Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Parasitology ; 143(12): 1665-71, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27573677

RESUMO

Effective control of gastrointestinal parasites is necessary in sheep production. The development of anthelmintics resistance is causing the available chemically based anthelmintics to become less effective. Biological control strategies present an alternative to this problem. In the current study, we tested the larvicidal effects of Bacillus thuringiensis var. israelensis Cry11Aa toxin against Haemonchus contortus larvae. Bacterial suspensions [2 × 108 colony-forming units (CFU) g-1 of the feces] of B. thuringiensis var. israelensis and recombinant Escherichia coli expressing Cry11Aa toxin were added to naturally H. contortus egg-contaminated feces. The larvae were quantified, and significant reductions of 62 and 81% (P < 0·001) were, respectively observed, compared with the control group. A 30 mL bacterial suspension (1 × 108 CFU mL-1) of B. thuringiensis var. israelensis and recombinant E. coli expressing Cry11Aa toxin were then orally administered to lambs naturally infected with H. contortus. Twelve hours after administration, feces were collected and submitted to coprocultures. Significant larvae reductions (P < 0·001) of 79 and 90% were observed respectively compared with the control group. The results suggest that the Cry11Aa toxin of B. thuringiensis var. israelensis is a promising new class of biological anthelmintics for treating sheep against H. contortus.


Assuntos
Proteínas de Bactérias/toxicidade , Endotoxinas/toxicidade , Haemonchus/efeitos dos fármacos , Proteínas Hemolisinas/toxicidade , Inseticidas/toxicidade , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Bioensaio , Terapia Biológica/métodos , Modelos Animais de Doenças , Endotoxinas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Hemoncose/parasitologia , Hemoncose/terapia , Haemonchus/fisiologia , Proteínas Hemolisinas/genética , Larva/efeitos dos fármacos , Larva/fisiologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/toxicidade , Ovinos , Análise de Sobrevida , Fatores de Tempo , Resultado do Tratamento
2.
Int J Biol Macromol ; 242(Pt 4): 124979, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37245748

RESUMO

Cry11Aa is the most potent mosquito larvicidal protein of Bacillus thuringiensis subsp. israelensis (Bti). Development of resistance against insecticidal proteins including Cry11Aa is known but no field resistance was observed with Bti. The phenomenon of increasing resistance in insect pests necessitates the development of new strategies and techniques to enhance efficacy of insecticidal proteins. Recombinant technology offers better control over the molecule and allows modification of protein to achieve maximal effect against target pests. In this study, we standardised protocol for recombinant purification of Cry11Aa. Recombinant Cry11Aa found active against larvae of Aedes and Culex mosquito species and LC50 were estimated. Detailed biophysical characterization provides crucial insights into stability and in-vitro behaviour of the recombinant Cry11Aa. Moreover, trypsin hydrolysis doesn't improve overall toxicity of recombinant Cry11Aa. Proteolytic processing suggests domain I and II are more prone to proteolysis in comparison to domain III. Significance of structural features for proteolysis of Cry11Aa was observed after performing molecular dynamics simulations. Findings reported here are contributing significantly in method for purification, understanding in-vitro behaviour and proteolytic processing of Cry11Aa which could facilitate in efficient utilisation of Bti for insect pests and vectors control.


Assuntos
Aedes , Bacillus thuringiensis , Inseticidas , Animais , Bacillus thuringiensis/química , Endotoxinas/química , Proteólise , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Proteínas de Bactérias/química , Mosquitos Vetores , Inseticidas/farmacologia , Inseticidas/metabolismo , Larva/metabolismo , Aedes/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/farmacologia , Proteínas Hemolisinas/química
3.
Front Immunol ; 13: 906259, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35865517

RESUMO

Aedes aegypti is a crucial vector for many arboviral diseases that cause millions of deaths worldwide and thus is of major public health concern. Crystal (Cry) proteins, which are toxins produced by Bacillus thuringiensis, are structurally organized into three-domains, of which domain II is the most variable in terms of binding towards various toxin receptors. The binding of Cry11Aa to putative receptor such as aminopeptidase-N (APN) is explicitly inhibited by midgut C-type lectins (CTLs). The similarity between the domain II fold of Cry11Aa toxin and the carbohydrate recognition domain in the CTLs is a possible structural basis for the involvement of Cry domain II in the recognition of carbohydrates on toxin receptors. In this study, a site-directed point mutation was introduced into the A. aegypti CTLGA9 gene on the basis of molecular docking findings, leading to substitution of the Leucine-6 (Leu-6) residue in the protein with alanine. Subsequently, functional monitoring of the mutated protein was carried out. Unlike the amino acid residues of wild-type CTLGA9, none of the residues of mutant (m) CTLGA9 were competed with Cry11Aa for binding to the APN receptor interface. Additionally, ligand blot analysis showed that both wild-type and mutant CTLGA9 had similar abilities to bind to APN and Cry11Aa. Furthermore, in the competitive ELISA in which labeled mutant CTLGA9 (10 nM) was mixed with increasing concentrations of unlabeled Cry11Aa (0-500 nM), the mutant showed no competition with Cry11Aa for binding to APN., By contrast, in the positive control sample of labeled wild type CTLGA9 mixed with same concentrations of Cry11Aa competition between the two ligands for binding to the APN was evident. These results suggest that Leucine-6 may be the key site involved in the competitive receptor binding between CTLGA9 and Cry11Aa. Moreover, according to the bioassay results, mutant CTLGA9 could in fact enhance the toxicity of Cry11Aa. Our novel findings provide further insights into the mechanism of Cry toxicity as well as a theoretical basis for enhancing the mosquitocidal activity of these toxin through molecular modification strategies.


Assuntos
Aminoácidos , Proteínas de Bactérias , Aminoácidos/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Endotoxinas/metabolismo , Larva/genética , Lectinas Tipo C/metabolismo , Leucina/metabolismo , Simulação de Acoplamento Molecular , Mosquitos Vetores
4.
Microorganisms ; 10(6)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35744605

RESUMO

High-level expression of transgenes in the chloroplast of wild-type Chlamydomonas reinhardtii (C. reinhardtii) remains challenging for many genes (e.g., the cry toxin genes from Bacillus thuringiensis israelensis). The bottleneck is presumed to be post-transcriptional and mediated by the 5' element and the coding region. Using 5' elements from highly expressed photosynthesis genes such as atpA did not improve the outcome with cry11A regardless of the promoter. However, when we employed the 5' UTR from mature rps4 mRNA with clean fusions to promoters, production of the rCry11A protein became largely promoter-dependent. The best results were obtained with the native 16S rrn promoter (−91 to −1). When it was fused to the mature 5' rps4 UTR, rCry11A protein levels were ~50% higher than was obtained with the inducible system, or ~0.6% of total protein. This level was sufficient to visualize the 73-kDa rCry11A protein on Coomassie-stained gels of total algal protein. In addition, analysis of the expression of these transgenes by RT-PCR indicated that RNA levels roughly correlated with protein production. Live cell bioassays using the best strains as food for 3rd instar Aedes aegypti larvae showed that most larvae were killed even when the cell concentration was as low as 2 × 104 cells/mL. Finally, the results indicate that these highly toxic strains are also quite stable, and thus represent a key milestone in using C. reinhardtii for mosquito control.

5.
Insects ; 12(3)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807543

RESUMO

The insecticidal Cry4Ba and Cry11Aa crystal proteins from Bacillus thuringiensis subsp. israelensis (Bti) are highly toxic to Ae. aegypti larvae. The glycosylphosphatidylinositol (GPI)-anchored APN was identified as an important membrane-bound receptor for multiple Cry toxins in numerous Lepidoptera, Coleoptera, and Diptera insects. However, there is no direct molecular evidence to link APN of Ae. aegypti to Bti toxicity in vivo. In this study, two Cry4Ba/Cry11Aa-binding Ae. aegypti GPI-APN isoforms (AeAPN1 and AeAPN2) were individually knocked-out using CRISPR/Cas9 mutagenesis, and the AeAPN1/AeAPN2 double-mutant homozygous strain was generated using the reverse genetics approach. ELISA assays showed that the high binding affinity of Cry4Ba and Cry11Aa protoxins to the midgut brush border membrane vesicles (BBMVs) from these APN knockouts was similar to the background from the wild-type (WT) strain. Likewise, the bioassay results showed that neither the single knockout of AeAPN1 or AeAPN2, nor the simultaneous disruption of AeAPN1 and AeAPN2 resulted in significant changes in susceptibility of Ae. aegypti larvae to Cry4Ba and Cry11Aa toxins. Accordingly, our results suggest that AeAPN1 and AeAPN2 may not mediate Bti Cry4Ba and Cry11Aa toxicity in Ae. aegypti larvae as their binding proteins.

