Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 16293, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009787

RESUMO

In the present work, we report on theoretical studies of thermodynamic properties, structural and dynamic stabilities, dependence of unit-cell parameters and elastic constants upon hydrostatic pressure, charge carrier effective masses, electronic and optical properties, contributions of interband transitions in the Brillouin zone of the novel Tl2HgGeSe4 crystal. The theoretical calculations within the framework of the density-functional perturbation theory (DFPT) are carried out employing different approaches to gain the best correspondence to the experimental data. The present theoretical data indicate the dynamical stability of the title crystal and they reveal that, under hydrostatic pressure, it is much more compressible along the a-axis than along the c-axis. Strikingly, the charge effective mass values ( m e ∗ and m h ∗ ) vary considerably when the high symmetry direction changes indicating a relative anisotropy of the charge-carrier's mobility. Furthermore, the Young modulus and compressibility are characterized by the maximum and minimum values ( E max and E min ) and ( ß max and ß min ) that are equal to (62.032 and 28.812) GPa and (13.672 and 6.7175) TPa-1, respectively. Additionally, we have performed calculations of the Raman spectra (RS) and reached a good correspondence with the experimental RS spectra of the Tl2HgGeSe4 crystal. The XPES associated to RS constitutes powerful techniques to explore the oxidized states of Se and Ge in Tl2HgGeSe4 system.

3.
Front Chem ; 11: 1156891, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37304683

RESUMO

We have proposed, for the first time, an OpenCL implementation for the all-electron density-functional perturbation theory (DFPT) calculations in FHI-aims, which can effectively compute all its time-consuming simulation stages, i.e., the real-space integration of the response density, the Poisson solver for the calculation of the electrostatic potential, and the response Hamiltonian matrix, by utilizing various heterogeneous accelerators. Furthermore, to fully exploit the massively parallel computing capabilities, we have performed a series of general-purpose graphics processing unit (GPGPU)-targeted optimizations that significantly improved the execution efficiency by reducing register requirements, branch divergence, and memory transactions. Evaluations on the Sugon supercomputer have shown that notable speedups can be achieved across various materials.

4.
J Phys Condens Matter ; 34(35)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35667375

RESUMO

Octalithium ceramics with their high stoichiometric concentration of lithium offer exceptionally high tritium breeding ratios in comparison with other candidate breeder materials for tokamak fusion reactors, this is especially true with incorporation of a neutron multiplier into the crystal structures. Although, there are concerns surrounding the stability of these materials at operational temperatures. Therefore in this paper, we explore the thermodynamic properties of a selection of candidate octalithium ceramics in low and high temperature regimes (0-1200 K) using density functional perturbation theory. Enthalpies as well as Gibbs formation energies were used to distinguish candidates which may or may not be susceptible to degradation.

5.
J Phys Condens Matter ; 34(47)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36174547

RESUMO

The structural, electronic, lattice dynamics, electron-phonon (el-ph) coupling, and superconducting (SC) properties of the alkali-metal hydride RbH, metallized through electron-doping by the construction of the solid-solution Rb1-xSrxH, are systematically analyzed as a function of Sr-content within the framework of density functional perturbation and Migdal-Eliashberg theories, taking into account the effect of zero-point energy contribution by the quasi-harmonic approximation. For the entire studied range of Sr-content, steady increments of the el-ph coupling constant and the SC critical temperature are found with progressive alkaline-earth metal content through electron-doping, reaching the values ofλ = 1.92 andTc=51.3(66.1)K withµ∗= 0.1(0). The steady rise of such quantities as a function of Sr-content is consequence of the metallization of the hydride as an increase of density of states at the Fermi level is observed, as well as the softening of the phonon spectrum, mainly coming from H-optical modes. Our results indicate that electron-doping on metal-hydrides is an encouraging alternative to look for superconductivity without applied pressure.

6.
Materials (Basel) ; 15(18)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36143549

RESUMO

The layer-structured monoclinic Li2MnO3 is a key material, mainly due to its role in Li-ion batteries and as a precursor for adsorbent used in lithium recovery from aqueous solutions. In the present work, we used first-principles calculations based on density functional theory (DFT) to study the crystal structure, optical phonon frequencies, infra-red (IR), and Raman active modes and compared the results with experimental data. First, Li2MnO3 powder was synthesized by the hydrothermal method and successively characterized by XRD, TEM, FTIR, and Raman spectroscopy. Secondly, by using Local Density Approximation (LDA), we carried out a DFT study of the crystal structure and electronic properties of Li2MnO3. Finally, we calculated the vibrational properties using Density Functional Perturbation Theory (DFPT). Our results show that simulated IR and Raman spectra agree well with the observed phonon structure. Additionally, the IR and Raman theoretical spectra show similar features compared to the experimental ones. This research is useful in investigations involving the physicochemical characterization of Li2MnO3 material.

7.
J Colloid Interface Sci ; 583: 692-703, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33039866

RESUMO

HYPOTHESIS: The adsorption mechanisms of fatty acids on minerals are largely debated from years, and their understanding is now required to improve flotation processing in the critical context of raw materials. Three wavenumbers have been observed in the literature for the asymmetric stretching vibration of COO- after the adsorption of fatty acids on mineral surfaces. They have been interpreted as different adsorbed forms, such as a precipitate formation, an adsorption of sole or bridged carboxylates, an anion exchange, or adsorbed modes, such as monodentate or bidentate configurations. EXPERIMENTS/THEORY: Diffuse reflectance infrared Fourier transform spectroscopy was combined with ab initio molecular dynamics simulations and simulation of infrared spectra. Fluorite and sodium octanoate - or longer-chain fatty acids - were used as prototypical materials for all the investigations. FINDINGS: At low fatty acids concentration, the asymmetric stretching vibration of COO- peaks at 1560 cm-1 while, at higher concentration, this infrared band converts into a doublet peaking at 1535 and 1575 cm-1. Using simulations, we assign the band at 1560 cm-1 to the adsorption of a carboxylate molecule bridged on a sodium counter-cation and the doublet at 1535 and 1575 cm-1 to the adsorption of the sole carboxylate anion under a monodentate or a bidentate binuclear configuration, respectively. The formation of an adsorbed layer on the mineral surface is initiated by the adsorption of a sodium carboxylate and followed by the adsorption of mixed sole anionic forms. The role of the carboxylate counter-cation is highlighted for the first time, which was totally ignored in the literature beforehand. This particularly opens the path to the development of innovative strategies to enhance the separation contrast between minerals, which is of uttermost importance for the recovery of critical raw materials.

8.
J Mol Model ; 27(9): 268, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34455502

RESUMO

Nontoxicity and economic production have turned some of the molybdenum disulfide (MoS2) polytypes into very interesting thermoelectric materials. Therefore, these materials with privileged applications have urged theoretical and experimental investigation for understanding and development of new crystals for particular applications. We present the results of computational-theoretical studies on the structural, vibrational thermoelectric, and thermodynamic properties of five crystal structures, known and newly developed, of MoS2 based on first-principles density functional theory (DFT). While all crystals of MoS2 were explored by undertaking several methods, the DFT method corrected for dispersion interaction (DFT-D2) confirmed the production of the cell parameters closer to the experimental. The variation of the bandgap and density of states (DOS) in all structures represents crystals comprising both semiconductors (2H- and 3R-MoS2 crystals) and metals (1T-, P-MoS2, and FCC-MoS2). According to spectroscopic studies, two typical [Formula: see text] and [Formula: see text] Raman peaks are indicators of in-plane and out-of-plane vibrational modes of S atoms. From the two newly reported crystals (P-MoS2 and FCC-MoS2), P-MoS2 exhibits exclusive thermoelectric properties (within 300-1000 K) such as high electrical conductivity, Seebeck coefficient, and low thermal conductivity. The thickness dependence of thermoelectric properties in 1T-, 2H-, and 3R-MoS2 crystals is substantiated. A low thermal conductivity at room temperature along with an extremely high power factor at 1000 K exhibited by P-MoS2 suggests P-MoS2 crystal as a potential thermoelectric material. Finally, the present computations can introduce P-MoS2 crystal as a new thermoelectric material with unique and extraordinary properties.

9.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 76(Pt 3): 316-321, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32831252

RESUMO

The crystal structure of the mineral malayaite has been studied by single-crystal X-ray diffraction at a temperature of 20 K and by calculation of its phonon dispersion using density functional perturbation theory. The X-ray diffraction data show first-order satellite diffraction maxima at positions q = 0.2606 (8)b*, that are absent at room temperature. The computed phonon dispersion indicates unstable modes associated with dynamic displacements of the Ca atoms. The largest-frequency modulus of these phonon instabilities is located close to a wavevector of q = 0.3b*. These results indicate that the malayaite crystal structure is incommensurately modulated by static displacement of the Ca atoms at low temperatures, caused by the softening of an optic phonon with Bg symmetry.

10.
Materials (Basel) ; 12(18)2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31514338

RESUMO

Silicane, a hydrogenated monolayer of hexagonal silicon, is a candidate material for future complementary metal-oxide-semiconductor technology. We determined the phonon-limited mobility and the velocity-field characteristics for electrons and holes in silicane from first principles, relying on density functional theory. Transport calculations were performed using a full-band Monte Carlo scheme. Scattering rates were determined from interpolated electron-phonon matrix elements determined from density functional perturbation theory. We found that the main source of scattering for electrons and holes was the ZA phonons. Different cut-off wavelengths ranging from 0.58 nm to 16 nm were used to study the possible suppression of the out-of-plane acoustic (ZA) phonons. The low-field mobility of electrons (holes) was obtained as 5 (10) cm2/(Vs) with a long wavelength ZA phonon cut-off of 16 nm. We showed that higher electron (hole) mobilities of 24 (101) cm2/(Vs) can be achieved with a cut-off wavelength of 4 nm, while completely suppressing ZA phonons results in an even higher electron (hole) mobility of 53 (109) cm2/(Vs). Velocity-field characteristics showed velocity saturation at 3 × 105 V/cm, and negative differential mobility was observed at larger fields. The silicane mobility was competitive with other two-dimensional materials, such as transition-metal dichalcogenides or phosphorene, predicted using similar full-band Monte Carlo calculations. Therefore, silicon in its most extremely scaled form remains a competitive material for future nanoscale transistor technology, provided scattering with out-of-plane acoustic phonons could be suppressed.

11.
J Phys Chem Lett ; 6(6): 1059-64, 2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-26262870

RESUMO

The dielectric properties of multilayer GaS films have been investigated using a Berry phase method and a density functional perturbation theory approach. A linear relationship has been observed between the number of GaS layers and slab polarizability, which can be easily converged at a small supercell size and has a weak correlation with different stacking orders. Moreover, the intercoupling effect of the stacking pattern and applied vertical field on the electronic properties of GaS bilayers has been discussed. The band gaps of different stacking orders show various downward trends with the increasing field, which is interpreted as giant Stark effect. Our study demonstrates that the slab polarizability as the substitution of conventional dielectric constant can act as an independent and reliable parameter to elucidate the dielectric properties of low-dimensional systems and that the applied electric field is an effective method to modulate the electric properties of nanostructures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA