Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(1): 80-97.e26, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36608661

RESUMO

Glucose is a universal bioenergy source; however, its role in controlling protein interactions is unappreciated, as are its actions during differentiation-associated intracellular glucose elevation. Azido-glucose click chemistry identified glucose binding to a variety of RNA binding proteins (RBPs), including the DDX21 RNA helicase, which was found to be essential for epidermal differentiation. Glucose bound the ATP-binding domain of DDX21, altering protein conformation, inhibiting helicase activity, and dissociating DDX21 dimers. Glucose elevation during differentiation was associated with DDX21 re-localization from the nucleolus to the nucleoplasm where DDX21 assembled into larger protein complexes containing RNA splicing factors. DDX21 localized to specific SCUGSDGC motif in mRNA introns in a glucose-dependent manner and promoted the splicing of key pro-differentiation genes, including GRHL3, KLF4, OVOL1, and RBPJ. These findings uncover a biochemical mechanism of action for glucose in modulating the dimerization and function of an RNA helicase essential for tissue differentiation.


Assuntos
RNA Helicases DEAD-box , Glucose , Queratinócitos , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , RNA Helicases DEAD-box/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Glucose/metabolismo , Queratinócitos/citologia , Queratinócitos/metabolismo , Humanos
2.
Cell ; 169(4): 664-678.e16, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28475895

RESUMO

Dysregulated rRNA synthesis by RNA polymerase I (Pol I) is associated with uncontrolled cell proliferation. Here, we report a box H/ACA small nucleolar RNA (snoRNA)-ended long noncoding RNA (lncRNA) that enhances pre-rRNA transcription (SLERT). SLERT requires box H/ACA snoRNAs at both ends for its biogenesis and translocation to the nucleolus. Deletion of SLERT impairs pre-rRNA transcription and rRNA production, leading to decreased tumorigenesis. Mechanistically, SLERT interacts with DEAD-box RNA helicase DDX21 via a 143-nt non-snoRNA sequence. Super-resolution images reveal that DDX21 forms ring-shaped structures surrounding multiple Pol I complexes and suppresses pre-rRNA transcription. Binding by SLERT allosterically alters individual DDX21 molecules, loosens the DDX21 ring, and evicts DDX21 suppression on Pol I transcription. Together, our results reveal an important control of ribosome biogenesis by SLERT lncRNA and its regulatory role in DDX21 ring-shaped arrangements acting on Pol I complexes.


Assuntos
RNA Helicases DEAD-box/metabolismo , RNA Polimerase I/metabolismo , Precursores de RNA/genética , RNA Longo não Codificante/metabolismo , Sítio Alostérico , Animais , Carcinogênese , Linhagem Celular , Linhagem Celular Tumoral , RNA Helicases DEAD-box/química , Feminino , Técnicas de Inativação de Genes , Humanos , Camundongos , Camundongos Nus , Precursores de RNA/metabolismo , Transcrição Gênica
3.
Mol Cell ; 84(9): 1711-1726.e11, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38569554

RESUMO

N6-methyladenosine (m6A) is a crucial RNA modification that regulates diverse biological processes in human cells, but its co-transcriptional deposition and functions remain poorly understood. Here, we identified the RNA helicase DDX21 with a previously unrecognized role in directing m6A modification on nascent RNA for co-transcriptional regulation. DDX21 interacts with METTL3 for co-recruitment to chromatin through its recognition of R-loops, which can be formed co-transcriptionally as nascent transcripts hybridize onto the template DNA strand. Moreover, DDX21's helicase activity is needed for METTL3-mediated m6A deposition onto nascent RNA following recruitment. At transcription termination regions, this nexus of actions promotes XRN2-mediated termination of RNAPII transcription. Disruption of any of these steps, including the loss of DDX21, METTL3, or their enzymatic activities, leads to defective termination that can induce DNA damage. Therefore, we propose that the R-loop-DDX21-METTL3 nexus forges the missing link for co-transcriptional modification of m6A, coordinating transcription termination and genome stability.


Assuntos
Adenosina , Adenosina/análogos & derivados , RNA Helicases DEAD-box , Exorribonucleases , Instabilidade Genômica , Metiltransferases , Estruturas R-Loop , RNA Polimerase II , Terminação da Transcrição Genética , Humanos , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/genética , Metiltransferases/metabolismo , Metiltransferases/genética , Adenosina/metabolismo , Adenosina/genética , Exorribonucleases/metabolismo , Exorribonucleases/genética , RNA Polimerase II/metabolismo , RNA Polimerase II/genética , Células HEK293 , Cromatina/metabolismo , Cromatina/genética , Dano ao DNA , Células HeLa , RNA/metabolismo , RNA/genética , Transcrição Gênica , Metilação de RNA
4.
Mol Cell ; 75(6): 1270-1285.e14, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31351877

RESUMO

PARP inhibitors (PARPi) prevent cancer cell growth by inducing synthetic lethality with DNA repair defects (e.g., in BRCA1/2 mutant cells). We have identified an alternative pathway for PARPi-mediated growth control in BRCA1/2-intact breast cancer cells involving rDNA transcription and ribosome biogenesis. PARP-1 binds to snoRNAs, which stimulate PARP-1 catalytic activity in the nucleolus independent of DNA damage. Activated PARP-1 ADP-ribosylates DDX21, an RNA helicase that localizes to nucleoli and promotes rDNA transcription when ADP-ribosylated. Treatment with PARPi or mutation of the ADP-ribosylation sites reduces DDX21 nucleolar localization, rDNA transcription, ribosome biogenesis, protein translation, and cell growth. The salient features of this pathway are evident in xenografts in mice and human breast cancer patient samples. Elevated levels of PARP-1 and nucleolar DDX21 are associated with cancer-related outcomes. Our studies provide a mechanistic rationale for efficacy of PARPi in cancer cells lacking defects in DNA repair whose growth is inhibited by PARPi.


Assuntos
Neoplasias da Mama/metabolismo , RNA Helicases DEAD-box/metabolismo , Proteínas de Neoplasias/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , RNA Neoplásico/metabolismo , RNA Nucleolar Pequeno/metabolismo , Ribossomos/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , RNA Helicases DEAD-box/genética , Reparo do DNA , Feminino , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas de Neoplasias/genética , Poli(ADP-Ribose) Polimerase-1/genética , RNA Neoplásico/genética , RNA Nucleolar Pequeno/genética , Ribossomos/genética
5.
J Neurosci ; 44(35)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39060175

RESUMO

Protein synthesis in response to neuronal activity, known as activity-dependent translation, is critical for synaptic plasticity and memory formation. However, the signaling cascades that couple neuronal activity to the translational events remain elusive. In this study, we identified the role of calmodulin (CaM), a conserved Ca2+-binding protein, in ribosomal RNA (rRNA) biogenesis in neurons. We found the CaM-regulated rRNA synthesis is Ca2+-dependent and necessary for nascent protein synthesis and axon growth in hippocampal neurons. Mechanistically, CaM interacts with nucleolar DEAD (Asp-Glu-Ala-Asp) box RNA helicase (DDX21) in a Ca2+-dependent manner to regulate nascent rRNA transcription within nucleoli. We further found CaM alters the conformation of DDX21 to liberate the DDX21-sequestered RPA194, the catalytic subunit of RNA polymerase I, to facilitate transcription of ribosomal DNA. Using high-throughput screening, we identified the small molecules batefenterol and indacaterol that attenuate the CaM-DDX21 interaction and suppress nascent rRNA synthesis and axon growth in hippocampal neurons. These results unveiled the previously unrecognized role of CaM as a messenger to link the activity-induced Ca2+ influx to the nucleolar events essential for protein synthesis. We thus identified the ability of CaM to transmit information to the nucleoli of neurons in response to stimulation.


Assuntos
Calmodulina , RNA Helicases DEAD-box , Hipocampo , RNA Ribossômico , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/genética , Animais , RNA Ribossômico/metabolismo , Calmodulina/metabolismo , Hipocampo/metabolismo , Hipocampo/citologia , Humanos , Neurônios/metabolismo , Ratos , Nucléolo Celular/metabolismo , Células Cultivadas , Células HEK293 , Camundongos , Cálcio/metabolismo
6.
Genes Dev ; 31(13): 1370-1381, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28790157

RESUMO

R loops are three-stranded nucleic acid structures consisting of an RNA:DNA heteroduplex and a "looped-out" nontemplate strand. As aberrant formation and persistence of R loops block transcription elongation and cause DNA damage, mechanisms that resolve R loops are essential for genome stability. Here we show that the DEAD (Asp-Glu-Ala-Asp)-box RNA helicase DDX21 efficiently unwinds R loops and that depletion of DDX21 leads to accumulation of cellular R loops and DNA damage. Significantly, the activity of DDX21 is regulated by acetylation. Acetylation by CBP inhibits DDX21 activity, while deacetylation by SIRT7 augments helicase activity and overcomes R-loop-mediated stalling of RNA polymerases. Knockdown of SIRT7 leads to the same phenotype as depletion of DDX21 (i.e., increased formation of R loops and DNA double-strand breaks), indicating that SIRT7 and DDX21 cooperate to prevent R-loop accumulation, thus safeguarding genome integrity. Moreover, DDX21 resolves estrogen-induced R loops on estrogen-responsive genes in breast cancer cells, which prevents the blocking of transcription elongation on these genes.


Assuntos
RNA Helicases DEAD-box/metabolismo , Instabilidade Genômica/genética , Conformação de Ácido Nucleico , Sirtuínas/metabolismo , Acetilação , RNA Helicases DEAD-box/genética , DNA/química , DNA/genética , Dano ao DNA/genética , DNA Helicases/metabolismo , Reparo do DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Ativação Enzimática , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Células MCF-7 , Sirtuínas/genética
7.
J Biol Chem ; 299(10): 105157, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37579947

RESUMO

Noncanonical base pairing between four guanines (G) within single-stranded G-rich sequences leads to formation of а G-quartet. Self-stacking of G-quartets results in a columnar four-stranded DNA structure known as the G-quadruplex (G4 or G4-DNA). In cancer cells, G4-DNA regulates multiple DNA-dependent processes, including transcription, replication, and telomere function. How G4s function in neurons is poorly understood. Here, we performed a genome-wide gene expression analysis (RNA-Seq) to identify genes modulated by a G4-DNA ligand, pyridostatin (PDS), in primary cultured neurons. PDS promotes stabilization of G4 structures, thus allowing us to define genes directly or indirectly responsive to G4 regulation. We found that 901 genes were differentially expressed in neurons treated with PDS out of a total of 18,745 genes with measured expression. Of these, 505 genes were downregulated and 396 genes were upregulated and included gene networks regulating p53 signaling, the immune response, learning and memory, and cellular senescence. Within the p53 network, the E3 ubiquitin ligase Pirh2 (Rchy1), a modulator of DNA damage responses, was upregulated by PDS. Ectopically overexpressing Pirh2 promoted the formation of DNA double-strand breaks, suggesting a new DNA damage mechanism in neurons that is regulated by G4 stabilization. Pirh2 downregulated DDX21, an RNA helicase that unfolds G4-RNA and R-loops. Finally, we demonstrated that Pirh2 increased G4-DNA levels in the neuronal nucleolus. Our data reveal the genes that are responsive to PDS treatment and suggest similar transcriptional regulation by endogenous G4-DNA ligands. They also connect G4-dependent regulation of transcription and DNA damage mechanisms in neuronal cells.

8.
J Virol ; 96(6): e0000222, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35107372

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has the largest RNA genome, approximately 30 kb, among RNA viruses. The DDX DEAD box RNA helicase is a multifunctional protein involved in all aspects of RNA metabolism. Therefore, host RNA helicases may regulate and maintain such a large viral RNA genome. In this study, I investigated the potential role of several host cellular RNA helicases in SARS-CoV-2 infection. Notably, DDX21 knockdown markedly accumulated intracellular viral RNA and viral production, as well as viral infectivity of SARS-CoV-2, indicating that DDX21 strongly restricts the SARS-CoV-2 infection. In addition, MOV10 RNA helicase also suppressed the SARS-CoV-2 infection. In contrast, DDX1, DDX5, and DDX6 RNA helicases were required for SARS-CoV-2 replication. Indeed, SARS-CoV-2 infection dispersed the P-body formation of DDX6 and MOV10 RNA helicases as well as XRN1 exonuclease, while the viral infection did not induce stress granule formation. Accordingly, the SARS-CoV-2 nucleocapsid (N) protein interacted with DDX1, DDX3, DDX5, DDX6, DDX21, and MOV10 and disrupted the P-body formation, suggesting that SARS-CoV-2 N hijacks DDX6 to carry out viral replication. Conversely, DDX21 and MOV10 restricted SARS-CoV-2 infection through an interaction of SARS-CoV-2 N with host cellular RNA helicases. Altogether, host cellular RNA helicases seem to regulate the SARS-CoV-2 infection. IMPORTANCE SARS-CoV-2 has a large RNA genome, of approximately 30 kb. To regulate and maintain such a large viral RNA genome, host RNA helicases may be involved in SARS-CoV-2 replication. In this study, I have demonstrated that DDX21 and MOV10 RNA helicases limit viral infection and replication. In contrast, DDX1, DDX5, and DDX6 are required for SARS-CoV-2 infection. Interestingly, SARS-CoV-2 infection disrupted P-body formation and attenuated or suppressed stress granule formation. Thus, SARS-CoV-2 seems to hijack host cellular RNA helicases to play a proviral role by facilitating viral infection and replication and by suppressing the host innate immune system.


Assuntos
COVID-19 , Interações entre Hospedeiro e Microrganismos , RNA Helicases , RNA Viral , COVID-19/enzimologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos , RNA Helicases/genética , RNA Helicases/metabolismo , RNA Viral/metabolismo , SARS-CoV-2 , Replicação Viral/fisiologia
9.
RNA ; 26(1): 44-57, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31653714

RESUMO

DDX21 is a newly discovered RNA G-quadruplex (rG4) binding protein with no known biological rG4 targets. In this study we used label-free proteomic MS/MS to identify 26 proteins that are expressed at significantly different levels in cells expressing an rG4-binding deficient DDX21 (M4). MS data are available via ProteomeXchange with identifier PXD013501. From this list we validate MAGED2 as a protein that is regulated by DDX21 through rG4 in its 5'-UTR. MAGED2 protein levels, but not mRNA levels, are reduced by half in cells expressing DDX21 M4. MAGED2 has a repressive effect on TRAIL-R2 expression that is relieved under these conditions, resulting in elevated TRAIL-R2 mRNA and protein in MCF-7 cells, rendering them sensitive to TRAIL-mediated apoptosis. Our work identifies the role of DDX21 in regulation at the translational level through biologically relevant rG4 and shows that MAGED2 protein levels are regulated, at least in part, by the potential to form rG4 in their 5'-UTRs.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antígenos de Neoplasias/metabolismo , RNA Helicases DEAD-box/metabolismo , Quadruplex G , Regulação da Expressão Gênica , RNA/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Regiões 5' não Traduzidas/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Antígenos de Neoplasias/genética , RNA Helicases DEAD-box/genética , Guanina/química , Humanos , Células MCF-7 , Biossíntese de Proteínas , Proteômica , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Espectrometria de Massas em Tandem
10.
Biochem Biophys Res Commun ; 581: 110-117, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34688145

RESUMO

Type 2 diabetes (T2D) is a multifactorial and polygenetic disease, although its exact etiology remains poorly understood. The objective of this study was to identify key biomarkers and potential molecular mechanisms in the development of T2D. Human RNA-Seq datasets across different tissues (GSE18732, GSE41762, and GSE78721) were collected from the Gene Expression Omnibus (GEO) database and differentially expressed genes (DEGs) between T2D and controls were identified using differential analysis. A total of 90 overlapping DEGs were identified, among which YTHDF2, DDX21, and MDM2 were considered as key genes due to their central positions in the PPI network and the same regulatory pattern in T2D. Logistic regression analysis showed that low expression of the key genes increased the risk of T2D. Enrichment analysis revealed that the key genes are involved in various important biological functions and signaling pathways including Notch, Fork head box O (FOXO), and phosphoinositide 3-kinase (PI3K)-Akt. RT-qPCR and Western blot analysis showed that all three key genes were down-regulated in pancreatic islets of both prediabetic and diabetic mouse models. Finally, the insulin-sensitizer, pioglitazone was used to treat db/db mice and immunofluorescence analysis showed that the expression of all three key genes was significantly down-regulated in db/db islets, an effect that was overcome by pioglitazone treatment. Together, these results suggest that the identified key genes could be involved in the development of T2D and serve as potential biomarkers and therapeutic targets for this disease.


Assuntos
RNA Helicases DEAD-box/genética , Diabetes Mellitus Tipo 2/genética , Ilhotas Pancreáticas/metabolismo , Estado Pré-Diabético/genética , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas de Ligação a RNA/genética , Animais , RNA Helicases DEAD-box/metabolismo , Bases de Dados Factuais , Conjuntos de Dados como Assunto , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Modelos Animais de Doenças , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Regulação da Expressão Gênica , Humanos , Hipoglicemiantes/farmacologia , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/patologia , Modelos Logísticos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Pioglitazona/farmacologia , Estado Pré-Diabético/tratamento farmacológico , Estado Pré-Diabético/metabolismo , Estado Pré-Diabético/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas de Ligação a RNA/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA