RESUMO
In addition to long-distance molecular motor-mediated transport, cellular vesicles also need to be moved at short distances with defined directions to meet functional needs in subcellular compartments but with unknown mechanisms. Such short-distance vesicle transport does not involve molecular motors. Here, we demonstrate, using synaptic vesicle (SV) transport as a paradigm, that phase separation of synaptic proteins with vesicles can facilitate regulated, directional vesicle transport between different presynaptic bouton sub-compartments. Specifically, a large coiled-coil scaffold protein Piccolo, in response to Ca2+ and via its C2A domain-mediated Ca2+ sensing, can extract SVs from the synapsin-clustered reserve pool condensate and deposit the extracted SVs onto the surface of the active zone protein condensate. We further show that the Trk-fused gene, TFG, also participates in COPII vesicle trafficking from ER to the ER-Golgi intermediate compartment via phase separation. Thus, phase separation may play a general role in short-distance, directional vesicle transport in cells.
Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório , Retículo Endoplasmático , Vesículas Sinápticas , Animais , Vesículas Sinápticas/metabolismo , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Retículo Endoplasmático/metabolismo , Cálcio/metabolismo , Complexo de Golgi/metabolismo , Ratos , Transporte Biológico , Terminações Pré-Sinápticas/metabolismo , Sinapsinas/metabolismo , Condensados Biomoleculares/metabolismo , Proteínas do Citoesqueleto/metabolismo , Separação de FasesRESUMO
Diatoms are central to the global carbon cycle. At the heart of diatom carbon fixation is an overlooked organelle called the pyrenoid, where concentrated CO2 is delivered to densely packed Rubisco. Diatom pyrenoids fix approximately one-fifth of global CO2, but the protein composition of this organelle is largely unknown. Using fluorescence protein tagging and affinity purification-mass spectrometry, we generate a high-confidence spatially defined protein-protein interaction network for the diatom pyrenoid. Within our pyrenoid interaction network are 10 proteins with previously unknown functions. We show that six of these form a shell that encapsulates the Rubisco matrix and is critical for pyrenoid structural integrity, shape, and function. Although not conserved at a sequence or structural level, the diatom pyrenoid shares some architectural similarities to prokaryotic carboxysomes. Collectively, our results support the convergent evolution of pyrenoids across the two main plastid lineages and uncover a major structural and functional component of global CO2 fixation.
Assuntos
Ciclo do Carbono , Dióxido de Carbono , Diatomáceas , Organelas , Ribulose-Bifosfato Carboxilase , Diatomáceas/metabolismo , Dióxido de Carbono/metabolismo , Organelas/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Mapas de Interação de Proteínas , FotossínteseRESUMO
Cancer cells enter a reversible drug-tolerant persister (DTP) state to evade death from chemotherapy and targeted agents. It is increasingly appreciated that DTPs are important drivers of therapy failure and tumor relapse. We combined cellular barcoding and mathematical modeling in patient-derived colorectal cancer models to identify and characterize DTPs in response to chemotherapy. Barcode analysis revealed no loss of clonal complexity of tumors that entered the DTP state and recurred following treatment cessation. Our data fit a mathematical model where all cancer cells, and not a small subpopulation, possess an equipotent capacity to become DTPs. Mechanistically, we determined that DTPs display remarkable transcriptional and functional similarities to diapause, a reversible state of suspended embryonic development triggered by unfavorable environmental conditions. Our study provides insight into how cancer cells use a developmentally conserved mechanism to drive the DTP state, pointing to novel therapeutic opportunities to target DTPs.
Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Diapausa , Resistencia a Medicamentos Antineoplásicos , Animais , Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Autofagia/genética , Linhagem Celular Tumoral , Células Clonais , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Embrião de Mamíferos/efeitos dos fármacos , Embrião de Mamíferos/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Heterogeneidade Genética/efeitos dos fármacos , Humanos , Irinotecano/farmacologia , Irinotecano/uso terapêutico , Camundongos Endogâmicos NOD , Camundongos SCID , Modelos Biológicos , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
The transition from the fed to the fasted state necessitates a shift from carbohydrate to fat metabolism that is thought to be mostly orchestrated by reductions in plasma insulin concentrations. Here, we show in awake rats that insulinopenia per se does not cause this transition but that both hypoleptinemia and insulinopenia are necessary. Furthermore, we show that hypoleptinemia mediates a glucose-fatty acid cycle through activation of the hypothalamic-pituitary-adrenal axis, resulting in increased white adipose tissue (WAT) lipolysis rates and increased hepatic acetyl-coenzyme A (CoA) content, which are essential to maintain gluconeogenesis during starvation. We also show that in prolonged starvation, substrate limitation due to reduced rates of glucose-alanine cycling lowers rates of hepatic mitochondrial anaplerosis, oxidation, and gluconeogenesis. Taken together, these data identify a leptin-mediated glucose-fatty acid cycle that integrates responses of the muscle, WAT, and liver to promote a shift from carbohydrate to fat oxidation and maintain glucose homeostasis during starvation.
Assuntos
Glicemia/metabolismo , Ácidos Graxos/metabolismo , Gluconeogênese , Homeostase , Leptina/metabolismo , Inanição/metabolismo , Tecido Adiposo Branco/metabolismo , Alanina/metabolismo , Animais , Insulina/sangue , Leptina/sangue , Lipólise , Fígado/metabolismo , Masculino , Mitocôndrias/metabolismo , Ratos , Ratos Sprague-DawleyRESUMO
Severe changes in the environmental redox potential, and resulting alterations in the oxidation states of intracellular metabolites and enzymes, have historically been considered negative stressors, requiring responses that are strictly defensive. However, recent work in diverse organisms has revealed that more subtle changes in the intracellular redox state can act as signals, eliciting responses with benefits beyond defense and detoxification. Changes in redox state have been shown to influence or trigger chromosome segregation, sporulation, aerotaxis, and social behaviors, including luminescence as well as biofilm establishment and dispersal. Connections between redox state and complex behavior allow bacteria to link developmental choices with metabolic state and coordinate appropriate responses. Promising future directions for this area of study include metabolomic analysis of species- and condition-dependent changes in metabolite oxidation states and elucidation of the mechanisms whereby the redox state influences circadian regulation.
Assuntos
Biofilmes/crescimento & desenvolvimento , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Esporos Bacterianos/metabolismo , Aliivibrio fischeri/genética , Aliivibrio fischeri/crescimento & desenvolvimento , Aliivibrio fischeri/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/metabolismo , Caulobacter crescentus/genética , Caulobacter crescentus/crescimento & desenvolvimento , Caulobacter crescentus/metabolismo , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Glutationa/metabolismo , Proteínas de Membrana/genética , Oxirredução , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/metabolismo , Transdução de Sinais , Esporos Bacterianos/genética , Esporos Bacterianos/crescimento & desenvolvimento , Streptomyces/genética , Streptomyces/crescimento & desenvolvimento , Streptomyces/metabolismoRESUMO
Metastatic melanoma is an aggressive disease, despite recent improvements in therapy. Eradicating all melanoma cells even in drug-sensitive tumors is unsuccessful in patients because a subset of cells can transition to a slow-cycling state, rendering them resistant to most targeted therapy. It is still unclear what pathways define these subpopulations and promote this resistant phenotype. In the current study, we show that Wnt5A, a non-canonical Wnt ligand that drives a metastatic, therapy-resistant phenotype, stabilizes the half-life of p53 and uses p53 to initiate a slow-cycling state following stress (DNA damage, targeted therapy, and aging). Inhibiting p53 blocks the slow-cycling phenotype and sensitizes melanoma cells to BRAF/MEK inhibition. In vivo, this can be accomplished with a single dose of p53 inhibitor at the commencement of BRAF/MEK inhibitor therapy. These data suggest that taking the paradoxical approach of inhibiting rather than activating wild-type p53 may sensitize previously resistant metastatic melanoma cells to therapy.
Assuntos
Melanoma/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Wnt-5a/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , MAP Quinase Quinase Quinases/metabolismo , Melanoma/genética , Melanoma/patologia , Terapia de Alvo Molecular , Mutação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Proteína Supressora de Tumor p53/fisiologiaRESUMO
Decomposition of dead organic matter is fundamental to carbon (C) and nutrient cycling in terrestrial ecosystems, influencing C fluxes from the biosphere to the atmosphere. Theory predicts and evidence strongly supports that the availability of nitrogen (N) limits litter decomposition. Positive relationships between substrate N concentrations and decomposition have been embedded into ecosystem models. This decomposition paradigm, however, relies on data mostly from short-term studies analyzing controls on early-stage decomposition. We present evidence from three independent long-term decomposition investigations demonstrating that the positive N-decomposition relationship is reversed and becomes negative during later stages of decomposition. First, in a 10-y decomposition experiment across 62 woody species in a temperate forest, leaf litter with higher N concentrations exhibited faster initial decomposition rates but ended up a larger recalcitrant fraction decomposing at a near-zero rate. Second, in a 5-y N-enrichment experiment of two tree species, leaves with experimentally enriched N concentrations had faster decomposition initial rates but ultimately accumulated large slowly decomposing fractions. Measures of amino sugars on harvested litter in two experiments indicated that greater accumulation of microbial residues in N-rich substrates likely contributed to larger slowly decomposing fractions. Finally, a database of 437 measurements from 120 species in 45 boreal and temperate forest sites confirmed that higher N concentrations were associated with a larger slowly decomposing fraction. These results challenge the current treatment of interactions between N and decomposition in many ecosystems and Earth system models and suggest that even the best-supported short-term controls of biogeochemical processes might not predict long-term controls.
Assuntos
Florestas , Nitrogênio , Folhas de Planta , Árvores , Nitrogênio/metabolismo , Nitrogênio/química , Folhas de Planta/química , Folhas de Planta/metabolismo , Árvores/metabolismo , Carbono/metabolismo , Carbono/química , Ecossistema , Taiga , Ciclo do CarbonoRESUMO
We combine synchrotron-based infrared absorption and Raman scattering spectroscopies with diamond anvil cell techniques and first-principles calculations to explore the properties of hafnia under compression. We find that pressure drives HfO[Formula: see text]:7%Y from the mixed monoclinic ([Formula: see text]) [Formula: see text] antipolar orthorhombic ([Formula: see text]) phase to pure antipolar orthorhombic ([Formula: see text]) phase at approximately 6.3 GPa. This transformation is irreversible, meaning that upon release, the material is kinetically trapped in the [Formula: see text] metastable state at 300 K. Compression also drives polar orthorhombic ([Formula: see text]) hafnia into the tetragonal ([Formula: see text]) phase, although the latter is not metastable upon release. These results are unified by an analysis of the energy landscape. The fact that pressure allows us to stabilize targeted metastable structures with less Y stabilizer is important to preserving the flat phonon band physics of pure HfO[Formula: see text].
RESUMO
Climate influences near-surface biogeochemical processes and thereby determines the partitioning of carbon dioxide (CO2) in shale, and yet the controls on carbon (C) weathering fluxes remain poorly constrained. Using a dataset that characterizes biogeochemical responses to climate forcing in shale regolith, we implement a numerical model that describes the effects of water infiltration events, gas exchange, and temperature fluctuations on soil respiration and mineral weathering at a seasonal timescale. Our modeling approach allows us to quantitatively disentangle the controls of transient climate forcing and biogeochemical mechanisms on C partitioning. We find that ~3% of soil CO2 (1.02 mol C/m2/y) is exported to the subsurface during large infiltration events. Here, net atmospheric CO2 drawdown primarily occurs during spring snowmelt, governs the aqueous C exports (61%), and exceeds the CO2 flux generated by pyrite and petrogenic organic matter oxidation (~0.2 mol C/m2/y). We show that shale CO2 consumption results from the temporal coupling between soil microbial respiration and carbonate weathering. This coupling is driven by the impacts of hydrologic fluctuations on fresh organic matter availability and CO2 transport to the weathering front. Diffusion-limited transport of gases under transient hydrological conditions exerts an important control on CO2(g) egress patterns and thus must be considered when inferring soil CO2 drawdown from the gas phase composition. Our findings emphasize the importance of seasonal climate forcing in shaping the net contribution of shale weathering to terrestrial C fluxes and suggest that warmer conditions could reduce the potential for shale weathering to act as a CO2 sink.
RESUMO
Most of the geologic CO2 entering Earth's atmosphere and oceans is emitted along plate margins. While C-cycling at mid-ocean ridges and subduction zones has been studied for decades, little attention has been paid to degassing of magmatic CO2 and mineral carbonation of mantle rocks in oceanic transform faults. We studied the formation of soapstone (magnesite-talc rock) and other magnesite-bearing assemblages during mineral carbonation of mantle peridotite in the St. Paul's transform fault, equatorial Atlantic. Clumped carbonate thermometry of soapstone yields a formation (or equilibration) temperature of 147 ± 13 °C which, based on thermodynamic constraints, suggests that CO2(aq) concentrations of the hydrothermal fluid were at least an order of magnitude higher than in seawater. The association of magnesite with apatite in veins, magnesite with a δ13C of -3.40 ± 0.04, and the enrichment of CO2 in hydrothermal fluids point to magmatic degassing and melt-impregnation as the main source of CO2. Melt-rock interaction related to gas-rich alkali olivine basalt volcanism near the St. Paul's Rocks archipelago is manifested in systematic changes in peridotite compositions, notably a strong enrichment in incompatible elements with decreasing MgO/SiO2. These findings reveal a previously undocumented aspect of the geologic carbon cycle in one of the largest oceanic transform faults: Fueled by magmatism in or below the root zone of the transform fault and subsequent degassing, the fault constitutes a conduit for CO2-rich hydrothermal fluids, while carbonation of peridotite represents a vast sink for the emitted CO2.
RESUMO
Effectively managing sewage sludge from Fenton reactions in an eco-friendly way is vital for Fenton technology's viability in pollution treatment. This study focuses on sewage sludge across various treatment stages, including generation, concentration, dehydration, and landfill, and employs chemical composite MoS2 to facilitate green resource utilization of all types of sludge. MoS2, with exposed Mo4+ and low-coordination sulfur, enhances iron cycling and creates an acidic microenvironment on the sludge surface. The MoS2-modified iron sludge exhibits outstanding (>95%) phenol and pollutant degradation in hydrogen peroxide and peroxymonosulfate-based Fenton systems, unlike unmodified sludge. This modified sludge maintains excellent Fenton activity in various water conditions and with multiple anions, allowing extended phenol degradation for over 14 d. Notably, the generated chemical oxygen demand (COD) in sludge modification process can be efficiently eliminated through the Fenton reaction, ensuring effluent COD compliance and enabling eco-friendly sewage sludge resource utilization.
RESUMO
Multiple facets of global change affect the earth system interactively, with complex consequences for ecosystem functioning and stability. Simultaneous climate and biodiversity change are of particular concern, because biodiversity may contribute to ecosystem resistance and resilience and may mitigate climate change impacts. Yet, the extent and generality of how climate and biodiversity change interact remain insufficiently understood, especially for the decomposition of organic matter, a major determinant of the biosphere-atmosphere carbon feedbacks. With an inter-biome field experiment using large rainfall exclusion facilities, we tested how drought, a common prediction of climate change models for many parts of the world, and biodiversity in the decomposer system drive decomposition in forest ecosystems interactively. Decomposing leaf litter lost less carbon (C) and especially nitrogen (N) in five different forest biomes following partial rainfall exclusion compared to conditions without rainfall exclusion. An increasing complexity of the decomposer community alleviated drought effects, with full compensation when large-bodied invertebrates were present. Leaf litter mixing increased diversity effects, with increasing litter species richness, which contributed to counteracting drought effects on C and N loss, although to a much smaller degree than decomposer community complexity. Our results show at a relevant spatial scale covering distinct climate zones that both, the diversity of decomposer communities and plant litter in forest floors have a strong potential to mitigate drought effects on C and N dynamics during decomposition. Preserving biodiversity at multiple trophic levels contributes to ecosystem resistance and appears critical to maintain ecosystem processes under ongoing climate change.
Assuntos
Secas , Ecossistema , Biodiversidade , Florestas , Folhas de Planta , CarbonoRESUMO
The unique optical cycling efficiency of alkaline earth metal-ligand molecules has enabled significant advances in polyatomic laser cooling and trapping. Rotational spectroscopy is an ideal tool for probing the molecular properties that underpin optical cycling, thereby elucidating the design principles for expanding the chemical diversity and scope of these platforms for quantum science. We present a comprehensive study of the structure and electronic properties in alkaline earth metal acetylides with high-resolution microwave spectra of 17 isotopologues of MgCCH, CaCCH, and SrCCH in their 2Σ+ ground electronic states. The precise semiexperimental equilibrium geometry of each species has been derived by correcting the measured rotational constants for electronic and zero-point vibrational contributions calculated with high-level quantum chemistry methods. The well-resolved hyperfine structure associated with the 1,2H, 13C, and metal nuclear spins provides further information on the distribution and hybridization of the metal-centered, optically active unpaired electron. Together, these measurements allow us to correlate trends in chemical bonding and structure with the electronic properties that promote efficient optical cycling essential to next-generation experiments in precision measurement and quantum control of complex polyatomic molecules.
RESUMO
Reduced nitrogen (N) is central to global biogeochemistry, yet there are large uncertainties surrounding its sources and rate of cycling. Here, we present observations of gas-phase urea (CO(NH2)2) in the atmosphere from airborne high-resolution mass spectrometer measurements over the North Atlantic Ocean. We show that urea is ubiquitous in the lower troposphere in the summer, autumn, and winter but was not detected in the spring. The observations suggest that the ocean is the primary emission source, but further studies are required to understand the responsible mechanisms. Urea is also observed aloft due to long-range transport of biomass-burning plumes. These observations alongside global model simulations point to urea being an important, and currently unaccounted for, component of reduced-N to the remote marine atmosphere. Airborne transfer of urea between nutrient-rich and -poor parts of the ocean can occur readily and could impact ecosystems and oceanic uptake of carbon dioxide, with potentially important climate implications.
RESUMO
Material fluxes at the land-ocean interface impact seawater composition and global cycling of elements. However, most attention has been focused on the fluvial dissolved fluxes. For elements like lead (Pb), whose fluvial particulate flux into the ocean is two orders of magnitude higher than the dissolved counterpart, the role of particulates in elemental cycling is potentially important but currently less appreciated. Using both chemical analyses on samples collected from around equatorial Southeast Asia and model simulations, we show that particulate-dissolved exchange is an important mechanism controlling the concentration and isotopic composition of dissolved Pb in the ocean. Our model indicates that Pb contributed from particulate-dissolved exchange at ocean boundaries is larger than, or at least comparable to, other major Pb sources to the seawater before the Anthropocene, when the anthropogenic Pb was absent. Our work highlights the importance of boundary exchange in understanding marine element cycling and weathering-climate feedback.
RESUMO
Megaherbivores have pervasive ecological effects. In African rainforests, elephants can increase aboveground carbon, though the mechanisms are unclear. Here, we combine a large unpublished dataset of forest elephant feeding with published browsing preferences totaling nearly 200,000 records covering >800 plant species and with nutritional data for 145 species. Elephants increase carbon stocks by: 1) promoting high wood density trees via preferential browsing on leaves from low wood density species, which are more palatable and digestible; and 2) dispersing seeds of trees that are relatively large and have the highest average wood density among tree guilds based on dispersal mode. Loss of forest elephants could cause an increase in abundance of fast-growing low wood density trees and a 6% to 9% decline in aboveground carbon stocks due to regeneration failure of elephant-dispersed trees. These results demonstrate the importance of megaherbivores for maintaining diverse, high-carbon tropical forests. Successful elephant conservation will contribute to climate mitigation at a globally-relevant scale.
Assuntos
Elefantes , Animais , Carbono/metabolismo , Florestas , Árvores/metabolismo , Clima Tropical , BiomassaRESUMO
Muscle contraction is performed by arrays of contractile proteins in the sarcomere. Serious heart diseases, such as cardiomyopathy, can often be results of mutations in myosin and actin. Direct characterization of how small changes in the myosin-actin complex impact its force production remains challenging. Molecular dynamics (MD) simulations, although capable of studying protein structure-function relationships, are limited owing to the slow timescale of the myosin cycle as well as a lack of various intermediate structures for the actomyosin complex. Here, employing comparative modeling and enhanced sampling MD simulations, we show how the human cardiac myosin generates force during the mechanochemical cycle. Initial conformational ensembles for different myosin-actin states are learned from multiple structural templates with Rosetta. This enables us to efficiently sample the energy landscape of the system using Gaussian accelerated MD. Key myosin loop residues, whose substitutions are related to cardiomyopathy, are identified to form stable or metastable interactions with the actin surface. We find that the actin-binding cleft closure is allosterically coupled to the myosin motor core transitions and ATP-hydrolysis product release from the active site. Furthermore, a gate between switch I and switch II is suggested to control phosphate release at the prepowerstroke state. Our approach demonstrates the ability to link sequence and structural information to motor functions.
Assuntos
Actinas , Actomiosina , Humanos , Actomiosina/metabolismo , Actinas/metabolismo , Miosinas/metabolismo , Citoesqueleto de Actina/metabolismo , Conformação Proteica , Trifosfato de Adenosina/metabolismoRESUMO
In natural and agricultural situations, ammonium ( NH 4 + ) is a preferred nitrogen (N) source for plants, but excessive amounts can be hazardous to them, known as NH 4 + toxicity. Nitrate ( NO 3 - ) has long been recognized to reduce NH 4 + toxicity. However, little is known about Brassica napus, a major oil crop that is sensitive to high NH 4 + . Here, we found that NO 3 - can mitigate NH 4 + toxicity by balancing rhizosphere and intracellular pH and accelerating ammonium assimilation in B. napus. NO 3 - increased the uptake of NO 3 - and NH 4 + under high NH 4 + circumstances by triggering the expression of NO 3 - and NH 4 + transporters, while NO 3 - and H+ efflux from the cytoplasm to the apoplast was enhanced by promoting the expression of NO 3 - efflux transporters and genes encoding plasma membrane H+ -ATPase. In addition, NO 3 - increased pH in the cytosol, vacuole, and rhizosphere, and down-regulated genes induced by acid stress. Root glutamine synthetase (GS) activity was elevated by NO 3 - under high NH 4 + conditions to enhance the assimilation of NH 4 + into amino acids, thereby reducing NH 4 + accumulation and translocation to shoot in rapeseed. In addition, root GS activity was highly dependent on the environmental pH. NO 3 - might induce metabolites involved in amino acid biosynthesis and malate metabolism in the tricarboxylic acid cycle, and inhibit phenylpropanoid metabolism to mitigate NH 4 + toxicity. Collectively, our results indicate that NO 3 - balances both rhizosphere and intracellular pH via effective NO 3 - transmembrane cycling, accelerates NH 4 + assimilation, and up-regulates malate metabolism to mitigate NH 4 + toxicity in oilseed rape.
Assuntos
Compostos de Amônio , Brassica napus , Compostos de Amônio/metabolismo , Nitratos/metabolismo , Brassica napus/genética , Rizosfera , Malatos/metabolismo , Nitrogênio/metabolismo , Concentração de Íons de HidrogênioRESUMO
The Rho family GTPases Rac and Rho play critical roles in transmitting mechanical information contained within the extracellular matrix (ECM) to the cell. Rac and Rho have well-described roles in regulating stiffness-dependent actin remodeling, proliferation and motility. However, much less is known about the relative roles of these GTPases in stiffness-dependent transcription, particularly at the genome-wide level. Here, we selectively inhibited Rac and Rho in mouse embryonic fibroblasts cultured on deformable substrata and used RNA sequencing to elucidate and compare the contribution of these GTPases to the early transcriptional response to ECM stiffness. Surprisingly, we found that the stiffness-dependent activation of Rac was dominant over Rho in the initial transcriptional response to ECM stiffness. We also identified activating transcription factor 3 (ATF3) as a major target of stiffness- and Rac-mediated signaling and show that ATF3 repression by ECM stiffness helps to explain how the stiffness-dependent activation of Rac results in the induction of cyclin D1.
Assuntos
Fator 3 Ativador da Transcrição , Fibroblastos , Animais , Camundongos , Fator 3 Ativador da Transcrição/genética , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Proteínas rac de Ligação ao GTP/genética , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Transdução de SinaisRESUMO
High-throughput profiling of microbial functional traits involved in various biogeochemical cycling pathways using shotgun metagenomic sequencing has been routinely applied in microbial ecology and environmental science. Multiple bioinformatics data processing approaches are available, including assembly-based (single-sample assembly and multi-sample assembly) and read-based (merged reads and raw data). However, it remains not clear how these different approaches may differ in data analyses and affect result interpretation. In this study, using two typical shotgun metagenome datasets recovered from geographically distant coastal sediments, the performance of different data processing approaches was comparatively investigated from both technical and biological/ecological perspectives. Microbially mediated biogeochemical cycling pathways, including nitrogen cycling, sulfur cycling and B12 biosynthesis, were analyzed. As a result, multi-sample assembly provided the most amount of usable information for targeted functional traits, at a high cost of computational resources and running time. Single-sample assembly and read-based analysis were comparable in obtaining usable information, but the former was much more time- and resource-consuming. Critically, different approaches introduced much stronger variations in microbial profiles than biological differences. However, community-level differences between the two sampling sites could be consistently observed despite the approaches being used. In choosing an appropriate approach, researchers shall balance the trade-offs between multiple factors, including the scientific question, the amount of usable information, computational resources and time cost. This study is expected to provide valuable technical insights and guidelines for the various approaches used for metagenomic data analysis.