6.
J Agric Food Chem ; 67(32): 8896-8904, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31339308

RESUMO

The mosquito Aedes aegypti is associated with the spread of many viral diseases in humans, including Dengue virus (DENVs), Yellow fever virus (YFV), Zika virus (ZIKV), and Chikungunya virus (CHIKV). Bacillus thuringiensis (Bt) is widely used as a biopesticide, which produces Cry toxins for mosquito control. The Cry toxins bind mainly to important receptors, including alkaline phosphatase (ALP) and aminopeptidase-N (APN). This work investigated the function of a C-type lectin, CTLGA9, in A. aegypti in response to Cry toxins. Our results showed by far-western blot and ELISA methods that the CTLTGA9 protein interacted with brush border membrane vesicles (BBMVs) of A. aegypti larvae and with ALP1, APN, and Cry11Aa proteins. Furthermore, molecular docking showed overlapping binding sites in ALP1 and APN for binding to Cry11Aa and CTLGA9. The toxicity assays further demonstrated that CTLGA9 inhibited the larvicidal activity of Cry toxins. According to the results of molecular docking, CTLGA9 may compete with Cry11Aa for binding to ALP1 and APN receptors and thus decreases the mosquitocidal toxicity of Cry11Aa. Our results provide further insights into better understanding the mechanism of Cry toxins and help improve the Cry toxicity for mosquito control.


Assuntos
Aedes/efeitos dos fármacos , Aedes/metabolismo , Proteínas de Bactérias/toxicidade , Endotoxinas/toxicidade , Proteínas Hemolisinas/toxicidade , Proteínas de Insetos/metabolismo , Aedes/química , Aedes/genética , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/química , Sítios de Ligação , Endotoxinas/química , Proteínas Hemolisinas/química , Proteínas de Insetos/química , Proteínas de Insetos/genética , Larva/efeitos dos fármacos , Larva/genética , Larva/metabolismo , Simulação de Acoplamento Molecular , Ligação Proteica/efeitos dos fármacos
7.
Parasit Vectors ; 11(1): 673, 2018 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-30594214

RESUMO

BACKGROUND: Bacillus thuringiensis svar. israelensis (Bti) is an effective and safe biolarvicide to control Aedes aegypti. Its mode of action based on four protoxins disfavors resistance; however, control in endemic areas that display high mosquito infestation throughout the year requires continuous larvicide applications, which imposes a strong selection pressure. Therefore, this study aimed to investigate the effects of an intensive Bti exposure on an Ae. aegypti strain (RecBti), regarding its susceptibility to Bti and two of its protoxins tested individually, to other control agents temephos and diflubenzuron, and its profile of detoxifying enzymes. METHODS: The RecBti strain was established using a large egg sample (10,000) from Recife city (Brazil) and more than 290,000 larvae were subjected to Bti throughout 30 generations. Larvae susceptibility to larvicides and the activity of detoxifying enzymes were determined by bioassays and catalytic assays, respectively. The Rockefeller strain was the reference used for these evaluations. RESULTS: Bti exposure yielded an average of 74% mortality at each generation. Larvae assessed in seven time points throughout the 30 generations were susceptible to Bti crystal (resistance ratio RR ≤ 2.8) and to its individual toxins Cry11Aa and Cry4Ba (RR ≤ 4.1). Early signs of altered susceptibility to Cry11Aa were detected in the last evaluations, suggesting that this toxin was a marker of the selection pressure imposed. RecBti larvae were also susceptible (RR ≤ 1.6) to the other control agents, temephos and diflubenzuron. The activity of the detoxifying enzymes α- and ß-esterases, glutathione-S-transferases and mixed-function oxidases was classified as unaltered in larvae from two generations (F19 and F25), except for a ß-esterases increase in F25. CONCLUSIONS: Prolonged exposure of Ae. aegypti larvae to Bti did not evolve into resistance to the crystal, and no cross-resistance with temephos and diflubenzuron were recorded, which supports their sustainable use with Bti for integrated control practices. The unaltered activity of most detoxifying enzymes suggests that they might not play a major role in the metabolism of Bti toxins, therefore resistance by this mechanism is unlikely to occur. This study also highlights the need to establish suitable criteria to classify the status of larval susceptibility/resistance.


Assuntos
Aedes/efeitos dos fármacos , Bacillus thuringiensis/patogenicidade , Proteínas de Bactérias/farmacologia , Endotoxinas/farmacologia , Proteínas Hemolisinas/farmacologia , Resistência a Inseticidas , Inseticidas/farmacologia , Controle de Mosquitos/métodos , Controle Biológico de Vetores/métodos , Animais , Bacillus thuringiensis/crescimento & desenvolvimento , Toxinas de Bacillus thuringiensis , Brasil , Larva/efeitos dos fármacos
8.
J Agric Food Chem ; 65(43): 9428-9434, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29019656

RESUMO

The traditional Bacillus thuringiensis (Bt) formulations for field applications are not resistant to harsh environmental conditions. Hence, the active ingredients of the Bt bioinsecticides could degrade quickly and has low anti-ultraviolet ability in the field, which significantly limits its practical application. In the present study, we developed an efficient and stable delivery system for Bt Cry11Aa toxins. We coated Cry11Aa proteins with Mg(OH)2 nanoparticles (MHNPs), and then assessed the effects of MHNPs on bioactivity and anti-ultraviolet ability of the Cry11Aa proteins. Our results indicated that MHNPs, like "coating clothes", could effectively protect the Cry protein and enhance the insecticidal bioactivity after UV radiation (the degradation rate was decreased from 64.29% to 16.67%). In addtion, MHNPs could improve the proteolysis of Cry11Aa in the midgut and aggravate the damage of the Cry protein to the gut epithelial cells, leading to increased insecticidal activity against Culex quinquefasciatus. Our results revealed that MHNPs, as an excellent nanocarrier, could substantially improve the insecticidal bioactivity and anti-ultraviolet ability of Cry11Aa.


Assuntos
Proteínas de Bactérias/química , Portadores de Fármacos/efeitos da radiação , Endotoxinas/química , Proteínas Hemolisinas/química , Inseticidas/química , Hidróxido de Magnésio/química , Nanopartículas/efeitos da radiação , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/farmacologia , Culex/efeitos dos fármacos , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Estabilidade de Medicamentos , Endotoxinas/farmacologia , Proteínas Hemolisinas/farmacologia , Inseticidas/farmacologia , Cinética , Nanopartículas/química , Raios Ultravioleta
9.
J Agric Food Chem ; 65(50): 10884-10890, 2017 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-29215274

RESUMO

Cry11Aa displays high toxicity to the larvae of several mosquito species, including Aedes, Culex, and Anopheles. To study its binding characterization against Culex quinquefasciatus, Cry11Aa was purified and western blot results showed that Cry11Aa could bind successfully to the brush border membrane vesicles. To identify Cry11Aa-binding proteins in C. quinquefasciatus, a biotin-based protein pull-down experiment was performed and seven Cry11Aa-binding proteins were isolated from the midgut of C. quinquefasciatus larvae. Analysis of liquid chromatography-tandem mass spectrometry showed that one of the Cry11Aa-binding proteins is the ATP-binding domain 1 family member B. To investigate its binding property and effect on the toxicity of Cry11Aa, western blot, far-western blot, enzyme-linked immunosorbent assay, and bioassays of Cry11Aa in the presence and absence of the recombinant ATP-binding protein were performed. Our results showed that the ATP-binding protein interacted with Cry11Aa and increased the toxicity of Cry11Aa against C. quinquefasciatus. Our study suggests that midgut proteins other than the toxin receptors may modulate the toxicity of Cry toxins against mosquitoes.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Culex/metabolismo , Endotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo , Proteínas de Insetos/metabolismo , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/toxicidade , Culex/química , Culex/efeitos dos fármacos , Culex/genética , Endotoxinas/toxicidade , Proteínas Hemolisinas/toxicidade , Proteínas de Insetos/química , Proteínas de Insetos/genética , Larva/efeitos dos fármacos , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Ligação Proteica , Domínios Proteicos
10.
Peptides ; 68: 140-147, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25064814

RESUMO

Cadherin plays an important role in the toxicity of Bacillus thuringiensis Cry proteins. We previously cloned a full-length cadherin from Aedes aegypti larvae and reported this protein binds Cry11Aa toxin from B. thuringiensis subsp. israelensis with high affinity, ≈16.7nM. Based on these results, we investigated if Aedes cadherin is involved in the in vivo toxicity of Cry11Aa toxin to Ae. aegypti. We established a mosquito cell line stably expressing the full-length Aedes cadherin and transgenic mosquitoes with silenced Aedes cadherin expression. Cells expressing the Aedes cadherin showed increased sensitivity to Cry11Aa toxin. Cry11Aa toxin at 400nM killed approximately 37% of the cells in 3h. Otherwise, transgenic mosquitoes with silenced Aedes cadherin expression showed increased tolerance to Cry11Aa toxin. Furthermore, cells expressing Aedes cadherin triggered Cry11Aa oligomerization. These results show the Aedes cadherin plays a pivotal role in Cry11Aa toxicity to Ae. aegypti larvae by mediating Cry11Aa oligomerization. However, since high toxicity was not obtained in cadherin-expressing cells, an additional receptor may be needed for manifestation of full toxicity. Moreover, cells expressing Aedes cadherin were sensitive to Cry4Aa and Cry11Ba, but not Cry4Ba. However transgenic mosquitoes with silenced Aedes cadherin expression showed no tolerance to Cry4Aa, Cry4Ba, and Cry11Ba toxins. These results suggest that while Aedes cadherin may mediate Cry4Aa and Cry11Ba toxicity, this cadherin but is not the main receptor of Cry4Aa, Cry4Ba and Cry11Ba toxin in Ae. aegypti.


Assuntos
Aedes/efeitos dos fármacos , Proteínas de Bactérias/farmacologia , Caderinas/fisiologia , Endotoxinas/farmacologia , Proteínas Hemolisinas/farmacologia , Proteínas de Insetos/fisiologia , Inseticidas/farmacologia , Aedes/genética , Aedes/metabolismo , Animais , Animais Geneticamente Modificados , Toxinas de Bacillus thuringiensis , Linhagem Celular , Feminino , Expressão Gênica , Masculino , Multimerização Proteica
11.
Insect Biochem Mol Biol ; 54: 112-21, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25242559

RESUMO

Bacillus thuringiensis subsp. israelensis (Bti) is widely used for the biological control of mosquito populations. However, the mechanism of Bti toxins is still not fully understood. To further elucidate the mechanism of Bti toxins, we developed an Aedes aegypti resistant strain that shows high-level resistance to Cry11Aa toxin. After 27 selections with Cry11Aa toxin, the larvae showed a 124-fold resistance ratio for Cry11Aa (strain G30). G30 larvae showed cross-resistance to Cry4Aa (66-fold resistance), less to Cry4Ba (13-fold), but not to Cry11Ba (2-fold). Midguts from these resistant larvae did not show detectable difference in the processing of the Cry11Aa toxin compared to that in susceptible larvae (WT). Brush border membrane vesicles (BBMV) from resistant larvae bound slightly less Cry11Aa compared to WT BBMV. To identify potential proteins associated with Cry11A resistance, not only transcript changes in the larval midgut were analyzed using Illumina sequencing and qPCR, but alterations of previously identified receptor proteins were investigated using immunoblots. The transcripts of 375 genes were significantly increased and those of 208 genes were down regulated in the resistant larvae midgut compared to the WT. None of the transcripts for previously identified receptors of Cry11Aa (Aedes cadherin, ALP1, APN1, and APN2) were altered in these analyses. The genes for the identified functional receptors in resistant larvae midgut did not contain any mutation in their sequences nor was there any change in their transcript expression levels compared to WT. However, ALP proteins were expressed at reduced levels (∼ 40%) in the resistant strain BBMV. APN proteins and their activity were also slightly reduced in resistance strain. The transcript levels of ALPs (AAEL013330 and AAEL015070) and APNs (AAEL008158, AAEL008162) were significantly reduced. These results strongly suggest that ALPs and APNs could be associated with Cry11Aa resistance in Ae. aegypti.


Assuntos
Aedes/efeitos dos fármacos , Aedes/genética , Fosfatase Alcalina/metabolismo , Aminopeptidases/metabolismo , Toxinas Bacterianas/metabolismo , Proteínas de Insetos/metabolismo , Aedes/enzimologia , Sequência de Aminoácidos , Animais , Bacillus thuringiensis , Sequência de Bases , Endotoxinas/metabolismo , Trato Gastrointestinal/enzimologia , Resistência a Inseticidas/genética , Larva/enzimologia , Larva/metabolismo , Microvilosidades/enzimologia , Dados de Sequência Molecular
12.
Insect Biochem Mol Biol ; 43(12): 1201-8, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24128608

RESUMO

The Cry11Aa protein produced in Bacillus thuringiensis subsp. israelensis, a bacterial strain used worldwide for the control of Aedes aegypti larvae, binds midgut brush border membrane vesicles (BBMV) with an apparent K(d) of 29.8 nM. Previously an aminopeptidase N (APN), named AaeAPN2, was identified as a putative Cry11Aa toxin binding protein by pull-down assays using biotinylated Cry11Aa toxin (Chen et al., 2009. Insect Biochem. Mol. Biol. 39, 688-696). Here we show this protein localizes to the apical membrane of epithelial cells in proximal and distal regions of larval caeca. The AaeAPN2 protein binds Cry11Aa with high affinity, 8.6 nM. The full-length and fragments of AaeAPN2 were cloned and expressed in Escherichia coli. The toxin-binding region was identified and further competitive assays demonstrated that Cry11Aa binding to BBMV was efficiently competed by the full-length AaeAPN2 and the fragments of AaeAPN2b and AaeAPN2e. In bioassays against Ae. aegypti larvae, the presence of full-length and a partial fragment (AaeAPN2b) of AaeAPN2 enhanced Cry11Aa larval mortality. Taken together, we conclude that AaeAPN2 is a binding protein and plays a role in Cry11Aa toxicity.


Assuntos
Aedes/enzimologia , Proteínas de Bactérias/metabolismo , Antígenos CD13/metabolismo , Endotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo , Sequência de Aminoácidos , Animais , Bacillus thuringiensis/metabolismo , Bacillus thuringiensis/patogenicidade , Toxinas de Bacillus thuringiensis , Sistema Digestório , Larva
14.
Mem. Inst. Oswaldo Cruz ; 107(1): 74-79, Feb. 2012. ilus, graf, tab
Artigo em Inglês | LILACS | ID: lil-612808

RESUMO

To study the potential for the emergence of resistance in Aedes aegypti populations, a wild colony was subjected to selective pressure with Cry11Aa, one of four endotoxins that compose the Bacillus thuringiensis serovar israelensis toxin. This bacterium is the base component of the most important biopesticide used in the control of mosquitoes worldwide. After 54 generations of selection, significant resistance levels were observed. At the beginning of the selection experiment, the half lethal concentration was 26.3 ng/mL and had risen to 345.6 ng/mL by generation 54. The highest rate of resistance, 13.1, was detected in the 54th generation. Because digestive proteases play a key role in the processing and activation of B. thuringiensis toxin, we analysed the involvement of insect gut proteases in resistance to the Cry11Aa B. thuringiensis serovar israelensis toxin. The protease activity from larval gut extracts from the Cry11Aa resistant population was lower than that of the B. thuringiensisserovar israelensis susceptible colony. We suggest that differences in protoxin proteolysis could contribute to the resistance of this Ae. aegypti colony.


Assuntos
Animais , Proteínas de Bactérias/farmacologia , Culex/efeitos dos fármacos , Endotoxinas/farmacologia , Proteínas Hemolisinas/farmacologia , Resistência a Inseticidas/genética , Peptídeo Hidrolases/genética , Seleção Genética/genética , Culex/enzimologia , Culex/genética , Resistência a Inseticidas/efeitos dos fármacos , Seleção Genética/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA