Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
BMC Biotechnol ; 24(1): 37, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38825715

RESUMO

BACKGROUND: As part of a publicly funded initiative to develop genetically engineered Brassicas (cabbage, cauliflower, and canola) expressing Bacillus thuringiensis Crystal (Cry)-encoded insecticidal (Bt) toxin for Indian and Australian farmers, we designed several constructs that drive high-level expression of modified Cry1B and Cry1C genes (referred to as Cry1BM and Cry1CM; with M indicating modified). The two main motivations for modifying the DNA sequences of these genes were to minimise any licensing cost associated with the commercial cultivation of transgenic crop plants expressing CryM genes, and to remove or alter sequences that might adversely affect their activity in plants. RESULTS: To assess the insecticidal efficacy of the Cry1BM/Cry1CM genes, constructs were introduced into the model Brassica Arabidopsis thaliana in which Cry1BM/Cry1CM expression was directed from either single (S4/S7) or double (S4S4/S7S7) subterranean clover stunt virus (SCSV) promoters. The resulting transgenic plants displayed a high-level of Cry1BM/Cry1CM expression. Protein accumulation for Cry1CM ranged from 5.18 to 176.88 µg Cry1CM/g dry weight of leaves. Contrary to previous work on stunt promoters, we found no correlation between the use of either single or double stunt promoters and the expression levels of Cry1BM/Cry1CM genes, with a similar range of Cry1CM transcript abundance and protein content observed from both constructs. First instar Diamondback moth (Plutella xylostella) larvae fed on transgenic Arabidopsis leaves expressing the Cry1BM/Cry1CM genes showed 100% mortality, with a mean leaf damage score on a scale of zero to five of 0.125 for transgenic leaves and 4.2 for wild-type leaves. CONCLUSIONS: Our work indicates that the modified Cry1 genes are suitable for the development of insect resistant GM crops. Except for the PAT gene in the USA, our assessment of the intellectual property landscape of components presents within the constructs described here suggest that they can be used without the need for further licensing. This has the capacity to significantly reduce the cost of developing and using these Cry1M genes in GM crop plants in the future.


Assuntos
Arabidopsis , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias , Endotoxinas , Proteínas Hemolisinas , Plantas Geneticamente Modificadas , Plantas Geneticamente Modificadas/genética , Arabidopsis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas Hemolisinas/genética , Animais , Endotoxinas/genética , Regiões Promotoras Genéticas/genética , Bacillus thuringiensis/genética , Mariposas/genética , Brassica/genética , Controle Biológico de Vetores/métodos , Inseticidas/farmacologia
2.
Pestic Biochem Physiol ; 184: 105119, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35715058

RESUMO

Chilo suppressalis is a major target pest of transgenic rice expressing the Bacillus thuringiensis (Bt) Cry1C toxin in China. The evolution of resistance of this pest is a major threat to Bt rice. Since Bt functions by binding to receptors in the midgut (MG) of target insects, identification of Bt functional receptors in C. suppressalis is crucial for evaluating potential resistance mechanisms and developing effective management strategies. ATP-binding cassette (ABC) transporters have been vastly reported to interact with Cry1A toxins, as receptors and their mutations cause insect Bt resistance. However, the role of ABC transporters in Cry1C resistance to C. suppressalis remains unknown. Here, we measured CsABCC2 expression in C. suppressalis Cry1C-resistant (Cry1C-R) and Cry1C-susceptible strains (selected in the laboratory) via quantitative real-time PCR (qRT-PCR); the transcript level of CsABCC2 in the Cry1C-R strain was significantly lower than that in the Cry1C-susceptible strain. Furthermore, silencing CsABCC2 in C. suppressalis via RNA interference (RNAi) significantly decreased Cry1C susceptibility. Overall, CsABCC2 participates in Cry1C mode of action, and reduced expression of CsABCC2 is functionally associated with Cry1C resistance in C. suppressalis.


Assuntos
Bacillus thuringiensis , Mariposas , Oryza , Animais , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/metabolismo , Regulação para Baixo , Endotoxinas/genética , Endotoxinas/metabolismo , Endotoxinas/farmacologia , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/farmacologia , Larva/fisiologia , Mariposas/metabolismo , Oryza/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
3.
BMC Genomics ; 21(1): 634, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32928099

RESUMO

BACKGROUND: Chilo suppressalis is a widespread rice pest that poses a major threat to food security in China. This pest can develop resistance to Cry toxins from Bacillus thuringiensis (Bt), threatening the sustainable use of insect-resistant transgenic Bt rice. However, the molecular basis for the resistance mechanisms of C. suppressalis to Cry1C toxin remains unknown. This study aimed to identify genes associated with the mechanism of Cry1C resistance in C. suppressalis by comparing the midgut transcriptomic responses of resistant and susceptible C. suppressalis strains to Cry1C toxin and to provide information for insect resistance management. RESULTS: A C. suppressalis midgut transcriptome of 139,206 unigenes was de novo assembled from 373 million Illumina HiSeq and Roche 454 clean reads. Comparative analysis identified 5328 significantly differentially expressed unigenes (DEGs) between C. suppressalis Cry1C-resistant and -susceptible strains. DEGs encoding Bt Cry toxin receptors, aminopeptidase-P like protein, the ABC subfamily and alkaline phosphatase were downregulated, suggesting an association with C. suppressalis Cry1C resistance. Additionally, Cry1C resistance in C. suppressalis may be related to changes in the transcription levels of enzymes involved in hydrolysis, digestive, catalytic and detoxification processes. CONCLUSION: Our study identified genes potentially involved in Cry1C resistance in C. suppressalis by comparative transcriptome analysis. The assembled and annotated transcriptome data provide valuable genomic resources for further study of the molecular mechanisms of C. suppressalis resistance to Cry toxins.


Assuntos
Toxinas de Bacillus thuringiensis/toxicidade , Endotoxinas/toxicidade , Proteínas Hemolisinas/toxicidade , Resistência a Inseticidas , Lepidópteros/genética , Transcriptoma , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Aminopeptidases/genética , Aminopeptidases/metabolismo , Animais , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Mucosa Intestinal/metabolismo , Lepidópteros/efeitos dos fármacos , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo
4.
Plants (Basel) ; 13(5)2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38475476

RESUMO

Soybean [Glycine max (L.) Merr.], an essential staple food and oil crop worldwide, boasts abundant vegetable proteins and fats beneficial for both human and animal consumption. However, the soybean pod borer (Leguminivora glycinivorella) (SPB) stands as the most destructive soybean insect pest in northeast China and other northeastern Asian regions, leading to significant annual losses in soybean yield and economic burden. Therefore, this study aims to investigate the introduction of a previously tested codon-optimized cry1c gene, cry1c*, into the soybean genome and assess its effect on the SPB infestation by generating and characterizing stable transgenic soybeans overexpressing cry1c*. The transgenic soybean lines that constitutively overexpressed cry1c* exhibited a significant reduction in the percentage of damaged seeds, reaching as low as 5% in plants under field conditions. Additionally, feeding transgenic leaves to the larvae of S. exigua, S. litura, and M. separta resulted in inhibited larval growth, decreased larval body weight, and lower survival rates compared to larvae fed on wild-type leaves. These findings showed that the transgenic lines maintained their resistance to SPB and other lepidopteran pests, especially the transgenic line KC1. Southern blotting and genome-wide resequencing analysis revealed that T-DNA integration occurred as a single copy between loci 50,868,122 and 50,868,123 of chromosome 10 in the transgenic line KC1. Therefore, the transgenic line KC1, overexpressing high levels of cry1c* in leaves and seeds, holds strong potential for commercial use in the integrated management of SPB and other lepidopteran pests.

5.
Gene ; 927: 148753, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38972556

RESUMO

BACKGROUND: Transgenic insect-resistant rice offers an environmentally friendly approach to mitigate yield losses caused by lepidopteran pests, such as stem borers. Bt (Bacillus thuringiensis) genes encode insecticidal proteins and are widely used to confer insect resistance to genetically modified crops. This study investigated the integration, inheritance, and expression characteristics of codon-optimised synthetic Bt genes, cry1C* and cry2A*, in transgenic early japonica rice lines. METHODS: The early japonica rice cultivar, Songgeng 9 (Oryza sativa), was transformed with cry1C* or cry2A*, which are driven by the ubi promoter via Agrobacterium tumefaciens-mediated transformation. Molecular analyses, including quantitative PCR (qPCR), enzyme-linked immunosorbent assay (ELISA), and Southern blot analysis were performed to confirm transgene integration, inheritance, transcriptional levels, and protein expression patterns across different tissues and developmental stages. RESULTS: Stable transgenic early japonica lines exhibiting single-copy transgene integration were established. Transcriptional analysis revealed variations in Bt gene expression among lines, tissues, and growth stages, with higher expression levels observed in leaves than in other organs. Notably, cry2A* exhibited consistently higher mRNA and protein levels than cry1C* across all examined tissues and developmental time points. Bt protein accumulation followed the trend of leaves > stem sheaths > young panicles > brown rice, with peak expression during the filling stage in the vegetative tissues. CONCLUSIONS: Synthetic cry2A* displayed markedly elevated transcription and translation compared to cry1C* in the transgenic early japonica rice lines examined. Distinct spatiotemporal patterns of Bt gene expression were elucidated, providing insights into the potential insect resistance conferred by these genes in rice. These findings will contribute to the development of insect-resistant japonica rice varieties and facilitate the rational deployment of Bt crops.


Assuntos
Proteínas de Bactérias , Endotoxinas , Oryza , Plantas Geneticamente Modificadas , Oryza/genética , Oryza/parasitologia , Plantas Geneticamente Modificadas/genética , Animais , Endotoxinas/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas Hemolisinas/genética , Toxinas de Bacillus thuringiensis/genética , Bacillus thuringiensis/genética , Mariposas/genética , Regulação da Expressão Gênica de Plantas , Controle Biológico de Vetores/métodos
6.
Int J Biol Macromol ; 237: 123949, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36894061

RESUMO

Rice leaffolder (Cnaphalocrocis medinalis) is an important insect pest in paddy fields. Due to their essential role in the physiology and insecticidal resistance, ATP-binding cassette (ABC) proteins were studied in many insects. In this study, we identified the ABC proteins in C. medinalis through genomic data and analyzed their molecular characteristics. A total of 37 sequences with nucleotide-binding domain (NBD) were identified as ABC proteins and belonged to eight families (ABCA-ABCH). Four structure styles of ABC proteins were found in C. medinalis, including full structure, half structure, single structure, and ABC2 structure. In addition to these structures, TMD-NBD-TMD, NBD-TMD-NBD, and NBD-TMD-NBD-NBD were found in C. medinalis ABC proteins. Docking studies suggested that in addition to the soluble ABC proteins, other ABC proteins including ABCC4, ABCH1, ABCG3, ABCB5, ABCG1, ABCC7, ABCB3, ABCA3, and ABCC5 binding with Cry1C had higher weighted scores. The upregulation of ABCB1 and downregulation of ABCB3, ABCC1, ABCC7, ABCG1, ABCG3, and ABCG6 were associated with the C. medinalis response to Cry1C toxin. Collectively, these results help elucidate the molecular characteristics of C. medinalis ABC proteins, pave the way for further functional studies of C. medinalis ABC proteins, including their interaction with Cry1C toxin, and provide potential insecticide targets.


Assuntos
Inseticidas , Mariposas , Oryza , Humanos , Animais , Mariposas/genética , Endotoxinas/genética , Toxinas de Bacillus thuringiensis , Resistência a Inseticidas , Oryza/genética , Proteínas de Insetos
7.
Metabolites ; 11(4)2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808359

RESUMO

Metabolomics is beginning to be used for assessing unintended changes in genetically modified (GM) crops. To investigate whether Cry1C gene transformation would induce metabolic changes in rice plants, and whether the metabolic changes would pose potential risks when Cry1C rice plants are exposed to rice dwarf virus (RDV), the metabolic profiles of Cry1C rice T1C-19 and its non-Bt parental rice MH63 under RDV-free and RDV-infected status were analyzed using gas chromatography-mass spectrometry (GC-MS). Compared to MH63 rice, slice difference was detected in T1C-19 under RDV-free conditions (less than 3%), while much more metabolites showed significant response to RDV infection in T1C-19 (15.6%) and in MH63 (5.0%). Pathway analysis showed biosynthesis of lysine, valine, leucine, and isoleucine may be affected by RDV infection in T1C-19. No significant difference in the contents of free amino acids (AAs) was found between T1C-19 and MH63 rice, and the free AA contents of the two rice plants showed similar responses to RDV infection. Furthermore, no significant differences of the RDV infection rates between T1C-19 and MH63 were detected. Our results showed the Cry1C gene transformation did not affect the sensitivity of rice to RDV, indicating Cry1C rice would not aggravate the epidemic and dispersal of RDV.

8.
Pest Manag Sci ; 76(9): 3177-3187, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32336018

RESUMO

BACKGROUND: Promoters play a key role in driving insect-resistant genes during breeding of transgenic plants. In current transgenic procedures for breeding rice resistance to striped stem borer (Chilo suppressalis Walker, SSB), the constitutive promoter is used to drive the insect-resistant gene. To reduce the burden of constitutive promoters on plant growth, isolation and identification of insect-inducible promoters are particularly important. However, few promoters are induced specifically by insect feeding. RESULTS: We found rice hydroperoxide lyase gene (OsHPL2) (LOC_Os02g12680) was upregulated after feeding by SSB. We subsequently cloned the promoter of OsHPL2 and analysed its expression pattern using the ß-glucuronidase (GUS) reporter gene. Histochemical assays and quantitative analyses of GUS activity confirmed that P HPL2 :GUS was activated by SSB, but did not respond to brown planthopper (Nilaparvata lugens Stål, BPH) infestation, mechanical wounding or phytohormone treatments. A series of 5' truncated assays were conducted and three positive regulatory regions (-1452 to -1213, -903 to -624, and -376 to -176) induced by SSB infestation were identified. P2R123-min 35S and P2TR2-min 35S promoters linked with cry1C of transgenic plants showed the highest levels of Cry1C protein expression and SSB larval mortality. CONCLUSION: We identified an SSB-inducible promoter and three positive internal regions. Transgenic rice plants with the OsHPL2 promoter and its positive regions driving cry1C exhibited the expected larvicidal effect on SSB. Our study is the first report of an SSB-inducible promoter that could be used as a potential resource for breeding insect-resistant transgenic crops. © 2020 Society of Chemical Industry.


Assuntos
Hemípteros , Mariposas , Oryza , Animais , Clonagem Molecular , Hemípteros/genética , Mariposas/genética , Oryza/genética , Plantas Geneticamente Modificadas/genética
9.
Environ Sci Pollut Res Int ; 27(24): 29983-29992, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32447725

RESUMO

Transgenic Bt insect-resistant plants are highly resistant to Lepidoptera stockpile pest Indian meal moth, Plodia interpunctella Hübner (Lepidoptera: Pyralidae), a storage pest. Habrobracon hebetor (Say) (Hymenoptera: Braconidae), which is an ectoparasitic wasp of Indian meal moth, may be exposed to the Bt protein through the food chain. In the current study, high dose of Cry1C protein was injected into the hemolymph of P. interpunctella by microinjection, and the hemolymph was used as the carrier to deliver Bt protein to the H. hebetor. Using this method, we developed a new Tier-1 risk assessment system for ectoparasitoid, successfully avoided "host/prey quality-mediated effect," and improve the accuracy of safety evaluation. Results showed that injected Cry1C was stable and bioactive in the hemolymph of P. interpunctella parasitized by H. hebetor, and high dose of Cry1C has no negative impacts on egg hatching rate, developmental duration from egg to adult, survival egg to adult, pupa weight, adults weight (male and female), adult longevity and reproduction, and activity of stress-related enzymes of H. hebetor. However, the hemolymph of P. interpunctella injected into Galanthus nivalis L. agglutinin (the positive control) had significant negative impact on these biological parameters of H. hebetor. The results indicate that H. hebetor are not sensitive to Cry1C protein at the tested concentration and there were no detrimental effects of Cry1C protein on any biological parameters tested in the present study. More importantly, we constructed a new efficient and simple system for the biosafety assessment on the larvae of ectoparasitoid of target pest.


Assuntos
Mariposas , Vespas , Animais , Feminino , Interações Hospedeiro-Parasita , Larva , Masculino , Controle Biológico de Vetores , Plantas Geneticamente Modificadas
10.
Food Chem Toxicol ; 140: 111324, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32283201

RESUMO

In the present study, a novel transgenic rice line T1c-19 carrying cry1C* gene was evaluated in Sprague-Dawley (SD) rats by a 52-week feeding study, aiming at determining its unintended effects. The rice T1c-19 and its parental rice were prepared at a level of up to 60.75% in the growth diet and 66.75% in the maintenance diet, respectively. AIN-93 diet was used as a nutritional control. All the diets were nutritionally balanced. Each group, with 48 rats of both genders, was fed the corresponding diet for 52 weeks. The results of clinical signs, body weight and food consumption of the transgenic rice group were comparable to those of the parental rice group. Clinical measurements were made on weeks 13, 26 and 52, and statistical significances were observed in several hematological and serum biochemical indices between the two rice groups and were not considered as treatment-related. The terminal histopathological examination showed some spontaneous lesions in all groups with no significant difference among them. Taken together, the results of the present 52-week chronic toxicity study of transgenic rice T1c-19 exerted no unintended adverse effects on SD rats.


Assuntos
Genes de Plantas , Oryza/genética , Plantas Geneticamente Modificadas/genética , Animais , Bacillus thuringiensis/genética , Feminino , Genes Bacterianos , Masculino , Ratos , Ratos Sprague-Dawley , Testes de Toxicidade Crônica
11.
GM Crops Food ; 11(2): 97-112, 2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-31906775

RESUMO

China has a large area of saline-alkaline land that can be utilized for the cultivation of transgenic rice. Therefore, the growth and reproductive behavior of transgenic rice are not only a problem for production that needs to be resolved, but also an important aspect of environmental risk assessment for saline alkali soil. In the present study, an insect-resistant transgenic cry1C* rice, T1C-19, was grown in farmland and saline-alkaline soils. The transcription and translation of the exogenous cry1C*, and vegetative and reproductive fitness, such as plant height, tiller number, biomass, filled grain number and weight per plant, were assessed. Our findings indicated that the transcription and translation of exogenous cry1C* gene in T1C-19 rice grown in saline-alkaline soil were lower than that grown in farmland; however, the correlation was not significant. The vegetative and reproductive growth abilities of T1C-19 were lower than that of the parental rice, Minghui63 (MH63), in farmland. In alkaline-saline soil, except for tiller number and biomass, there were no significant differences between T1C-19 and MH63 in other vegetative indices. In contrast, the reproductive indices of T1C-19 were significantly higher than those of MH63. The results suggested that T1C-19 had a strong reproductive capacity, and significantly reduced the loss of yield caused by insects, thereby leading to a higher yield than that of MH63 grown in saline-alkaline soils. This may promote the cultivation of saline-alkaline soil to permit farming of T1C-19 in China in the future, despite the possible increased ecological risks.


Assuntos
Bacillus thuringiensis , Oryza , Proteínas de Bactérias , China , Plantas Geneticamente Modificadas , Solo
12.
Pest Manag Sci ; 74(3): 590-597, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28941326

RESUMO

BACKGROUND: Chilo suppressalis is an important lepidopteran rice pest in the rice-growing areas of China, and the development of transgenic rice expressing the Cry1C insecticidal protein has provided a useful strategy for controlling this pest. However, insect resistance is a major threat to the durability of cry1C rice. Thus, evaluation of the risk of insect resistance before the commercial use of cry1C rice is crucial. RESULTS: This study investigated the development of C. suppressalis resistance to Cry1C protein and the relative fitness of Cry1C-resistant and -susceptible strains on different Bt rice lines. The LC50 value of the Cry1C-resistant strain increased 42.6-fold after 41 generations of selection, and the estimated realized heritability (h2 ) of Cry1C resistance was 0.096 in C. suppressalis. Moreover, the Cry1C-resistant strain displayed high fitness on the cry1C line, but not on the cry1Ab and cry1Ab + cry1C lines and was not cross-resistant to Cry1Ab. CONCLUSIONS: These findings suggest that C. suppressalis has the potential to develop resistance to Cry1C, although the rate of evolution is low. The pyramiding of the cry1A and cry1C genes in Bt rice is an effective strategy for delaying the evolution of resistance in C. suppressalis and sustainably maintaining the utility of Bt rice. © 2017 Society of Chemical Industry.


Assuntos
Proteínas de Bactérias/farmacologia , Endotoxinas/farmacologia , Evolução Molecular , Aptidão Genética , Proteínas Hemolisinas/farmacologia , Resistência a Inseticidas , Inseticidas/farmacologia , Mariposas/genética , Oryza/genética , Animais , Toxinas de Bacillus thuringiensis , Larva/genética , Larva/crescimento & desenvolvimento , Larva/microbiologia , Dose Letal Mediana , Mariposas/crescimento & desenvolvimento , Mariposas/microbiologia , Oryza/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento
13.
J Agric Food Chem ; 66(17): 4336-4344, 2018 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-29653490

RESUMO

As a result of the large-scale planting of transgenic Bacillus thuringiensis (Bt) crops, fish would be exposed to freely soluble Bt insecticidal protein(s) that are released from Bt crop tissues into adjacent bodies of water or by way of direct feeding on deposited plant material. To assess the safety of two Bt proteins Cry1C and Cry2A to fish, we used zebrafish as a representative species and exposed their embryos to 0.1, 1, and 10 mg/L of the two Cry proteins until 132 h post-fertilization and then several developmental, biochemical, and molecular parameters were evaluated. Chlorpyrifos (CPF), a known toxicant to aquatic organisms, was used as a positive control. Although CPF exposure resulted in significant developmental, biochemical, and molecular changes in the zebrafish embryos, there were almost no significant differences after Cry1C or Cry2A exposure. Thus, we conclude that zebrafish embryos are not sensitive to Cry1C and Cry2A insecticidal proteins at test concentrations.


Assuntos
Proteínas de Bactérias/toxicidade , Endotoxinas/toxicidade , Proteínas Hemolisinas/toxicidade , Inseticidas/toxicidade , Plantas Geneticamente Modificadas/efeitos adversos , Peixe-Zebra/embriologia , Animais , Apoptose/genética , Bacillus thuringiensis/química , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Produtos Agrícolas , Embrião não Mamífero/química , Embrião não Mamífero/efeitos dos fármacos , Endotoxinas/genética , Proteínas Hemolisinas/genética , Estresse Oxidativo/genética , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/genética , RNA Mensageiro/análise , Poluição da Água
14.
Environ Toxicol Chem ; 36(5): 1243-1248, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27714836

RESUMO

Because of its ecological and economic importance, the honey bee Apis mellifera is commonly used to assess the environmental risk of insect-resistant, genetically modified plants. In the present study, feeding-exposure experiments were used to determine whether pollen from transgenic rice harms A. mellifera worker bees. In 1 experiment, the survival and mean acinus diameter of hypopharyngeal glands of adult bees were similar when bees were fed on pollen from Bt rice lines or from a non-Bt rice line, but bee survival was significantly reduced when they received pollen that was mixed with potassium arsenate as a positive control. In a second experiment, bee survival and hypopharyngeal gland development were not reduced when adult bees were fed on non-Bt pollen and a sucrose solution supplemented with Cry2A at 400 µg/g, Cry1C at 50 µg/g, or bovine serum albumin (BSA) at 400 µg/g, but bee survival and hypopharyngeal gland development were reduced when the diet was supplemented with soybean trypsin inhibitor as a positive control. In both experiments, the uptake of Cry proteins by adult bees was confirmed. Overall, the results indicate that the planting of Bt rice lines expressing Cry2A or Cry1C protein poses a negligible risk to A. mellifera worker bees. Environ Toxicol Chem 2017;36:1243-1248. © 2016 SETAC.


Assuntos
Abelhas/fisiologia , Hipofaringe/crescimento & desenvolvimento , Oryza/metabolismo , Pólen/metabolismo , Animais , Arsenitos/toxicidade , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Abelhas/efeitos dos fármacos , Ingestão de Alimentos , Endotoxinas/genética , Endotoxinas/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Hipofaringe/efeitos dos fármacos , Oryza/genética , Plantas Geneticamente Modificadas/metabolismo , Compostos de Potássio/toxicidade , Inibidores da Tripsina/toxicidade
15.
Insect Sci ; 23(1): 78-87, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25284137

RESUMO

Two transgenic rice lines (T2A-1 and T1C-19b) expressing cry2A and cry1C genes, respectively, were developed in China, targeting lepidopteran pests including Chilo suppressalis (Walker) (Lepidoptera: Crambidae). The seasonal expression of Cry proteins in different tissues of the rice lines and their resistance to C. suppressalis were assessed in comparison to a Bt rice line expressing a cry1Ab/Ac fusion gene, Huahui 1, which has been granted a biosafety certificate. In general, levels of Cry proteins were T2A-1 > Huahui 1 > T1C-19b among rice lines, and leaf > stem > root among rice tissues. The expression patterns of Cry protein in the rice line plants were similar: higher level at early stages than at later stages with an exception that high Cry1C level in T1C-19b stems at the maturing stage. The bioassay results revealed that the three transgenic rice lines exhibited significantly high resistance against C. suppressalis larvae throughout the rice growing season. According to Cry protein levels in rice tissues, the raw and corrected mortalities of C. suppressalis caused by each Bt rice line were the highest in the seedling and declined through the jointing stage with an exception for T1C-19b providing an excellent performance at the maturing stage. By comparison, T1C-19b exhibited more stable and greater resistance to C. suppressalis larvae than T2A-1, being close to Huahui 1. The results suggest cry1C is an ideal Bt gene for plant transformation for lepidopteran pest control, and T1C-19b is a promising Bt rice line for commercial use for tolerating lepidopteran rice pests.


Assuntos
Bacillus thuringiensis/genética , Proteínas de Bactérias/genética , Inseticidas/metabolismo , Lepidópteros/fisiologia , Oryza/genética , Oryza/fisiologia , Controle Biológico de Vetores/métodos , Animais , Proteínas de Bactérias/metabolismo , Expressão Gênica , Oryza/metabolismo , Plantas Geneticamente Modificadas , Estações do Ano
16.
Front Plant Sci ; 7: 294, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27014317

RESUMO

Cryptochromes (CRY) are blue-light photoreceptors that mediate various light responses in plants and animals. It has long been demonstrated that Arabidopsis CRY (CRY1 and CRY2) C termini (CCT1 and CCT2) mediate light signaling through direct interaction with COP1. Most recently, CRY1 N terminus (CNT1) has been found to be involved in CRY1 signaling independent of CCT1, and implicated in the inhibition of gibberellin acids (GA)/brassinosteroids (BR)/auxin-responsive gene expression. Here, we performed RNA-Seq assay using transgenic plants expressing CCT1 fused to ß-glucuronidase (GUS-CCT1, abbreviated as CCT1), which exhibit a constitutively photomorphogenic phenotype, and compared the results with those obtained previously from cry1cry2 mutant and the transgenic plants expressing CNT1 fused to nuclear localization signal sequence (NLS)-tagged YFP (CNT1-NLS-YFP, abbreviated as CNT1), which display enhanced responsiveness to blue light. We found that 2903 (67.85%) of the CRY-regulated genes are regulated by CCT1 and that 1095 of these CCT1-regulated genes are also regulated by CNT1. After annotating the gene functions, we found that CCT1 is involved in mediating CRY1 regulation of phytohormone-responsive genes, like CNT1, and that about half of the up-regulated genes by GA/BR/auxin are down-regulated by CCT1 and CNT1, consistent with the antagonistic role for CRY1 and these phytohormones in regulating hypocotyl elongation. Physiological studies showed that both CCT1 and CNT1 are likely involved in mediating CRY1 reduction of seedlings sensitivity to GA under blue light. Furthermore, protein expression studies demonstrate that the inhibition of GA promotion of HY5 degradation by CRY1 is likely mediated by CCT1, but not by CNT1. These results give genome-wide transcriptome information concerning the signaling mechanism of CRY1, unraveling possible involvement of its C and N termini in its regulation of response of GA and likely other phytohormones.

17.
Pest Manag Sci ; 71(7): 937-45, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25067834

RESUMO

BACKGROUND: Transgenic rice producing the insecticidal protein from Bacillus thuringiensis Berliner (Bt) is protected from damage by lepidopteran insect pests. However, one of the main concerns about Bt rice is the potential impact on non-target herbivores. In the present study, the ecological impacts of two Bt rice lines, T1C-19 expressing Cry1C protein and T2A-1 expressing Cry2A protein, on the non-target herbivore brown planthopper (BPH), Nilaparvata lugens (Stål), were evaluated under laboratory and field conditions. The purpose was to verify whether these Bt rice lines could affect the performance of BPH at individual and population scales. RESULTS: Laboratory results showed that most of the fitness parameters (development duration, survival rate, fecundity, fertility, amount of honeydew excreted) of BPH were not significantly affected by the two tested Bt rice lines, although the development duration of fourth-instar nymphs fed on T1C-19 was distinctly longer compared with that on T2A-1 and non-Bt rice plants. Five life-table parameters did not significantly differ among rice types. Two-year field trials also revealed no significant difference in population dynamics of BPH among rice types. CONCLUSION: It is inferred that the tested Bt rice lines are unlikely to affect the population growth of BPH.


Assuntos
Proteínas de Bactérias/genética , Endotoxinas/genética , Hemípteros/fisiologia , Proteínas Hemolisinas/genética , Oryza/metabolismo , Animais , Bacillus thuringiensis , Toxinas de Bacillus thuringiensis , Feminino , Hemípteros/crescimento & desenvolvimento , Masculino , Ninfa/crescimento & desenvolvimento , Ninfa/fisiologia , Oryza/genética , Plantas Geneticamente Modificadas , Dinâmica Populacional , Reprodução
18.
Plant Cell Rep ; 20(1): 1-7, 2001 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30759906

RESUMO

A synthetic Bacillus thuringiensis cry1C gene was transferred to three Korean cultivars of Chinese cabbage via Agrobacterium tumefaciens-mediated transformation of hypocotyl explants. Hygromycin resistance served as an efficient selective marker. The transformation efficiency ranged from 5% to 9%. Transformation was confirmed by Southern blot analysis, PCR, Northern analysis, and progeny tests. Many transgenic plants of the closed-head types (lines Olympic and Samjin) flowered in vitro. Over 50 hygromycin-resistant plants were successfully transferred to soil. The transgenic plants and their progeny were resistant to diamondback moths (DBM, Plutella xylostella), the major insect pest of crucifers world-wide, as well as to cabbage loopers (Trichoplusia ni) and imported cabbage worms (Pieris rapae). Both susceptible Geneva DBM and a DBM population resistant to Cry1A protein were controlled by the Cry1C-transgenic plants. The efficient and reproducible transformation system described may be useful for the transfer of other agriculturally important genes into Chinese cabbage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA