate that the SAC kinase MPS1 is necessary and sufficient for corona assembly at supercritical concentrations of the RZZ-Spindly (RZZS) complex, and describe the molecular mechanism of phosphorylation-dependent filament nucleation. We identify several structural requirements for RZZS polymerization in rings and sheets. Finally, we identify determinants of kinetochore localization and corona assembly of Spindly. Our results describe a framework for the long-sought-for molecular basis of corona assembly on metazoan kinetochores.


Assuntos
Cinetocoros , Fuso Acromático , Animais , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Humanos , Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Fuso Acromático/metabolismo
6.
J Cell Sci ; 136(5)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36861883

RESUMO

The microtubule minus-end-directed motility of cytoplasmic dynein 1 (dynein), arguably the most complex and versatile cytoskeletal motor, is harnessed for diverse functions, such as long-range organelle transport in neuronal axons and spindle assembly in dividing cells. The versatility of dynein raises a number of intriguing questions, including how is dynein recruited to its diverse cargo, how is recruitment coupled to activation of the motor, how is motility regulated to meet different requirements for force production and how does dynein coordinate its activity with that of other microtubule-associated proteins (MAPs) present on the same cargo. Here, these questions will be discussed in the context of dynein at the kinetochore, the supramolecular protein structure that connects segregating chromosomes to spindle microtubules in dividing cells. As the first kinetochore-localized MAP described, dynein has intrigued cell biologists for more than three decades. The first part of this Review summarizes current knowledge about how kinetochore dynein contributes to efficient and accurate spindle assembly, and the second part describes the underlying molecular mechanisms and highlights emerging commonalities with dynein regulation at other subcellular sites.


Assuntos
Dineínas , Cinetocoros , Proteínas Associadas aos Microtúbulos/genética , Dineínas do Citoplasma/genética , Axônios
7.
EMBO Rep ; 24(5): e57162, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-36951170

RESUMO

Throughout the SARS-CoV-2 pandemic, limited diagnostic capacities prevented sentinel testing, demonstrating the need for novel testing infrastructures. Here, we describe the setup of a cost-effective platform that can be employed in a high-throughput manner, which allows surveillance testing as an acute pandemic control and preparedness tool, exemplified by SARS-CoV-2 diagnostics in an academic environment. The strategy involves self-sampling based on gargling saline, pseudonymized sample handling, automated RNA extraction, and viral RNA detection using a semiquantitative multiplexed colorimetric reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay with an analytical sensitivity comparable with RT-qPCR. We provide standard operating procedures and an integrated software solution for all workflows, including sample logistics, analysis by colorimetry or sequencing, and communication of results. We evaluated factors affecting the viral load and the stability of gargling samples as well as the diagnostic sensitivity of the RT-LAMP assay. In parallel, we estimated the economic costs of setting up and running the test station. We performed > 35,000 tests, with an average turnover time of < 6 h from sample arrival to result announcement. Altogether, our work provides a blueprint for fast, sensitive, scalable, cost- and labor-efficient RT-LAMP diagnostics, which is independent of potentially limiting clinical diagnostics supply chains.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/epidemiologia , Teste para COVID-19 , Técnicas de Laboratório Clínico/métodos , Pandemias/prevenção & controle , Sensibilidade e Especificidade , RNA Viral/genética
8.
Proc Natl Acad Sci U S A ; 119(23): e2200363119, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35653569

RESUMO

The nanomaterial­protein "corona" is a dynamic entity providing a synthetic­natural interface mediating cellular uptake and subcellular distribution of nanomaterials in biological systems. As nanomaterials are central to the safe-by-design of future nanomedicines and the practice of nanosafety, understanding and delineating the biological and toxicological signatures of the ubiquitous nanomaterial­protein corona are precursors to the continued development of nano­bio science and engineering. However, despite well over a decade of extensive research, the dynamics of intracellular release or exchange of the blood protein corona from nanomaterials following their cellular internalization remains unclear, and the biological footprints of the nanoparticle­protein corona traversing cellular compartments are even less well understood. To address this crucial bottleneck, the current work screened evolution of the intracellular protein corona along the endocytotic pathway from blood via lysosomes to cytoplasm in cancer cells. Intercellular proteins, including pyruvate kinase M2 (PKM2), and chaperones, displaced some of the initially adsorbed blood proteins from the nanoparticle surface, which perturbed proteostasis and subsequently incited chaperone-mediated autophagy (CMA) to disrupt the key cellular metabolism pathway, including glycolysis and lipid metabolism. Since proteostasis is key to the sustainability of cell function, its collapse and the resulting CMA overdrive spell subsequent cell death and aging. Our findings shed light on the consequences of the transport of extracellular proteins by nanoparticles on cell metabolism.


Assuntos
Nanoestruturas , Coroa de Proteína , Coroa de Proteína/metabolismo , Proteômica , Proteostase , Piruvato Quinase/metabolismo
9.
Proc Natl Acad Sci U S A ; 119(37): e2201213119, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36067322

RESUMO

Atmospheric electrical discharges are now known to generate unexpectedly large amounts of the atmosphere's primary oxidant, hydroxyl (OH), in thunderstorm anvils, where electrical discharges are caused by atmospheric charge separation. The question is "Do other electrical discharges also generate large amounts of oxidants?" In this paper, we demonstrate that corona formed on grounded metal objects under thunderstorms produce extreme amounts of OH, hydroperoxyl (HO2), and ozone (O3). Hundreds of parts per trillion to parts per billion of OH and HO2 were measured during seven thunderstorms that passed over the rooftop site during an air quality study in Houston, TX in summer 2006. A combination of analysis of these field results and laboratory experiments shows that these extreme oxidant amounts were generated by corona on the inlet of the OH-measuring instrument and that corona are easier to generate on lightning rods than on the inlet. In the laboratory, increasing the electric field increased OH, HO2, and O3, with 14 times more O3 generated than OH and HO2, which were equal. Calculations show that corona on lightning rods can annually generate OH that is 10-100 times ambient amounts within centimeters of the lightning rod and on high-voltage electrical power lines can generate OH that is 500 times ambient a meter away from the corona. Contrary to current thinking, previously unrecognized corona-generated OH, not corona-generated UV radiation, mostly likely initiates premature degradation of high-voltage polymer insulators.

10.
Annu Rev Pharmacol Toxicol ; 61: 269-289, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-32841092

RESUMO

Nanoparticles from natural and anthropogenic sources are abundant in the environment, thus human exposure to nanoparticles is inevitable. Due to this constant exposure, it is critically important to understand the potential acute and chronic adverse effects that nanoparticles may cause to humans. In this review, we explore and highlight the current state of nanotoxicology research with a focus on mechanistic understanding of nanoparticle toxicity at organ, tissue, cell, and biomolecular levels. We discuss nanotoxicity mechanisms, including generation of reactive oxygen species, nanoparticle disintegration, modulation of cell signaling pathways, protein corona formation, and poly(ethylene glycol)-mediated immunogenicity. We conclude with a perspective on potential approaches to advance current understanding of nanoparticle toxicity. Such improved understanding may lead to mitigation strategies that could enable safe application of nanoparticles in humans. Advances in nanotoxicity research will ultimately inform efforts to establish standardized regulatory frameworks with the goal of fully exploiting the potential of nanotechnology while minimizing harm to humans.


Assuntos
Nanopartículas , Humanos , Espécies Reativas de Oxigênio
11.
EMBO J ; 39(12): e103180, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32202322

RESUMO

Cyclin B:CDK1 is the master kinase regulator of mitosis. We show here that, in addition to its kinase functions, mammalian Cyclin B also scaffolds a localised signalling pathway to help preserve genome stability. Cyclin B1 localises to an expanded region of the outer kinetochore, known as the corona, where it scaffolds the spindle assembly checkpoint (SAC) machinery by binding directly to MAD1. In vitro reconstitutions map the key binding interface to a few acidic residues in the N-terminal region of MAD1, and point mutations in this sequence abolish MAD1 corona localisation and weaken the SAC. Therefore, Cyclin B1 is the long-sought-after scaffold that links MAD1 to the corona, and this specific pool of MAD1 is needed to generate a robust SAC response. Robustness arises because Cyclin B1:MAD1 localisation loses dependence on MPS1 kinase after the corona has been established, ensuring that corona-localised MAD1 can still be phosphorylated when MPS1 activity is low. Therefore, this study explains how corona-MAD1 generates a robust SAC signal, and it reveals a scaffolding role for the key mitotic kinase, Cyclin B1:CDK1, which ultimately helps to inhibit its own degradation.


Assuntos
Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Ciclina B1/metabolismo , Cinetocoros/metabolismo , Mitose , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Proteínas de Ciclo Celular/genética , Ciclina B1/genética , Células HeLa , Humanos , Mutação Puntual , Domínios Proteicos
12.
Small ; 20(28): e2310540, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38597766

RESUMO

Engineered nanomaterials offer numerous benefits to society ranging from environmental remediation to biomedical applications such as drug or vaccine delivery as well as clean and cost-effective energy production and storage, and the promise of a more sustainable way of life. However, as nanomaterials of increasing sophistication enter the market, close attention to potential adverse effects on human health and the environment is needed. Here a critical perspective on nanotoxicological research is provided; the authors argue that it is time to leverage the knowledge regarding the biological interactions of nanomaterials to achieve a more comprehensive understanding of the human health and environmental impacts of these materials. Moreover, it is posited that nanomaterials behave like biological entities and that they should be regulated as such.


Assuntos
Nanoestruturas , Humanos , Nanoestruturas/química , Nanotecnologia/métodos , Animais
13.
Small ; : e2309616, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564782

RESUMO

Radiolabeling and nuclear imaging techniques are used to investigate the biodistribution patterns of the soft and hard protein corona around poly (lactic-co-glycolic acid) nanoparticles (PLGA NPs) after administration to healthy mice. Soft and hard protein coronas of 131I-labeled BSA or 131I-labeled serum are formed on PLGA NPs functionalized with either polyehtylenimine (PEI) or bovine serum albumin (BSA). The exchangeability of hard and soft corona is assessed in vitro by gamma counting exposing PLGA NPs with corona to non-labeled BSA, serum, or simulated body fluid. PEI PLGA NPs form larger and more stable coronas than BSA PLGA NPs. Soft coronas are more exchangeable than hard ones. The in vivo fate of PEI PLGA NPs coated with preformed 18F-labeled BSA hard and soft coronas is assessed by positron emission tomography (PET) following intravenous administration. While the soft corona shows a biodistribution similar to free 18F BSA with high activity in blood and kidney, the hard corona follows patterns characteristic of nanoparticles, accumulating in the lungs, liver, and spleen. These results show that in vivo fates of soft and hard corona are different, and that soft corona is more easily exchanged with proteins from the body, while hard corona is largely retained on the nanoparticle surface.

14.
Small ; 20(26): e2305684, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38247186

RESUMO

Understanding the conformation of proteins in the nanoparticle corona has important implications in how organisms respond to nanoparticle-based drugs. These proteins coat the nanoparticle surface, and their properties will influence the nanoparticle's interaction with cell targets and the immune system. While some coronas are thought to be disordered, two key unanswered questions are the degree of disorder and solvent accessibility. Here, a model is developed for protein corona disorder in polystyrene nanoparticles of varying size. For two different proteins, it is found that binding affinity decreases as nanoparticle size increases. The stoichiometry of binding, along with changes in the hydrodynamic size, supports a highly solvated, disordered protein corona anchored at a small number of attachment sites. The scaling of the stoichiometry versus nanoparticle size is consistent with disordered polymer dimensions. Moreover, it is found that proteins are destabilized less in the presence of larger nanoparticles, and hydrophobic exposure decreases at lower curvatures. The observations hold for proteins on flat polystyrene surfaces, which have the lowest hydrophobic exposure. The model provides an explanation for previous observations of increased amyloid fibrillation rates in the presence of larger nanoparticles, and it may rationalize how cell receptors can recognize protein disorder in therapeutic nanoparticles.


Assuntos
Nanopartículas , Poliestirenos , Ligação Proteica , Coroa de Proteína , Poliestirenos/química , Nanopartículas/química , Coroa de Proteína/química , Solventes/química , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula
15.
Small ; 20(15): e2306474, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38085683

RESUMO

Gold nanoparticles (GNPs) are largely employed in diagnostics/biosensors and are among the most investigated nanomaterials in biology/medicine. However, few GNP-based nanoformulations have received FDA approval to date, and promising in vitro studies have failed to translate to in vivo efficacy. One key factor is that biological fluids contain high concentrations of proteins, lipids, sugars, and metabolites, which can adsorb/interact with the GNP's surface, forming a layer called biomolecular corona (BMC). The BMC can mask prepared functionalities and target moieties, creating new surface chemistry and determining GNPs' biological fate. Here, the current knowledge is summarized on GNP-BMCs, analyzing the factors driving these interactions and the biological consequences. A partial fingerprint of GNP-BMC analyzing common patterns of composition in the literature is extrapolated. However, a red flag is also risen concerning the current lack of data availability and regulated form of knowledge on BMC. Nanomedicine is still in its infancy, and relying on recently developed analytical and informatic tools offers an unprecedented opportunity to make a leap forward. However, a restart through robust shared protocols and data sharing is necessary to obtain "stronger roots". This will create a path to exploiting BMC for human benefit, promoting the clinical translation of biomedical nanotools.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Coroa de Proteína , Humanos , Nanopartículas Metálicas/química , Ouro/química , Coroa de Proteína/química , Nanopartículas/química , Proteínas , Nanomedicina
16.
Small ; : e2311115, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38556634

RESUMO

Engineering of catalytically active inorganic nanomaterials holds promising prospects for biomedicine. Catalytically active metal oxides show applications in enhancing wound healing but have also been employed to induce cell death in photodynamic or radiation therapy. Upon introduction into a biological system, nanomaterials are exposed to complex fluids, causing interaction and adsorption of ions and proteins. While protein corona formation on nanomaterials is acknowledged, its modulation of nanomaterial catalytic efficacy is less understood. In this study, proteomic analyses and nano-analytic methodologies quantify and characterize adsorbed proteins, correlating this protein layer with metal oxide catalytic activity in vitro and in vivo. The protein corona comprises up to 280 different proteins, constituting up to 38% by weight. Enhanced complement factors and other opsonins on nanocatalyst surfaces lead to their uptake into macrophages when applied topically, localizing >99% of the nanomaterials in tissue-resident macrophages. Initially, the formation of the protein corona significantly reduces the nanocatalysts' activity, but this activity can be partially recovered in endosomal conditions due to the proteolytic degradation of the corona. Overall, the research reveals the complex relationship between physisorbed proteins and the catalytic characteristics of specific metal oxide nanoparticles, providing design parameters for optimizing nanocatalysts in complex biological environments.

17.
Small ; 20(10): e2306168, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37880910

RESUMO

Coronary artery disease (CAD) is the most common type of heart disease and represents the leading cause of death in both men and women worldwide. Early detection of CAD is crucial for decreasing mortality, prolonging survival, and improving patient quality of life. Herein, a non-invasive is described, nanoparticle-based diagnostic technology which takes advantages of proteomic changes in the nano-bio interface for CAD detection. Nanoparticles (NPs) exposed to biological fluids adsorb on their surface a layer of proteins, the "protein corona" (PC). Pathological changes that alter the plasma proteome can directly result in changes in the PC. By forming disease-specific PCs on six NPs with varying physicochemical properties, a PC-based sensor array is developed for detection of CAD using specific PC pattern recognition. While the PC of a single NP may not provide the required specificity, it is reasoned that multivariate PCs across NPs with different surface chemistries, can provide the desirable information to selectively discriminate the condition under investigation. The results suggest that such an approach can detect CAD with an accuracy of 92.84%, a sensitivity of 87.5%, and a specificity of 82.5%. These new findings demonstrate the potential of PC-based sensor array detection systems for clinical use.


Assuntos
Doença da Artéria Coronariana , Nanopartículas , Coroa de Proteína , Feminino , Humanos , Coroa de Proteína/química , Doença da Artéria Coronariana/diagnóstico , Proteômica , Qualidade de Vida , Nanopartículas/química , Proteoma
18.
Small ; : e2402311, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700060

RESUMO

Nanosized drug formulations are broadly explored for the improvement of cancer therapy. Prediction of in vivo nanoparticle (NP) behavior, however, is challenging, given the complexity of the tumor and its microenvironment. Microfluidic tumor-on-a-chip models are gaining popularity for the in vitro testing of nanoparticle targeting under conditions that simulate the 3D tumor (microenvironment). In this review, following a description of the tumor microenvironment (TME), the state of the art regarding tumor-on-a-chip models for investigating nanoparticle delivery to solid tumors is summarized. The models are classified based on the degree of compartmentalization (single/multi-compartment) and cell composition (tumor only/tumor microenvironment). The physiological relevance of the models is critically evaluated. Overall, microfluidic tumor-on-a-chip models greatly improve the simulation of the TME in comparison to 2D tissue cultures and static 3D spheroid models and contribute to the understanding of nanoparticle behavior. Interestingly, two interrelated aspects have received little attention so far which are the presence and potential impact of a protein corona as well as nanoparticle uptake through phagocytosing cells. A better understanding of their relevance for the predictive capacity of tumor-on-a-chip systems and development of best practices will be a next step for the further refinement of advanced in vitro tumor models.

19.
J Med Virol ; 96(6): e29739, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38899449

RESUMO

This longitudinal prospective controlled multicenter study aimed to monitor immunity generated by three exposures caused by breakthrough infections (BTI) after COVID-19-vaccination considering pre-existing cell-mediated immunity to common-corona-viruses (CoV) which may impact cellular reactivity against SARS-CoV-2. Anti-SARS-CoV-2-spike-IgG antibodies (anti-S-IgG) and cellular reactivity against Spike-(S)- and nucleocapsid-(N)-proteins were determined in fully-vaccinated (F) individuals who either experienced BTI (F+BTI) or had booster vaccination (F+Booster) compared to partially vaccinated (P+BTI) and unvaccinated (U) from 1 to 24 weeks post PCR-confirmed infection. High avidity anti-S-IgG were found in F+BTI compared to U, the latter exhibiting increased long-lasting pro-inflammatory cytokines to S-stimulation. CoV was associated with higher cellular reactivity in U, whereas no association was seen in F. The study illustrates the induction of significant S-specific cellular responses in F+BTI building-up basic immunity by three exposures. Only U seem to benefit from pre-existing CoV immunity but demonstrated inflammatory immune responses compared to F+BTI who immunologically benefit from enhanced humoral and cellular immunity after BTI. This study demonstrates that individuals with hybrid immunity from COVID-19-vaccination and BTI acquire a stable humoral and cellular immune response that is maintained for at least 6 months. Our findings corroborate recommendations by health authorities to build on basic immunity by three S-protein exposures.


Assuntos
Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Imunidade Celular , Imunoglobulina G , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , COVID-19/imunologia , COVID-19/prevenção & controle , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Masculino , Feminino , SARS-CoV-2/imunologia , Pessoa de Meia-Idade , Adulto , Estudos Prospectivos , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Imunoglobulina G/sangue , Estudos Longitudinais , Vacinação , Fosfoproteínas/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Idoso , Imunização Secundária , Citocinas/imunologia , Vacina BNT162/imunologia , Vacina BNT162/administração & dosagem , Vacina de mRNA-1273 contra 2019-nCoV/imunologia , Vacinas de mRNA/imunologia , Infecções Irruptivas
20.
J Anat ; 244(3): 458-467, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37990973

RESUMO

Pelvic fractures are becoming increasingly frequent. The gold standard for surgical managements remains open procedures. Despite its excellent biomechanically results, it can lead to many complications. Minimally invasive surgery could reduce these complications. For complex pelvic trauma, extraperitoneal endoscopic technique has never been described. The aim of this study is to determine anatomical landmarks which are useful for endoscopic pelvic ring surgery using an extraperitoneal approach. The second objective is to compare this minimally invasive procedure to expose the bone versus a traditional open approach. After preparing the vessels with latex injections, 10 specimens are dissected alternately, using an endoscopic method (MIS) on one side and an open method on the other side. Both procedures are performed on the same subject. The visualized bone areas are drilled with burr holes. The marked surfaces are measured with photogrammetry. Finally, the data are processed (surface analysis). An extraperitoneal endoscopic dissection that follows anatomical landmarks can be performed. Bone area (mm2 ) visualized by endoscopy was 74 ± 14 (59-94) compared to 71 ± 16 (48-94) by open method. Paired t-test was performed with no significant difference between the two methods. Skin and muscular incisions were significantly lower in the MIS group (5.1, IC95% [4.1; 6.1], p < 0.001). An extraperitoneal endoscopic dissection of the pelvis can be performed. We also find no significant difference between our method and an open traditional approach concerning bone exposure. We offer a holistic approach to treat pelvic fractures by identifying key anatomical structures.


Assuntos
Fraturas Ósseas , Ossos Pélvicos , Humanos , Pelve , Endoscopia/métodos , Ossos Pélvicos/cirurgia , Dissecação , Procedimentos Cirúrgicos Minimamente Invasivos , Fraturas Ósseas/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA