Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Mol Cell ; 82(1): 159-176.e12, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34847357

RESUMO

The MYCN oncoprotein drives the development of numerous neuroendocrine and pediatric tumors. Here we show that MYCN interacts with the nuclear RNA exosome, a 3'-5' exoribonuclease complex, and recruits the exosome to its target genes. In the absence of the exosome, MYCN-directed elongation by RNA polymerase II (RNAPII) is slow and non-productive on a large group of cell-cycle-regulated genes. During the S phase of MYCN-driven tumor cells, the exosome is required to prevent the accumulation of stalled replication forks and of double-strand breaks close to the transcription start sites. Upon depletion of the exosome, activation of ATM causes recruitment of BRCA1, which stabilizes nuclear mRNA decapping complexes, leading to MYCN-dependent transcription termination. Disruption of mRNA decapping in turn activates ATR, indicating transcription-replication conflicts. We propose that exosome recruitment by MYCN maintains productive transcription elongation during S phase and prevents transcription-replication conflicts to maintain the rapid proliferation of neuroendocrine tumor cells.


Assuntos
Núcleo Celular/enzimologia , Proliferação de Células , Replicação do DNA , Exossomos/enzimologia , Proteína Proto-Oncogênica N-Myc/metabolismo , Neuroblastoma/enzimologia , RNA Polimerase II/metabolismo , Transcrição Gênica , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/genética , Quebras de DNA de Cadeia Dupla , Exorribonucleases/genética , Exorribonucleases/metabolismo , Exossomos/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Masculino , Camundongos , Proteína Proto-Oncogênica N-Myc/genética , Células NIH 3T3 , Neuroblastoma/genética , Neuroblastoma/patologia , Regiões Promotoras Genéticas , Capuzes de RNA/genética , Capuzes de RNA/metabolismo , RNA Polimerase II/genética , Terminação da Transcrição Genética
2.
Mol Cell ; 62(6): 943-957, 2016 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-27315556

RESUMO

Signals and posttranslational modifications regulating the decapping step in mRNA degradation pathways are poorly defined. In this study we reveal the importance of K63-linked ubiquitylation for the assembly of decapping factors, P-body formation, and constitutive decay of instable mRNAs encoding mediators of inflammation by various experimental approaches. K63-branched ubiquitin chains also regulate IL-1-inducible phosphorylation of the P-body component DCP1a. The E3 ligase TRAF6 binds to DCP1a and indirectly regulates DCP1a phosphorylation, expression of decapping factors, and gene-specific mRNA decay. Mutation of six C-terminal lysines of DCP1a suppresses decapping activity and impairs the interaction with the mRNA decay factors DCP2, EDC4, and XRN1, but not EDC3, thus remodeling P-body architecture. The usage of ubiquitin chains for the proper assembly and function of the decay-competent mammalian decapping complex suggests an additional layer of control to allow a coordinated function of decapping activities and mRNA metabolism in higher eukaryotes.


Assuntos
Endorribonucleases/metabolismo , Lisina/metabolismo , Capuzes de RNA/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Transativadores/metabolismo , Ubiquitinação , Animais , Linhagem Celular Tumoral , Endorribonucleases/genética , Exorribonucleases/metabolismo , Células HEK293 , Humanos , Interleucina-1alfa/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas/metabolismo , Capuzes de RNA/genética , Estabilidade de RNA/efeitos dos fármacos , RNA Mensageiro/genética , Receptores de Interleucina-1/agonistas , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Fatores de Tempo , Transativadores/genética , Transfecção , Ubiquitinação/efeitos dos fármacos
3.
Cell Mol Life Sci ; 80(12): 372, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38001238

RESUMO

Postovulatory aging leads to the decline in oocyte quality and subsequent impairment of embryonic development, thereby reducing the success rate of assisted reproductive technology (ART). Potential preventative strategies preventing oocytes from aging and the associated underlying mechanisms warrant investigation. In this study, we identified that cordycepin, a natural nucleoside analogue, promoted the quality of oocytes aging in vitro, as indicated by reduced oocyte fragmentation, improved spindle/chromosomes morphology and mitochondrial function, as well as increased embryonic developmental competence. Proteomic and RNA sequencing analyses revealed that cordycepin inhibited the degradation of several crucial maternal proteins and mRNAs caused by aging. Strikingly, cordycepin was found to suppress the elevation of DCP1A protein by inhibiting polyadenylation during postovulatory aging, consequently impeding the decapping of maternal mRNAs. In humans, the increased degradation of DCP1A and total mRNA during postovulatory aging was also inhibited by cordycepin. Collectively, our findings demonstrate that cordycepin prevents postovulatory aging of mammalian oocytes by inhibition of maternal mRNAs degradation via suppressing polyadenylation of DCP1A mRNA, thereby promoting oocyte developmental competence.


Assuntos
Poliadenilação , RNA Mensageiro Estocado , Humanos , Animais , RNA Mensageiro Estocado/metabolismo , Proteômica , Oócitos/metabolismo , Envelhecimento , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Mamíferos/metabolismo , Endorribonucleases/metabolismo , Transativadores/metabolismo
4.
Biochem Biophys Res Commun ; 555: 128-133, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33813271

RESUMO

mRNA decapping is a critical step in posttranscriptional regulation of gene expression in eukaryotes. Although Dcp1a is a well characterized and widely conserved mRNA decapping factor, little is known about its physiological function. To extend our understanding of Dcp1a function in vivo, we employed a transgenic rescue strategy to produce Dcp1a-deficient mice using the CRISPR/Cas9 system. This approach arrowed us to generate heterozygous Dcp1a mice and define the phenotype of Dcp1a-deficient embryos. We found that expression of Dcp1a protein, which is detectable in most mouse tissues, was developmentally regulated through embryonic growth, and that depletion of the Dcp1a gene resulted in embryonic lethality around embryonic day 10.5 (E10.5) concomitant with massive growth retardation and cardiac developmental defects. Moreover, the embryonic lethality was fully rescued by transgenic expression of exogenous human Dcp1a. Together, our results suggest that Dcp1a is required for embryonic growth.


Assuntos
Endorribonucleases/genética , Endorribonucleases/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Transativadores/genética , Transativadores/metabolismo , Animais , Sistemas CRISPR-Cas , Feminino , Coração/embriologia , Cardiopatias Congênitas/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Camundongos Transgênicos
5.
J Virol ; 94(15)2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32461317

RESUMO

Porcine deltacoronavirus (PDCoV) is an emerging swine enteropathogenic coronavirus. The nonstructural protein nsp5, also called 3C-like protease, is responsible for processing viral polyprotein precursors in coronavirus (CoV) replication. Previous studies have shown that PDCoV nsp5 cleaves the NF-κB essential modulator and the signal transducer and activator of transcription 2 to disrupt interferon (IFN) production and signaling, respectively. Whether PDCoV nsp5 also cleaves IFN-stimulated genes (ISGs), IFN-induced antiviral effector molecules, remains unclear. In this study, we screened 14 classical ISGs and found that PDCoV nsp5 cleaved the porcine mRNA-decapping enzyme 1a (pDCP1A) through its protease activity. Similar cleavage of endogenous pDCP1A was also observed in PDCoV-infected cells. PDCoV nsp5 cleaved pDCP1A at glutamine 343 (Q343), and the cleaved pDCP1A fragments, pDCP1A1-343 and pDCP1A344-580, were unable to inhibit PDCoV infection. Mutant pDCP1A-Q343A, which resists nsp5-mediated cleavage, exhibited a stronger ability to inhibit PDCoV infection than wild-type pDCP1A. Interestingly, the Q343 cleavage site is highly conserved in DCP1A homologs from other mammalian species. Further analyses demonstrated that nsp5 encoded by seven tested CoVs that can infect human or pig also cleaved pDCP1A and human DCP1A, suggesting that DCP1A may be the common target for cleavage by nsp5 of mammalian CoVs.IMPORTANCE Interferon (IFN)-stimulated gene (ISG) induction through IFN signaling is important to create an antiviral state and usually directly inhibits virus infection. The present study first demonstrated that PDCoV nsp5 can cleave mRNA-decapping enzyme 1a (DCP1A) to attenuate its antiviral activity. Furthermore, cleaving DCP1A is a common characteristic of nsp5 proteins from different coronaviruses (CoVs), which represents a common immune evasion mechanism of CoVs. Previous evidence showed that CoV nsp5 cleaves the NF-κB essential modulator and signal transducer and activator of transcription 2. Taken together, CoV nsp5 is a potent IFN antagonist because it can simultaneously target different aspects of the host IFN system, including IFN production and signaling and effector molecules.


Assuntos
Antivirais/farmacologia , Coronavirus/efeitos dos fármacos , Coronavirus/metabolismo , Cisteína Endopeptidases/metabolismo , Endorribonucleases/metabolismo , Transativadores/metabolismo , Proteínas não Estruturais Virais/metabolismo , Animais , Proteases 3C de Coronavírus , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Cisteína Endopeptidases/química , Exorribonucleases/metabolismo , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Evasão da Resposta Imune , Interferons/metabolismo , Fator de Transcrição STAT2/metabolismo , Transdução de Sinais , Suínos , Doenças dos Suínos/virologia
6.
J Cell Physiol ; 234(12): 23667-23674, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31188482

RESUMO

Up to date, the mechanism of gastric cancer (GC) development is poorly understood. This study was to demonstrate the effects of LINC00339 on GC progression. Here, we found that LINC00339 was overexpressed expressed in GC tissues and predicted poor outcome. By CCK8, colony formation and Transwell assays, we showed LINC00339 knockdown suppressed GC cell proliferation, migration, and invasion in vitro. Flow cytometry analysis (FACS) indicated that LINC00339 knockdown induced tumor cell apoptosis. Besides, we utilized the xenograft assay and found that LINC00339 depletion led to decreased tumor growth in vivo. Mechanistically, miR-377-3p was found to be inhibited by LINC00339. And LINC00339 suppressed miR-377-3p to upregulate DCP1A, which consequently promoted GC progression. In conclusion, LINC00339 promotes gastric cancer progression by elevating DCP1A expression via inhibiting miR-377-3p.


Assuntos
Endorribonucleases/biossíntese , MicroRNAs/genética , RNA Longo não Codificante/genética , Neoplasias Gástricas/patologia , Transativadores/biossíntese , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Progressão da Doença , Humanos , Invasividade Neoplásica/genética , Transplante de Neoplasias , Oncogenes/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Neoplasias Gástricas/genética , Transplante Heterólogo
7.
Mol Carcinog ; 57(10): 1421-1431, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29964337

RESUMO

The long non-coding RNA MALAT1 has been proved to promote the cell proliferation, drug resistance, invasion, and metastasis of colorectal cancer (CRC) in vitro and in vivo by regulating the expression of various oncogenes and their protein products. Our previous work discovered that the expression of the mRNA-decapping enzymes 1a (DCP1A) is upregulated in CRCs. However, the relationships between MALAT1 and DCP1A in the development of CRC and the underlying mechanisms are still unclear. In this study, we investigated the molecular mechanisms by which MALAT1 and DCP1A may be linked to contribute to the malignancies of CRCs. We found that DCP1A is a direct target molecule of MALAT1. Moreover, by screening the downstream genes of MALAT1, we noticed that microRNA 203(miR203), an oncogene suppressor in numerous cancers, is inversely correlated to both MALAT1 and DCP1A expressions. Following MALAT1 knockdown, we observed overexpression of miR203 accompanied with DCP1A downregulation to a level that reversed the promoted cell proliferation, invasion, and migration in vitro and in vivo, which could be restored by miR203 knockdown or DCP1A overexpression. These results proposed a new molecular mechanism of MALAT-miR203-DCP1A axis which is involved with the development and contributes to the malignancy of colorectal cancers.


Assuntos
Neoplasias Colorretais/genética , Endorribonucleases/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , RNA Longo não Codificante/genética , Transativadores/genética , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/terapia , Regulação para Baixo , Endorribonucleases/metabolismo , Humanos , Camundongos , Interferência de RNA , Terapêutica com RNAi/métodos , Transativadores/metabolismo , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
8.
Histochem Cell Biol ; 145(1): 93-104, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26464247

RESUMO

LINE-1 is an autonomous non-LTR retrotransposon in mammalian genomes and encodes ORF1P and ORF2P. ORF2P has been clearly identified as the enzyme supplier needed in LINE-1 retrotransposition. However, the role of ORF1P is not well explored. In this study, we employed loss/gain-of-function approach to investigate the role of LINE1-ORF1P in mouse oocyte meiotic maturation. During mouse oocyte development, ORF1P was observed in cytoplasm as well as in nucleus at germinal vesicle (GV) stage while was localized on the spindle after germinal vesicle breakdown (GVBD). Depletion of ORF1P caused oocyte arrest at the GV stage as well as down-regulation of CDC2 and CYCLIN B1, components of the maturation-promoting factor (MPF). Further analysis demonstrated ORF1P depletion triggered DNA damage response and most of the oocytes presented altered chromatin configuration. In addition, SMAD4 showed nuclear foci signal after Orf1p dsRNA injection. ORF1P overexpression held the oocyte development at MI stage and the chromosome alignment and spindle organization were severely affected. We also found that ORF1P could form DCP1A body-like foci structure in both cytoplasm and nucleus after heat shock. Taken together, accurate regulation of ORF1P plays an essential role in mouse oocyte meiotic maturation.


Assuntos
Elementos Nucleotídeos Longos e Dispersos/genética , Meiose/genética , Oócitos/citologia , Oogênese/fisiologia , Proteínas de Ligação a RNA/metabolismo , Animais , Proteína Quinase CDC2/metabolismo , Ciclina B1/metabolismo , Reparo do DNA/genética , Endorribonucleases/metabolismo , Feminino , Fator Promotor de Maturação/metabolismo , Mesotelina , Camundongos , Camundongos Endogâmicos ICR , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Proteína Smad4/metabolismo , Fuso Acromático/metabolismo , Transativadores/metabolismo
9.
Biochim Biophys Acta ; 1829(10): 1102-10, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23932921

RESUMO

In various human malignancies, widespread dysregulation of microRNA (miRNA) expression is reported to occur and affects various cell growth programs. Recent studies suggest that the expression levels of miRNAs that act as tumor suppressors are frequently reduced in cancers because of chromosome deletions, epigenetical changes, aberrant transcription, and disturbances in miRNA processing. MiR-143 and -145 are well-recognized miRNAs that are highly expressed in several tissues, but down-regulated in most types of cancers. However, the mechanism of this down-regulation has not been investigated in detail. Here, we show that DEAD-box RNA helicase 6, DDX6 (p54/RCK), post-transcriptionally down-regulated miR-143/145 expression by prompting the degradation of its host gene product, NCR143/145 RNA. In human gastric cancer cell line MKN45, DDX6 protein was abundantly expressed and accumulated in processing bodies (P-bodies). DDX6 preferentially increased the instability of non-coding RNA, NCR143/145, which encompasses the miR-143/145 cluster, and down-regulated the expression of mature miR-143/145. In human monocytic cell line THP-1, lipopolysaccharide treatment promoted the assembly of P-bodies and down-regulated the expression of NCR143/145 and its miR-143/145 rapidly. In these cells, cycloheximide treatment led to a loss of P-bodies and to an increase in NCR143/145 RNA stability, thus resulting in up-regulation of miR-143/145 expression. These data demonstrate that DDX6 contributed to the control of NCR143/145 RNA stability in P-bodies and post-transcriptionally regulated miR-143/145 expression in cancer cells.


Assuntos
RNA Helicases DEAD-box/metabolismo , Regulação da Expressão Gênica , MicroRNAs/antagonistas & inibidores , Neoplasias da Próstata/genética , Proteínas Proto-Oncogênicas/metabolismo , Processamento Pós-Transcricional do RNA , RNA Longo não Codificante/genética , Neoplasias Gástricas/genética , Western Blotting , Células Cultivadas , RNA Helicases DEAD-box/antagonistas & inibidores , RNA Helicases DEAD-box/genética , Imunofluorescência , Humanos , Luciferases/metabolismo , Masculino , MicroRNAs/genética , Monócitos/citologia , Monócitos/metabolismo , Neoplasias da Próstata/metabolismo , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Neoplasias Gástricas/metabolismo
10.
J Thorac Dis ; 15(3): 1289-1301, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37065560

RESUMO

Background: Non-small cell lung cancer (NSCLC) is the most common malignancy in lung cancer, with a low survival rate and unfavorable prognosis. Dysregulated long non-coding RNAs (lncRNAs) play vital functions in tumor progression. This study intended to probe the expression pattern and function of HOXD-AS2 in NSCLC. Methods: Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to analyze the expression of HOXD-AS2, miR-3681-5p, CCR1, mRNA-decapping enzyme 1A (DCP1A), and PPP3R1. Cell viability, migration, and invasion were separately examined via 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) and transwell experiments. Luciferase reporter assay was conducted to evaluate the binding of miR-3681-5p with HOXD-AS2 or DCP1A. Protein expression of DCP1A was assessed via Western blot. NSCLC animal models were constructed through injection of H1975 cells transfected with lentivirus (LV)-sh-HOXD-AS2 into nude mice, followed by hematoxylin and eosin (HE) staining and immunohistochemistry (IHC) analysis. Results: In this study, HOXD-AS2 was upregulated in NSCLC tissues and cells, and high HOXD-AS2 predicted short overall survival (OS). Downregulation of HOXD-AS2 could impair the proliferation, migration, and invasion abilities of H1975 and A549 cells. MiR-3681-5p was shown to bind with HOXD-AS2 and be lowly expressed in NSCLC. Suppression of miR-3681-5p could abolish the inhibitory effect of HOXD-AS2 silencing on proliferation, migration, and invasion. DCP1A was screened as the target of miR-3681-5p and its overexpression could rescue miR-3681-5p upregulation-repressed proliferation, migration, and invasion activities. Moreover, animal experiments affirmed that HOXD-AS2 promoted tumor growth in vivo. Conclusions: HOXD-AS2 modulates the miR-3681-5p/DCP1A axis to boost the progression of NSCLC, which founds the basis of HOXD-AS2 as a new diagnostic biomarker and molecular target for NSCLC therapy.

11.
Front Immunol ; 14: 1196031, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37283741

RESUMO

Swine acute diarrhoea syndrome coronavirus (SADS-CoV), which is a recently discovered enteric coronavirus, is the major aetiological agent that causes severe clinical diarrhoea and intestinal pathological damage in pigs, and it has caused significant economic losses to the swine industry. Nonstructural protein 5, also called 3C-like protease, cleaves viral polypeptides and host immune-related molecules to facilitate viral replication and immune evasion. Here, we demonstrated that SADS-CoV nsp5 significantly inhibits the Sendai virus (SEV)-induced production of IFN-ß and inflammatory cytokines. SADS-CoV nsp5 targets and cleaves mRNA-decapping enzyme 1a (DCP1A) via its protease activity to inhibit the IRF3 and NF-κB signaling pathways in order to decrease IFN-ß and inflammatory cytokine production. We found that the histidine 41 and cystine 144 residues of SADS-CoV nsp5 are critical for its cleavage activity. Additionally, a form of DCP1A with a mutation in the glutamine 343 residue is resistant to nsp5-mediated cleavage and has a stronger ability to inhibit SADS-CoV infection than wild-type DCP1A. In conclusion, our findings reveal that SADS-CoV nsp5 is an important interferon antagonist and enhance the understanding of immune evasion by alpha coronaviruses.


Assuntos
Alphacoronavirus , Coronavirus , Interferon Tipo I , Animais , Suínos , Alphacoronavirus/genética , Alphacoronavirus/metabolismo , Coronavirus/metabolismo , Endopeptidases , Interferon Tipo I/metabolismo
12.
Aging (Albany NY) ; 13(19): 23020-23035, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34609335

RESUMO

Long non-coding RNAs (lncRNAs) are associated with occurrence and development of tumors. Enhancer RNA (eRNA) is a special type of lncRNAs produced from transcription of enhancer elements. The function of eRNAs in tumors have elicited significant attention recently. However, the clinical significance and role of eRNAs in hepatocellular carcinoma (HCC) has not been fully explored. The current study sought to explore the expression level and prognostic value of key eRNAs in HCC. Bioinformatics analyses were used to explore expression levels of key prognostic eRNAs in HCC and their correlation with target genes. A total of 1580 enhancer RNAs (eRNAs) and 1791 target genes were initially retrieved from TCGA-LIHC gene expression database. Further analysis through survival and correlation analysis led to identification of 12 eRNAs and 13 target genes. The findings showed that DCP1A was the most prognosis-related eRNA. This eRNA showed the highest correlation with the target gene, PRKCD. Analysis showed that poor overall survival (OS) in HCC patients was correlated with high expression level of DCP1A (eRNA) and PRKCD (target gene). The up-regulation of DCP1A was associated with advanced tumor stage, larger tumor size and higher histological grade. The results of pan-cancer analysis showed that the expression of DCP1A was differentially expressed in 13 other types of tumor tissues and their corresponding normal tissues. This eRNA was highly expressed in digestive system tumors. Functional analysis showed that high expression level of DCP1A was implicated in multiple tumor-related signaling pathways. The findings of the current study indicated DCP1A is a novel biomarker that can be used as a potential therapeutic target for HCC patients.


Assuntos
Carcinoma Hepatocelular , Endorribonucleases/genética , Elementos Facilitadores Genéticos/genética , Neoplasias Hepáticas , RNA/genética , Transativadores/genética , Idoso , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Feminino , Humanos , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Transcriptoma/genética
13.
Skelet Muscle ; 11(1): 18, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34238354

RESUMO

BACKGROUND: During skeletal muscle regeneration, satellite stem cells use distinct pathways to repair damaged myofibers or to self-renew by returning to quiescence. Cellular/mitotic quiescence employs mechanisms that promote a poised or primed state, including altered RNA turnover and translational repression. Here, we investigate the role of mRNP granule proteins Fragile X Mental Retardation Protein (Fmrp) and Decapping protein 1a (Dcp1a) in muscle stem cell quiescence and differentiation. METHODS: Using isolated single muscle fibers from adult mice, we established differential enrichment of mRNP granule proteins including Fmrp and Dcp1a in muscle stem cells vs. myofibers. We investigated muscle tissue homeostasis in adult Fmr1-/- mice, analyzing myofiber cross-sectional area in vivo and satellite cell proliferation ex vivo. We explored the molecular mechanisms of Dcp1a and Fmrp function in quiescence, proliferation and differentiation in a C2C12 culture model. Here, we used polysome profiling, imaging and RNA/protein expression analysis to establish the abundance and assembly status of mRNP granule proteins in different cellular states, and the phenotype of knockdown cells. RESULTS: Quiescent muscle satellite cells are enriched for puncta containing the translational repressor Fmrp, but not the mRNA decay factor Dcp1a. MuSC isolated from Fmr1-/- mice exhibit defective proliferation, and mature myofibers show reduced cross-sectional area, suggesting a role for Fmrp in muscle homeostasis. Expression and organization of Fmrp and Dcp1a varies during primary MuSC activation on myofibers, with Fmrp puncta prominent in quiescence, but Dcp1a puncta appearing during activation/proliferation. This reciprocal expression of Fmrp and Dcp1a puncta is recapitulated in a C2C12 culture model of quiescence and activation: consistent with its role as a translational repressor, Fmrp is enriched in non-translating mRNP complexes abundant in quiescent myoblasts; Dcp1a puncta are lost in quiescence, suggesting stabilized and repressed transcripts. The function of each protein differs during proliferation; whereas Fmrp knockdown led to decreased proliferation and lower cyclin expression, Dcp1a knockdown led to increased cell proliferation and higher cyclin expression. However, knockdown of either Fmrp or Dcp1a led to compromised differentiation. We also observed cross-regulation of decay versus storage mRNP granules; knockdown of Fmrp enhances accumulation of Dcp1a puncta, whereas knockdown of Dcp1a leads to increased Fmrp in puncta. CONCLUSIONS: Taken together, our results provide evidence that the balance of mRNA turnover versus utilization is specific for distinct cellular states.


Assuntos
Endorribonucleases/genética , Proteína do X Frágil da Deficiência Intelectual , Mioblastos , Ribonucleoproteínas , Células-Tronco/citologia , Transativadores/genética , Animais , Proteína do X Frágil da Deficiência Intelectual/genética , Camundongos , Camundongos Knockout , Fibras Musculares Esqueléticas , Mioblastos/citologia
14.
Cancer Manag Res ; 12: 8465-8479, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32982440

RESUMO

BACKGROUND: Colorectal cancer (CRC) is a kind of malignant tumor, and the development of chemoradiotherapy resistance (CRR) increases the difficulty of its treatment. The role of circular RNAs (circRNAs) in cancer progression has been well documented. Nevertheless, the function of circ_0007031 in the growth and CRR of CRC has not been well elucidated. METHODS: CRR cell lines were constructed using 5-Fu and radiation. Cell counting kit 8 (CCK8) assay was employed to measure the 5-Fu resistance and proliferation of cells. Clonogenic assay was used to evaluate the radiation resistance of cells. Also, the expression of circ_0007031 and microRNA-760 (miR-760) was determined using quantitative real-time polymerase chain reaction (qRT-PCR). The cell cycle distribution and apoptosis of cells were assessed by flow cytometry. Besides, the levels of apoptosis-related protein and mRNA-decapping enzyme 1a (DCP1A) protein were measured by Western blot (WB) analysis. Further, dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were used to confirm the interaction between miR-760 and circ_0007031 or DCP1A. In addition, animal experiments were performed to evaluate the function of silenced circ_0007031 on the 5-Fu and radiation resistance of CRC tumors. RESULTS: Circ_0007031 expression was markedly increased in CRC tissues and cells, especially in CRC resistant cells. Circ_0007031 knockdown hindered proliferation, induced cell cycle arrest in the G0/G1 phase, enhanced apoptosis, and lowered the CRR of CRC resistant cells. Further, miR-760 could be targeted by circ_0007031, and its inhibitor could reverse the inhibition effect of circ_0007031 knockdown on the growth and CRR of CRC resistant cells. Moreover, DCP1A was a target of miR-760, and its overexpression could invert the suppression effect of miR-760 overexpression on the growth and CRR of CRC resistant cells. Circ_0007031 silencing could enhance the sensitivity of CRC tumors to 5-Fu and radiation to markedly reduce CRC tumor growth in vivo. CONCLUSION: Circ_0007031 might play a positive role in the CRR of CRC through regulating the miR-760/DCP1A axis, which might provide a new approach for treating the CRR of CRC.

15.
Dig Liver Dis ; 52(11): 1351-1358, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32646734

RESUMO

AIMS: To detect the role of DCP1a in gastric cancer. To estimate the effect of DCP1a in gastric cancer cells on proliferation, invasion, migration and anti-drug behavior in vitro by down-regulating its expression. METHODS: Using IHC staining and Western blot to check the expression of DCP1a in tissues and the cell lines. SGC7901 and BGC823 cells were transfected with DCP1a siRNA, and the expression of DCP1a protein and mRNA were detected. The cell proliferation rate was detected by MTT assay and plate cloning assay. Transwell assay was used to detect the change of cell metastasis. The inhibition rates of cells to chemotherapy were detected by MTT assay. And signal pathways were also detected. RESULTS: The expression of DCP1a in cancer tissues is higher (p < 0.05), and higher expression of DCP1a is related to poor prognosis. After down-regulating the expression of DCP1a in cells, the proliferation rates, migration abilities and chemotherapy resistance decrease. We find that the expression of MRP-1 and the activation of AKT and STAT3 pathways might be involved in regulation. CONCLUSION: The high expression of DCP1a might be associated with cancer development and prognosis. Down-regulating the expression of DCP1a will help to reduce chemotherapy resistance, which will help with further improvement of chemotherapy in gastric cancer.


Assuntos
Movimento Celular , Proliferação de Células , Endorribonucleases/metabolismo , Neoplasias Gástricas/patologia , Transativadores/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo , Endorribonucleases/genética , Humanos , Invasividade Neoplásica , Metástase Neoplásica , RNA Interferente Pequeno/genética , Transdução de Sinais , Transativadores/genética , Transfecção
16.
Cancers (Basel) ; 11(8)2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31426445

RESUMO

The frequently occurring heterogeneity of cancer cells and their functional interaction with immune cells in the tumor microenvironment raises the need to study signaling pathways at the single cell level with high precision, sensitivity, and spatial resolution. As aberrant NF-κB activity has been implicated in almost all steps of cancer development, we analyzed the dynamic regulation and activation status of the canonical NF-κB pathway in control and IL-1α-stimulated individual cells using proximity ligation assays (PLAs). These systematic experiments allowed the visualization of the dynamic dissociation and re-formation of endogenous p65/IκBα complexes and the nuclear translocation of NF-κB p50/p65 dimers. PLA combined with immunostaining for p65 or with NFKBIA single molecule mRNA-FISH facilitated the analysis of (i) further levels of the NF-κB pathway, (i) its functionality for downstream gene expression, and (iii) the heterogeneity of the NF-κB response in individual cells. PLA also revealed the interaction between NF-κB p65 and the P-body component DCP1a, a new p65 interactor that contributes to efficient p65 NF-κB nuclear translocation. In summary, these data show that PLA technology faithfully mirrored all aspects of dynamic NF-κB regulation, thus allowing molecular diagnostics of this key pathway at the single cell level which will be required for future precision medicine.

17.
DNA Cell Biol ; 36(7): 565-570, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28488892

RESUMO

P-bodies are cytoplasmic foci composed of mRNAs and enzymes involved in mRNA degradation. P-bodies have been found to link to RNA interference and RNA decay mediated by microRNAs (miRNAs) and translational repression. Here, we aim to investigate different effects of overexpressed Dcp1a or GW182 on cytoplasmic aggregates formation and influence on miRNA pathway. Small RNAs were recruited into endogenous foci of P-bodies and aggregates formed by Dcpa1 and GW182 overexpression. However, only overexpressed Dcp1a but not GW182 was colocalized with DDX6, another component of P-bodies and suppressed protein translation. In addition, we investigated the relationship between stress granules and miRNA pathway and found that granules induced by G3BP1 overexpression could recruit small RNAs into the granules and repressed protein translation. As Ago2 is a key component of RNA-induced silencing complex, we also investigated the localization of endogenous Ago2 (edo-Ago2) after Dcp1a and GW182 overexpression, and found that endo-Ago2 did not colocalize with the aggregates induced by overexpression of Dcpla, GW182, and G3BP1. Notably, the ability of miRNA to regulate its target was enhanced by the granules induced by Dcp1a and G3BP1 expression. Our results suggest that overexpressed Dcp1a and GW182 can form different cytoplasmic aggregates and play distinct biological roles in the miRNA pathway.


Assuntos
Autoantígenos/genética , Proteínas de Transporte/genética , Endorribonucleases/genética , MicroRNAs/genética , Interferência de RNA , Proteínas de Ligação a RNA/genética , Transativadores/genética , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Autoantígenos/metabolismo , Proteínas de Transporte/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , DNA Helicases , Endorribonucleases/metabolismo , Células HEK293 , Células HeLa , Humanos , Substâncias Macromoleculares/química , Substâncias Macromoleculares/metabolismo , MicroRNAs/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose , Ligação Proteica , Biossíntese de Proteínas , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , RNA Helicases , Proteínas com Motivo de Reconhecimento de RNA , Estabilidade de RNA , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Transativadores/metabolismo
18.
Virology ; 481: 199-209, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25796077

RESUMO

Respiratory syncytial virus (RSV) is a negative-strand RNA virus that is an important cause of bronchiolitis and pneumonia. We investigated the effect of RSV infection on the expression patterns of cellular proteins involved in regulating mRNA translation and degradation, and found that a processing-body protein involved in mRNA degradation, decapping protein 1a (DCP1), was phosphorylated rapidly following infection. UV-inactivated and sucrose-purified RSV were sufficient to mediate DCP1 phosphorylation, indicating that it occurs as a consequence of an early event in RSV infection. Analysis using kinase inhibitors showed that RSV-induced DCP1 phosphorylation occurred through the ERK1/2 pathway. The DCP1 phosphorylation sites were limited to serine 315, serine 319, and threonine 321. Overexpression of wt DCP1 led to a decrease in RSV-induced IL-8 production, but this effect was abrogated in cells overexpressing phosphorylation-deficient DCP1 mutants. These results suggest that DCP1 phosphorylation modulates the host chemokine response to RSV infection.


Assuntos
Endorribonucleases/metabolismo , Interleucina-8/genética , Infecções por Vírus Respiratório Sincicial/metabolismo , Vírus Sincicial Respiratório Humano/fisiologia , Transativadores/metabolismo , Motivos de Aminoácidos , Endorribonucleases/química , Endorribonucleases/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células Hep G2 , Humanos , Interleucina-8/metabolismo , Fosforilação , Infecções por Vírus Respiratório Sincicial/genética , Infecções por Vírus Respiratório Sincicial/virologia , Transativadores/química , Transativadores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA