Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 464
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(12): e2307467, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37940620

RESUMO

The electrochemical reduction of carbon dioxide (CO2) to ethylene creates a carbon-neutral approach to converting carbon dioxide into intermittent renewable electricity. Exploring efficient electrocatalysts with potentially high ethylene selectivity is extremely desirable, but still challenging. In this report, a laboratory-designed catalyst HKUST-1@Cu2O/PTFE-1 is prepared, in which the high specific surface area of the composites with improved CO2 adsorption and the abundance of active sites contribute to the increased electrocatalytic activity. Furthermore, the hydrophobic interface constructed by the hydrophobic material polytetrafluoroethylene (PTFE) effectively inhibits the occurrence of hydrogen evolution reactions, providing a significant improvement in the efficiency of CO2 electroreduction. The distinctive structures result in the remarkable hydrocarbon fuels generation with high Faraday efficiency (FE) of 67.41%, particularly for ethylene with FE of 46.08% (-1.0 V vs RHE). The superior performance of the catalyst is verified by DFT calculation with lower Gibbs free energy of the intermediate interactions with improved proton migration and selectivity to emerge the polycarbon(C2+) product. In this work, a promising and effective strategy is presented to configure MOF-based materials with tailored hydrophobic interface, high adsorption selectivity and more exposed active sites for enhancing the efficiency of the electroreduction of CO2 to C2+ products with high added value.

2.
Small ; 20(30): e2311336, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38385851

RESUMO

The electrocatalytic conversion of nitrate (NO3 -) to NH3 (NO3RR) at ambient conditions offers a promising alternative to the Haber-Bosch process. The pivotal factors in optimizing the proficient conversion of NO3 - into NH3 include enhancing the adsorption capabilities of the intermediates on the catalyst surface and expediting the hydrogenation steps. Herein, the Cu/Cu2O/Pi NWs catalyst is designed based on the directed-evolution strategy to achieve an efficient reduction of NO3‾. Benefiting from the synergistic effect of the OV-enriched Cu2O phase developed during the directed-evolution process and the pristine Cu phase, the catalyst exhibits improved adsorption performance for diverse NO3RR intermediates. Additionally, the phosphate group anchored on the catalyst's surface during the directed-evolution process facilitates water electrolysis, thereby generating Hads on the catalyst surface and promoting the hydrogenation step of NO3RR. As a result, the Cu/Cu2O/Pi NWs catalyst shows an excellent FE for NH3 (96.6%) and super-high NH3 yield rate of 1.2 mol h-1 gcat. -1 in 1 m KOH and 0.1 m KNO3 solution at -0.5 V versus RHE. Moreover, the catalyst's stability is enhanced by the stabilizing influence of the phosphate group on the Cu2O phase. This work highlights the promise of a directed-evolution approach in designing catalysts for NO3RR.

3.
Small ; 20(11): e2306229, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37922531

RESUMO

Photocatalytic ammonia synthesis technology is one of the important methods to achieve green ammonia synthesis. Herein, two samples of Cu ion-doped W18 O49 with different morphologies, ultra-thin nanowires (Cu-W18 O49 -x UTNW) and sea urchin-like microspheres (Cu-W18 O49 -x SUMS), are synthesized by a simple solvothermal method. Subsequently, Cu2 O-W18 O49 -x UTNW/SUMS is synthesized by in situ reduction, where the NH3 production rate of Cu2 O-W18 O49 -30 UTNW is 252.4 µmol g-1  h-1 without sacrificial reagents, which is 11.8 times higher than that of the pristine W18 O49 UTNW. The Cu2 O-W18 O49 -30 UTNW sample is rich in oxygen vacancies, which promotes the chemisorption and activation of N2 molecules and makes the N≡N bond easier to dissociate by proton coupling. In addition, the in situ reduction-generated Cu2 O nanoparticles exhibit ideal S-scheme heterojunctions with W18 O49 UTNW, which enhances the internal electric field strength and improves the separation and transfer efficiency of the photogenerated carriers. Therefore, this study provides a new idea for the design of efficient nitrogen fixation photocatalysis.

4.
Nanotechnology ; 35(19)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38271717

RESUMO

Precise identification of cholesterol levels is crucial for the early diagnosis of cardiovascular risk factors. This paper presents a novel approach for cholesterol detection that circumvents the reliance on enzymatic processes. Leveraging the unique properties of advanced materials and electrochemical principles, our non-enzymatic approach demonstrates enhanced sensitivity, specificity, and limit of detection in cholesterol analysis. A non-enzymatic electrochemical biosensor for Cholesterol, employing a nanohybrid comprising Cu2O nanoparticles decorated with MoS2, is presented. The cyclic voltammetry (CV), differential pulse voltammetry (DPV), and amperometry techniques were employed to investigate the electrochemical behaviour of the glassy carbon electrode modified with the Cu2O/MoS2nanohybrid. The modified electrode exhibited an excellent sensitivity of 111.74µAµM-1cm-2through the CV method and showcased a low detection limit of 2.18µM and an expansive linear range spanning 0.1-180µM when employing the DPV method. The electrode also showed good selectivity to various interfering components in 0.1 M NaOH and a satisfied stability of about 15 days at room temperature. The study demonstrates the potential for broader applications in clinical diagnostics and monitoring cardiovascular health, paving the way for a paradigm shift in cholesterol detection methodologies and offering a more efficient and cost-effective alternative to traditional enzymatic assays.


Assuntos
Molibdênio , Nanopartículas , Molibdênio/química , Cobre/química , Técnicas Eletroquímicas/métodos , Nanopartículas/química , Eletrodos , Colesterol , Limite de Detecção
5.
Nanotechnology ; 35(36)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38904452

RESUMO

Copper/Cuprous oxide/Carbon nanoparticles decorated MXene composite was prepared and subsequently examined for its potential application as a non-enzymatic glucose sensor. To carry out this, initially the Cu MOF/MXene composite was synthesised by the hydrothermal method and was annealed in an unreacted environment at different time intervals. During this process, petal like Cu MOF on MXene loses the organic ligands to form a Cu/Cu2O/C based nanoparticles on MXene. Further, an electrode was fabricated with the developed material for understanding the sensing performance by cyclic voltammetry and chronoamperometry in 0.1 M NaOH solution. Results reveal that the highest weight percentage of copper oxide in the composite (15 min of annealed material) shows a higher electro catalytic activity for sensing glucose molecules due to more active sites with good electron transfer ability in the composite. The formed composite exhibits a wide linear range of 0.001-26.5 mM, with a sensitivity of 762.53µAmM-1cm-2(0.001-10.1 mM), and 397.18µAmM-1cm-2(11.2-26.9 mM) and the limit of detection was 0.103µM. In addition to this, the prepared electrode shows a good reusability, repeatability, selectivity with other interferences, stability (93.65% after 30 days of storage), and feasibility of measuring glucose in real samples. This finding reveals that the metal oxide derived from MOF based nanoparticle on the MXene surface will promote the use of non-enzymatic glucose sensors.


Assuntos
Cobre , Eletrodos , Glucose , Nanopartículas , Cobre/química , Glucose/análise , Nanopartículas/química , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Carbono/química , Técnicas Eletroquímicas/métodos , Limite de Detecção
6.
Nanotechnology ; 35(32)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38710177

RESUMO

This study investigates the fabrication process of copper thin films via thermal evaporation, with precise control over film thickness achieved throughZ-position adjustment. Analysis of the as-fabricated copper films reveals a discernible relationship between grain size (〈D〉) andZ-position, characterized by a phenomenological equation〈D〉XRDn(Z)=〈D〉0n1+32rZ2+158rZ4, which is further supported by a growth exponent (n) of 0.41 obtained from the analysis. This value aligns well with findings in the literature concerning the growth of copper films, thus underlining the validity and reliability of our experimental outcomes. The resulting crystallites, ranging in size from 20 to 26 nm, exhibit a resistivity within the range of 3.3-4.6µΩ · cm. Upon thermal annealing at 200 °C, cuprite Cu2O thin films are produced, demonstrating crystallite sizes ranging from ∼9 to ∼24 nm with increasing film thickness. The observed monotonic reduction in Cu2O crystallites relative to film thickness is attributed to a recrystallization process, indicating amorphization when oxygen atoms are introduced, followed by the nucleation and growth of newly formed copper oxide phase. Changes in the optical bandgap of the Cu2O films, ranging from 2.31 to 2.07 eV, are attributed mainly to the quantum confinement effect, particularly important in Cu2O with size close than the Bohr exciton diameter (5 nm) of the Cu2O. Additionally, correlations between refractive index and extinction coefficient with film thickness are observed, notably a linear relationship between refractive index and charge carrier density. Electrical measurements confirm the presence of a p-type semiconductor with carrier concentrations of ∼1014cm-3, showing a slight decrease with film thickness. This phenomenon is likely attributed to escalating film roughness, which introduces supplementary scattering mechanisms for charge carriers, leading to a resistivity increase, especially as the roughness approaches or surpasses the mean free path of charge carriers (8.61 nm). Moreover,ab-initiocalculations on the Cu2O crystalline phase to investigate the impact of hydrostatic strain on its electronic and optical properties was conducted. We believe that our findings provide crucial insights that support the elucidation of the experimental results. Notably, thinner cuprite films exhibit heightened sensitivity to ethanol gas at room temperature, indicating potential for highly responsive gas sensors, particularly for ethanol breath testing, with significant implications for portable device applications.

7.
Lett Appl Microbiol ; 77(10)2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39299924

RESUMO

In this study, a Cu2O/TiO2 (CuTi) visible-light photocatalytic composite was employed for the treatment of Xanthomonas campestris and X. campestris-infected Brassica napus seedlings. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values against X. campestris were determined to be 8 and 32 µg ml-1, respectively. Transmission electron microscopy analysis demonstrated a direct correlation between the extent of bacterial cell damage and the concentration of CuTi. Noteworthily, a bactericidal rate of 100% was achieved at a concentration of 150 µg ml-1 over a treatment duration of 120 min. Moreover, alterations in active oxidants and antioxidants, including reactive oxygen species, glutathione reductase, superoxide dismutase, peroxidase, and catalase within the bacterial cells, were examined to elucidate the underlying mechanism of inhibition by the CuTi. The B. napus infected by X. campestris was treated with CuTi, and the efficacy was validated through determination of plant resistance indexes. The combined data confirmed that the CuTi is characterized by a low dose, fast onset, good effect, and higher safety for killing X. campestris, and it is expected to be developed as an antimicrobial agent for vegetables.


Assuntos
Antibacterianos , Brassica napus , Cobre , Luz , Testes de Sensibilidade Microbiana , Titânio , Xanthomonas campestris , Xanthomonas campestris/efeitos dos fármacos , Titânio/química , Titânio/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Cobre/farmacologia , Cobre/química , Brassica napus/microbiologia , Brassica napus/química , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/farmacologia , Antioxidantes/química , Plântula/microbiologia
8.
Mikrochim Acta ; 191(10): 588, 2024 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-39256210

RESUMO

Different morphological Cu2O nanoparticles including cube, truncated cube, and octahedron were successfully prepared by a selective surface stabilization strategy. The prepared cube Cu2O exhibited superior peroxidase-like activity over the other two morphological Cu2O nanoparticles, which can readily oxidize 3,3',5,5'-tetramethylbenzidine (TMB) to form visually recognizable color signals. Consequently, a sensitive and simple colorimetric biosensor was proposed for deoxynivalenol (DON) detection. In this biosensor, the uniform cube Cu2O was employed as the vehicle to label the antibody for the recognition of immunoreaction. The sensing strategy showed a detection limit as low as 0.01 ng/mL, and a wide linear range from 2 to 100 ng/mL. Concurrently, the approximate DON concentration can be immediately and conveniently observed by the vivid color changes. Benefiting from the high sensitivity and selectivity of the designed biosensor, the detection of DON in wheat, corn, and tap water samples was achieved, suggesting the bright prospect of the biosensor for the convenient and intuitive detection of DON in actual samples.


Assuntos
Benzidinas , Técnicas Biossensoriais , Colorimetria , Cobre , Limite de Detecção , Nanopartículas Metálicas , Tricotecenos , Zea mays , Tricotecenos/análise , Tricotecenos/imunologia , Colorimetria/métodos , Cobre/química , Técnicas Biossensoriais/métodos , Benzidinas/química , Zea mays/química , Nanopartículas Metálicas/química , Triticum/química , Peroxidase/química , Anticorpos Imobilizados/imunologia , Contaminação de Alimentos/análise
9.
J Environ Manage ; 351: 119676, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38052144

RESUMO

Cuprous oxide (Cu2O) nanoparticles (NPs) was anchored on wood by simple spraying method, then both soft and hard wood has been endowed efficient function photocatalytic degradation toward organic dyes and formaldehyde gas synergistically. The best recycle ability of wood based photocatalyst toward organic pollutants was achieved, which was characterized by photocatalytic degradation efficiency of methylene blue (MB) more than 95% after 100 cycles, and formaldehyde gas over 85% after 60 cycles. Cu2O NPs@wood performed much lower forbidden bandwidth (Eg), which accelerated to generate much more radical of e- and finally promoted the capacity of photocatalytic degradation. The proposed Cu2O NPs@wood catalysts has potential to be applied both in the field of wastewater and air pollution remediation.


Assuntos
Nanopartículas , Madeira , Águas Residuárias , Corantes , Formaldeído
10.
Molecules ; 29(10)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38792124

RESUMO

The insight of the activity phase and reaction mechanism is vital for developing high-performance ammonia synthesis electrocatalysts. In this study, the origin of the electronic-dependent activity for the model Cu2O catalyst toward ammonia electrosynthesis with nitrate was probed. The modulation of the electronic state and oxygen vacancy content of Cu2O was realized by doping with halogen elements (Cl, Br, I). The electrocatalytic experiments showed that the activity of the ammonia production depends strongly on the electronic states in Cu2O. With increased electronic state defects in Cu2O, the ammonia synthesis performance increased first and then decreased. The Cu2O/Br with electronic defects in the middle showed the highest ammonia yield of 11.4 g h-1 g-1 at -1.0 V (vs. RHE), indicating that the pattern of change in optimal ammonia activity is consistent with the phenomenon of volcano curves in reaction chemistry. This work highlights a promising route for designing NO3-RR to NH3 catalysts.

11.
Angew Chem Int Ed Engl ; 63(30): e202405733, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38719782

RESUMO

n-propanol is an important pharmaceutical and pesticide intermediate. To produce n-propanol by electrochemical reduction of CO2 is a promising way, but is largely restricted by the very low selectivity and activity. How to promote the coupling of *C1 and *C2 intermediates to form the *C3 intermediate for n-propanol formation is challenging. Here, we propose the construction of bicontinuous structure of Cu2O/Cu electrocatalyst, which consists of ultra-small Cu2O nanodomains, Cu nanodomains and large amounts of grain boundaries between Cu2O and Cu nanodomains. The n-propanol current density is as high as 101.6 mA cm-2 at the applied potential of -1.1 V vs. reversible hydrogen electrode in flow cell, with the Faradaic efficiency up to 12.1 %. Moreover, the catalyst keeps relatively stable during electrochemical CO2 reduction process. Experimental studies and theoretical calculations reveal that the bicontinuous structure of Cu2O/Cu can facilitate the *CO formation, *CO-*CO coupling and *CO-*OCCO coupling for the final generation of n-propanol.

12.
Angew Chem Int Ed Engl ; 63(7): e202317575, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38151473

RESUMO

Copper (Cu) is evidenced to be effective for constructing advanced catalysts. In particular, Cu2 O is identified to be active for general catalytic reactions. However, conflicting results regarding the true structure-activity correlations between Cu2 O-based active sites and efficiencies are usually reported. The structure of Cu2 O undergoes dynamic evolution rather than remaining stable under working conditions, in which the actual reaction cannot proceed over the prefabricated Cu2 O sites. Therefore, the dynamic construction of Cu2 O active sites can be developed to promote catalytic efficiency and reveal the true structure-activity correlations. Herein, by introducing the redox pairs of Cu2+ and reducing sugar into a photocatalysis system, it is clarified that the Cu2 O sub-nanoclusters (NCs), working as novel active sites, are on-site constructed on the substrate via a photoinduced pseudo-Fehling's route. The realistic interfacial charge separation and transformation capacities are remarkably promoted by the dynamic Cu2 O NCs under the actual catalysis condition, which achieves a milestone efficiency for nitrate-to-ammonia photosynthesis, including the targets of production rate (1.98±0.04 mol gCu -1 h-1 ), conversion ratio (94.2±0.91 %), and selectivity (98.6 %±0.55 %). The current work develops an effective strategy for integrating the active site construction into realistic reactions, providing new opportunities for Cu-based chemistry and catalysis sciences research.

13.
Angew Chem Int Ed Engl ; 63(33): e202406515, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38803131

RESUMO

Transformation of carbon dioxide and nitrate ions into urea offers an attractive route for both nitrogen fertilizer production and environmental remediation. However, achieving this transformation under mild conditions remains challenging. Herein, we report an efficient photoelectrochemical method for urea synthesis by co-reduction of carbon dioxide and nitrate ion over a Cu2O photocathode, delivering urea formation rate of 29.71±2.20 µmol g-1 h-1 and Faradaic efficiency (FE) of 12.90±1.15 % at low external potential (-0.017 V vs. reversible hydrogen electrode). Experimental data combined with theoretical calculations suggest that the adsorbed CO* and NO2* species are the key intermediates, and associated C-N coupling is the rate-determining step. This work demonstrates that Cu2O is an efficient catalyst to drive co-reduction of CO2 and NO3 - to urea under light irradiation with low external potential, showing great opportunity of photoelectrocatalysis as a sustainable tool for value-added chemical synthesis.

14.
Angew Chem Int Ed Engl ; : e202411796, 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39394644

RESUMO

Cuprous oxide (Cu2O)-based catalysts present a promising activity for the electrochemical nitrate (NO3-) reduction to ammonia (eNO3RA), but the electrochemical instability of Cu+ species may lead to an unsatisfactory durability, hindering the exploration of the structure-performance relationship. Herein, we propose an efficient strategy to stabilize Cu+ through the incorporation of Cr4+ into the Cu2O matrix to construct a Cr4+-O-Cu+ network structure. In situ and quasi-in situ characterizations reveal that the Cu+ species are well maintained via the strong Cr4+-O-Cu+ interaction that inhibits the leaching of lattice oxygen. Importantly, in situ generated Cr3+-O-Cu+ from Cr4+-O-Cu+ is identified as a dual-active site for eNO3RA, wherein the Cu+ sites are responsible for the activation of N-containing intermediates, while the assisting Cr3+ centers serve as the electron-proton mediators for rapid water dissociation. Theoretical investigations further demonstrated that the metastable state Cr3+-O-Cu+ favors the conversion from the endoergic hydrogenation of the key *ON intermediate to an exoergic reaction in an ONH pathway, and facilitates the subsequent NH3 desorption with a low energy barrier. The superior eNO3RA with a maximum 91.6% Faradaic efficiency could also be coupled with anodic sulfion oxidation to achieve concurrent NH3 production and sulfur recovery with reduced energy input.

15.
Small ; 19(19): e2207875, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36772913

RESUMO

Converting CO2 into value-added products by photocatalysis, electrocatalysis, and photoelectrocatalysis is a promising method to alleviate the global environmental problems and energy crisis. Among the semiconductor materials applied in CO2 catalytic reduction, Cu2 O has the advantages of abundant reserves, low price and environmental friendliness. Moreover, Cu2 O has unique adsorption and activation properties for CO2 , which is conducive to the generation of C2+ products through CC coupling. This review introduces the basic principles of CO2 reduction and summarizes the pathways for the generation of C1 , C2 , and C2+ products. The factors affecting CO2 reduction performance are further discussed from the perspective of the reaction environment, medium, and novel reactor design. Then, the properties of Cu2 O-based catalysts in CO2 reduction are summarized and several optimization strategies to enhance their stability and redox capacity are discussed. Subsequently, the application of Cu2 O-based catalysts in photocatalytic, electrocatalytic, and photoelectrocatalytic CO2 reduction is described. Finally, the opportunities, challenges and several research directions of Cu2 O-based catalysts in the field of CO2 catalytic reduction are presented, which is guidance for its wide application in the energy and environmental fields is provided.

16.
Small ; 19(28): e2301244, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37010019

RESUMO

A Cu2 O-TiO2 photoelectrode is pr+oposed for simultaneous solar light energy harvesting and storing of electrochemical energy in an adapted lithium coin cell. The p-type Cu2 O semiconductor layer is the light harvester component of the photoelectrode and the TiO2 film performs as the capacitive layer. The rationale of the energy scheme shows that the photocharges generated in the Cu2 O semiconductor induce lithiation/delithiation processes in the TiO2 film as a function of the applied bias voltage and light power. A photorechargeable lithium button cell drilled on one side recharges with visible white light in ≈9 h in open circuit. It provides an energy density of ≈150 mAh g-1 at 0.1 C discharge current in dark, and the overall efficiency is 0.29%. This work draws a new approach for the photoelectrode role to advance in monolithic rechargeable batteries.

17.
Small ; 19(29): e2300587, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37035961

RESUMO

Precise structural control has attracted tremendous interest in pursuit of the tailoring of physical properties. Here, this work shows that through strong ligand-mediated interfacial energy control, Au-Cu2 O dumbbell structures where both the Au nanorod (AuNR) and the partially encapsulating Cu2 O domains are highly crystalline. The synthetic advance allows physical separation of the Au and Cu2 O domains, in addition to the use of long nanorods with tunable absorption wavelength, and the crystalline Cu2 O domain with well-defined facets. The interplay of plasmon and Schottky effects boosts the photocatalytic performance in the model photodegradation of methyl orange, showing superior catalytic efficiency than the AuNR@Cu2 O core-shell structures. In addition, compared to the typical core-shell structures, the AuNR-Cu2 O dumbbells can effectively electrochemically catalyze the CO2 to C2+ products (ethanol and ethylene) via a cascade reaction pathway. The excellent dual function of both photo- and electrocatalysis can be attributed to the fine physical separation of the crystalline Au and Cu2 O domains.

18.
Chemphyschem ; 24(11): e202300047, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36760074

RESUMO

Cu2 O is an attractive catalyst for the selective reduction of CO2 to methanol. However, the mechanism of the reaction and the role of the Cu species in different oxidation states are not well understood yet. In this work, by first-principles calculations, we investigate the mechanism of the reaction on the Cu2 O(110) surface, which is the most selective for methanol, in different degrees of reduction: ideal surface, slightly reduced surface (SRS), and partially reduced surface (PRS). The most favorable reaction pathways on the three surfaces were identified. We found that Cu(I) on the ideal surface is not capable of chemisorbing CO2 , but surface oxygen serves as the active site which selectively converts CO2 to CH3 OH with a limiting potential of -0.77 V. The Cu(0) on the SRS and PRS promotes the adsorption and reduction of CO2 , while the removal of the residue O* becomes potential/rate limiting with a more negative limiting potential than the ideal surface. The SRS is selective to methanol while the PRS becomes selective to methane. The result suggests that the key to high methanol selectivity is to avoid the reduction of Cu(I), which provides a new strategy for the design of more efficient catalysts for selective CO2 reduction to methanol.

19.
Environ Res ; 231(Pt 2): 116132, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37207734

RESUMO

Excessive usage and unrestricted discharge of antibiotics in the environment lead to their accumulation in the ecosystem due to their highly stable and non-biodegradation nature. Photodegradation of four most consumed antibiotics such as amoxicillin, azithromycin, cefixime, and ciprofloxacin were studied using Cu2O-TiO2 nanotubes. Cytotoxicity evaluation of the native and transformed products was conducted on the RAW 264.7 cell lines. Photocatalyst loading (0.1-2.0 g/L), pH (5, 7 and 9), initial antibiotic load (50-1000 µg/mL) and cuprous oxide percentage (5, 10 and 20) were optimized for efficient photodegradation of antibiotics. Quenching experiments to evaluate the mechanism of photodegradation with hydroxyl and superoxide radicals were found the most reactive species of the selected antibiotics. Complete degradation of selected antibiotics was achieved in 90 min with 1.5 g/L of 10% Cu2O-TiO2 nanotubes with initial antibiotic concentration (100 µg/mL) at neutral pH of water matrix. The photocatalyst showed high chemical stability and reusability up to five consecutive cycles. Zeta potential studies confirms the high stability and activity of 10% C-TAC (Cuprous oxide doped Titanium dioxide nanotubes for Applied Catalysis) in the tested pH conditions. Photoluminescence and Electrochemical Impedance Spectroscopy data speculates that 10% C-TAC photocatalyst have efficient photoexcitation in the visible light for photodegradation of antibiotics samples. Inhibitory concentration (IC50) interpretation from the toxicity analysis of native antibiotics concluded that ciprofloxacin was the most toxic antibiotic among the selected antibiotics. Cytotoxicity percentage of transformed products showed r: -0.985, p: 0.01 (negative correlation) with the degradation percentage revealing the efficient degradation of selected antibiotics with no toxic by-products.


Assuntos
Antibacterianos , Águas Residuárias , Antibacterianos/toxicidade , Ecossistema , Luz , Titânio/toxicidade , Titânio/química , Ciprofloxacina/toxicidade , Catálise
20.
Mikrochim Acta ; 190(2): 59, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36656362

RESUMO

Based on the resonance energy transfer between CdS@CeO2 and Cu2O@PdAg, a quenching immunosensor for sensitive detection of prostate specific antigen (PSA) was constructed. The CdS@CeO2 heterostructure was obtained by in situ growth of CeO2 particles on the surface of CdS nanorods, and stable cathodic ECL emission was achieved using K2S2O8 as coreactant. Cu2O@PdAg was composed of Cu2O with tetradecahedral structure and bimetallic PdAg nanospheres and has a UV-V is absorption range between 600 and 800 nm. It overlaps with the ECL emission spectrum of CdS@CeO2, realizing the effective quenching of the ECL signal, which provides feasibility for subsequent practical application. The immunosensor exhibited good linearity in the concentration range 10 fg·mL-1 ~ 100 ng·mL-1, with a detection limit of 5.6 fg·mL-1. In sample analysis, the recoveries were 99.8-101%, and the relative standard deviation (RSD) was 0.85-1.6% showing great potential and development value for the sensitive detection of prostate cancer.


Assuntos
Técnicas Biossensoriais , Antígeno Prostático Específico , Neoplasias da Próstata , Humanos , Masculino , Técnicas Eletroquímicas , Imunoensaio , Limite de Detecção , Medições Luminescentes , Neoplasias da Próstata/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA