Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38212289

RESUMO

Effective visual search is essential for daily life, and attention orientation as well as inhibition of return play a significant role in visual search. Researches have established the involvement of dorsolateral prefrontal cortex in cognitive control during selective attention. However, neural evidence regarding dorsolateral prefrontal cortex modulates inhibition of return in visual search is still insufficient. In this study, we employed event-related functional magnetic resonance imaging and dynamic causal modeling to develop modulation models for two types of visual search tasks. In the region of interest analyses, we found that the right dorsolateral prefrontal cortex and temporoparietal junction were selectively activated in the main effect of search type. Dynamic causal modeling results indicated that temporoparietal junction received sensory inputs and only dorsolateral prefrontal cortex →temporoparietal junction connection was modulated in serial search. Such neural modulation presents a significant positive correlation with behavioral reaction time. Furthermore, theta burst stimulation via transcranial magnetic stimulation was utilized to modulate the dorsolateral prefrontal cortex region, resulting in the disappearance of the inhibition of return effect during serial search after receiving continuous theta burst stimulation. Our findings provide a new line of causal evidence that the top-down modulation by dorsolateral prefrontal cortex influences the inhibition of return effect during serial search possibly through the retention of inhibitory tagging via working memory storage.


Assuntos
Córtex Pré-Frontal Dorsolateral , Córtex Pré-Frontal , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiologia , Imageamento por Ressonância Magnética , Estimulação Magnética Transcraniana/métodos , Tempo de Reação/fisiologia
2.
Cereb Cortex ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38596882

RESUMO

We currently lack a reliable method to probe cortical excitability noninvasively from the human dorsolateral prefrontal cortex (dlPFC). We recently found that the strength of early and local dlPFC transcranial magnetic stimulation (TMS)-evoked potentials (EL-TEPs) varied widely across dlPFC subregions. Despite these differences in response amplitude, reliability at each target is unknown. Here we quantified within-session reliability of dlPFC EL-TEPs after TMS to six left dlPFC subregions in 15 healthy subjects. We evaluated reliability (concordance correlation coefficient [CCC]) across targets, time windows, quantification methods, regions of interest, sensor- vs. source-space, and number of trials. On average, the medial target was most reliable (CCC = 0.78) and the most anterior target was least reliable (CCC = 0.24). However, all targets except the most anterior were reliable (CCC > 0.7) using at least one combination of the analytical parameters tested. Longer (20 to 60 ms) and later (30 to 60 ms) windows increased reliability compared to earlier and shorter windows. Reliable EL-TEPs (CCC up to 0.86) were observed using only 25 TMS trials at a medial dlPFC target. Overall, medial dlPFC targeting, wider windows, and peak-to-peak quantification improved reliability. With careful selection of target and analytic parameters, highly reliable EL-TEPs can be extracted from the dlPFC after only a small number of trials.


Assuntos
Eletroencefalografia , Estimulação Magnética Transcraniana , Humanos , Estimulação Magnética Transcraniana/métodos , Eletroencefalografia/métodos , Córtex Pré-Frontal Dorsolateral , Reprodutibilidade dos Testes , Córtex Pré-Frontal/fisiologia , Potenciais Evocados/fisiologia
3.
Eur J Neurosci ; 59(8): 2075-2086, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38409515

RESUMO

Working memory (WM) is one of the fundamental cognitive functions associated with the dorsolateral prefrontal cortex (DLPFC). However, the neurochemical mechanisms of WM, including the dynamic changes in neurometabolites such as glutamate and GABA in the DLPFC, remain unclear. Here, we investigated WM-related glutamate and GABA changes, alongside hemodynamic responses in the DLPFC, using a combination of functional magnetic resonance spectroscopy (fMRS) and functional magnetic resonance imaging (fMRI). During a WM task, we measured Glx (glutamate + glutamine) and GABA levels using GABA editing MEscher-GArwood Point REsolved Spectroscopy (MEGA-PRESS) sequence and blood-oxygen-level-dependent (BOLD) signal changes. In the DLPFC, we observed elevated Glx levels and increased BOLD signal changes during a 2-back task. Specifically, the Glx levels in the DLPFC were significantly higher during the 2-back task compared with fixation, although this difference was not significant when compared with a 0-back task. However, Glx levels during the 0-back task were higher than during fixation. Furthermore, there was a positive correlation between Glx levels in the DLPFC during the 2-back task and the corresponding BOLD signal changes. Notably, higher Glx increases were associated with increased DLPFC activation and lower WM task performance in individuals. No notable changes in DLPFC GABA levels were observed during WM processing. These findings suggest that the modulation of glutamatergic activity in the DLPFC may play a crucial role in both working memory processing and its associated performance outcomes.


Assuntos
Córtex Pré-Frontal Dorsolateral , Memória de Curto Prazo , Humanos , Memória de Curto Prazo/fisiologia , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiologia , Ácido Glutâmico , Imageamento por Ressonância Magnética , Ácido gama-Aminobutírico
4.
Eur J Neurosci ; 59(11): 2967-2978, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38566366

RESUMO

Neuromodulation with transcranial direct current stimulation (tDCS) can transiently alter neural activity, but its spatial precision is low. High-definition (HD) tDCS was introduced to increase spatial precision by placing additional electrodes over the scalp. Initial evaluations of HD tDCS indicated polarity-specific neurophysiological effects-similar to conventional tDCS albeit with greater spatial precision. Here, we compared the effects of cathodal tDCS or HD tDCS in a 4 × 1 configuration over prefrontal cortex (PFC) regions on behavioural outcomes in a magnitude classification task. We report results on overall performance, on the numerical distance effect as a measure of numerical processing, and on the spatial-numerical associations of response codes (SNARC) effect, which was previously affected by prefrontal tDCS. Healthy volunteers (n = 68) received sham or cathodal HD tDCS at 1 mA over the left dorsolateral prefrontal cortex (DLPFC) or the left inferior frontal gyrus (IFG). Results were compared to an identical protocol with conventional cathodal tDCS to the left PFC versus sham (n = 64). Mixed effects models showed performance gains relative to sham tDCS in all conditions after tDCS (i.e. 'offline'), whereas montages over PFC and DLPFC already showed performance gains during tDCS (i.e. 'online'). In contrast to conventional tDCS, HD tDCS did not reduce the SNARC effect. Neither condition affected numerical processing, as expected. The results suggest that HD tDCS with cathodal polarity might require further adjustments (i.e. regarding tDCS intensity) for effective modulations of cognitive-behavioural performance, which could be achieved by individualised current density in electric field modelling.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Masculino , Feminino , Adulto , Adulto Jovem , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal Dorsolateral/fisiologia , Desempenho Psicomotor/fisiologia
5.
Eur J Neurosci ; 60(4): 4518-4535, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38973167

RESUMO

The balance between goal-directed and habitual control has been proposed to determine the flexibility of instrumental behaviour, in both humans and animals. This view is supported by neuroscientific studies that have implicated dissociable neural pathways in the ability to flexibly adjust behaviour when outcome values change. A previous Diffusion Tensor Imaging study provided preliminary evidence that flexible instrumental performance depends on the strength of parallel cortico-striatal white-matter pathways previously implicated in goal-directed and habitual control. Specifically, estimated white-matter strength between caudate and ventromedial prefrontal cortex correlated positively with behavioural flexibility, and posterior putamen-premotor cortex connectivity correlated negatively, in line with the notion that these pathways compete for control. However, the sample size of the original study was limited, and so far, there have been no attempts to replicate these findings. In the present study, we aimed to conceptually replicate these findings by testing a large sample of 205 young adults to relate cortico-striatal connectivity to performance on the slips-of-action task. In short, we found only positive neural correlates of goal-directed performance, including striatal connectivity (caudate and anterior putamen) with the dorsolateral prefrontal cortex. However, we failed to provide converging evidence for the existence of a neural habit system that puts limits on the capacity for flexible, goal-directed action. We discuss the implications of our findings for dual-process theories of instrumental action.


Assuntos
Corpo Estriado , Objetivos , Vias Neurais , Substância Branca , Humanos , Substância Branca/fisiologia , Substância Branca/diagnóstico por imagem , Substância Branca/anatomia & histologia , Masculino , Feminino , Adulto , Corpo Estriado/fisiologia , Corpo Estriado/diagnóstico por imagem , Corpo Estriado/anatomia & histologia , Adulto Jovem , Vias Neurais/fisiologia , Adolescente , Córtex Cerebral/fisiologia , Córtex Cerebral/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos
6.
Psychol Med ; : 1-14, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38500410

RESUMO

BACKGROUND: Previous research on the changes in resting-state functional connectivity (rsFC) in anorexia nervosa (AN) has been limited by an insufficient sample size, which reduced the reliability of the results and made it difficult to set the whole brain as regions of interest (ROIs). METHODS: We analyzed functional magnetic resonance imaging data from 114 female AN patients and 135 healthy controls (HC) and obtained self-reported psychological scales, including eating disorder examination questionnaire 6.0. One hundred sixty-four cortical, subcortical, cerebellar, and network parcellation regions were considered as ROIs. We calculated the ROI-to-ROI rsFCs and performed group comparisons. RESULTS: Compared to HC, AN patients showed 12 stronger rsFCs mainly in regions containing dorsolateral prefrontal cortex (DLPFC), and 33 weaker rsFCs primarily in regions containing cerebellum, within temporal lobe, between posterior fusiform cortex and lateral part of visual network, and between anterior cingulate cortex (ACC) and thalamus (p < 0.01, false discovery rate [FDR] correction). Comparisons between AN subtypes showed that there were stronger rsFCs between right lingual gyrus and right supracalcarine cortex and between left temporal occipital fusiform cortex and medial part of visual network in the restricting type compared to the binge/purging type (p < 0.01, FDR correction). CONCLUSION: Stronger rsFCs in regions containing mainly DLPFC, and weaker rsFCs in regions containing primarily cerebellum, within temporal lobe, between posterior fusiform cortex and lateral part of visual network, and between ACC and thalamus, may represent categorical diagnostic markers discriminating AN patients from HC.

7.
J Neural Transm (Vienna) ; 131(7): 823-832, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38643330

RESUMO

Individuals with attention deficit-hyperactivity disorder (ADHD) struggle with the interaction of attention and emotion. The ventromedial prefrontal cortex (vmPFC) and dorsolateral prefrontal cortex (dlPFC) are assumed to be involved in this interaction. In the present study, we aimed to explore the effect of stimulation applied over the dlPFC and vmPFC on attention bias in individuals with ADHD. Twenty-three children with ADHD performed the emotional Stroop and dot probe tasks during transcranial direct current stimulation (tDCS) in 3 conditions: anodal dlPFC (F3)/cathodal vmPFC (Fp2), anodal vmPFC (Fp2)/cathodal dlPFC (F3), and sham stimulation. Findings suggest reduction of attention bias in both real conditions based on emotional Stroop task and not dot probe task. These results were independent of emotional states. The dlPFC and vmPFC are involved in attention bias in ADHD. tDCS can be used for attention bias modification in children with ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Viés de Atenção , Estimulação Transcraniana por Corrente Contínua , Humanos , Transtorno do Deficit de Atenção com Hiperatividade/terapia , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Masculino , Criança , Feminino , Viés de Atenção/fisiologia , Córtex Pré-Frontal/fisiopatologia , Teste de Stroop , Adolescente
8.
Artigo em Inglês | MEDLINE | ID: mdl-39017736

RESUMO

Several cortical structures are involved in theory of mind (ToM), including the dorsolateral prefrontal cortex (dlPFC), the ventromedial prefrontal cortex (vmPFC), and the right temporo- parietal junction (rTPJ). We investigated the role of these regions in mind reading with respect to the valence of mental states. Sixty-five healthy adult participants were recruited and received transcranial direct current stimulation (tDCS) (1.5 mA, 20 min) with one week interval in three separate studies. The stimulation conditions were anodal tDCS over the dlPFC coupled with cathodal tDCS over the vmPFC, reversed stimulation conditions, and sham in the first study, and anodal tDCS over the vmPFC, or dlPFC, and sham stimulation, with an extracranial return electrode in the second and third study. During stimulation, participants underwent the reading mind from eyes/voice tests (RMET or RMVT) in each stimulation condition. Anodal left dlPFC/cathodal right vmPFC stimulation increased the accuracy of negative mental state attributions, anodal rTPJ decreased the accuracy of negative and neutral mental state attributions, and decreased the reaction time of positive mental state attributions. Our results imply that the neural correlates of ToM are valence-sensitive.

9.
Brain Topogr ; 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200358

RESUMO

Altruistic punishment is a primary response to social norms violations; its neural mechanism has also attracted extensive research attention. In the present studies, we applied a low-frequency repetitive transcranial magnetic stimulation (rTMS) to the bilateral dorsolateral prefrontal cortex (DLPFC) while participants engaged in a modified Ultimatum Game (Study 1) and third-party punishment game (Study 2) to explore how the bilateral DLPFC disruption affects people's perception of violation of fairness norms and altruistic punishment decision in the gain and loss contexts. Typically, punishers intervene more often against and show more social outrage towards Dictators/Proposers who unfairly distribute losses than those who unfairly share gains. We found that disrupting the function of the left DLPFC in the second-party punishment and the bilateral DLPFC in the third-party punishment with rTMS effectively obliterated this difference, making participants punish unfairly shared gains as often as they usually would punish unfairly shared losses. In the altruistic punishment of maintaining the social fairness norms, the inhibition of the right DLPFC function will affect the deviation of individual information integration ability; the inhibition of the left DLPFC function will affect the assessment of the degree of violation of fairness norms and weaken impulse control, leading to attenuate the moderating effect of gain and loss contexts on altruistic punishment. Our findings emphasize that DLPFC is closely related to altruistic punishment and provide causal neuroscientific evidence.

10.
BMC Psychiatry ; 24(1): 130, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365634

RESUMO

BACKGROUND: Electroconvulsive therapy (ECT) is a highly effective treatment for depressive disorder. However, the use of ECT is limited by its cognitive side effects (CSEs), and no specific intervention has been developed to address this problem. As transcranial direct current stimulation (tDCS) is a safe and useful tool for improving cognitive function, the main objective of this study was to explore the ability to use tDCS after ECT to ameliorate the cognitive side effects. METHODS: 60 eligible participants will be recruited within two days after completing ECT course and randomly assigned to receive either active or sham stimulation in a blinded, parallel-design trial and continue their usual pharmacotherapy. The tDCS protocol consists of 30-min sessions at 2 mA, 5 times per week for 2 consecutive weeks, applied through 15-cm2 electrodes. An anode will be placed over the left dorsolateral prefrontal cortex (DLPFC), and a cathode will be placed over the right supraorbital cortex. Cognitive function and depressive symptoms will be assessed before the first stimulation (T0), after the final stimulation (T1), 2 weeks after the final stimulation (T2), and 4 weeks after the final stimulation (T3) using the Cambridge Neuropsychological Test Automated Battery (CANTAB). DISCUSSION: We describe a novel clinical trial to explore whether the administration of tDCS after completing ECT course can accelerates recovery from the CSEs. We hypothesized that the active group would recover faster from the CSEs and be superior to the sham group. If our hypothesis is supported, the use of tDCS could benefit eligible patients who are reluctant to receive ECT and reduce the risk of self-inflicted or suicide due to delays in treatment. TRIAL REGISTRATION DETAILS: The trial protocol is registered with https://www.chictr.org.cn/ under protocol registration number ChiCTR2300071147 (date of registration: 05.06.2023). Recruitment will start in November 2023.


Assuntos
Eletroconvulsoterapia , Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Eletroconvulsoterapia/efeitos adversos , Depressão/terapia , Córtex Pré-Frontal/fisiologia , Cognição , Método Duplo-Cego , Ensaios Clínicos Controlados Aleatórios como Assunto
11.
Front Psychol ; 15: 1308971, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38445059

RESUMO

Schizophrenia is a severe, chronic mental disorder that profoundly impacts patients' everyday lives. The illness's core features include positive and negative symptoms and cognitive impairments. In particular, deficits in the social cognition domain showed a tighter connection to patients' everyday functioning than the other symptoms. Social remediation interventions have been developed, providing heterogeneous results considering the possibility of generalizing the acquired improvements in patients' daily activities. In this pilot randomized controlled trial, we investigated the feasibility of combining fifteen daily cognitive and social training sessions with non-invasive brain stimulation to boost the effectiveness of the two interventions. We delivered intermittent theta burst stimulation (iTBS) over the left dorsolateral prefrontal cortex (DLPFC). Twenty-one patients were randomized into four groups, varying for the assigned stimulation condition (real vs. sham iTBS) and the type of cognitive intervention (training vs. no training). Clinical symptoms and social cognition tests were administered at five time points, i.e., before and after the treatment, and at three follow-ups at one, three, and six months after the treatments' end. Preliminary data show a trend in improving the competence in managing emotion in participants performing the training. Conversely, no differences were found in pre and post-treatment scores for emotion recognition, theory of mind, and attribution of intentions scores. The iTBS intervention did not induce additional effects on individuals' performance. The methodological approach's novelty and limitations of the present study are discussed.

12.
Heliyon ; 10(9): e30242, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38707377

RESUMO

It is essential for airlines to have a deep understanding of the cognitive impact of aging among pilots. The current literature on executive function indicates that compensatory mechanisms in the brain may counteract age-related cognitive decline, at least up to certain task load levels. However, few studies have been administered to evaluate changes in aircrew competence as they age. The present study focuses on dorsolateral prefrontal cortex (DLPFC) activity as it is implicated in cognitive performance and working memory, which are associated with skill proficiency. We measured the DLPFC activity for airline pilots, including trainees, during maneuvering using a flight simulator. Our preliminary results indicated that only expert (aged) pilots demonstrated higher activity of the left DLPFC than the right one. However, for youth trainees, not only was the error rate high while using the flight simulator, but the activity of the DLFPC was also lower than that of the expert pilots, and there was no statistically significant difference between the left and right DLPFC. Although these findings partially differ from those reported in previous studies on age-related changes, it is evident that training as an airline pilot for over 20 years may affect such results. We believe that this noninvasive approach to objective quantification of skill will facilitate the development of effective assessment competence in aging.

13.
Artigo em Inglês | MEDLINE | ID: mdl-38354898

RESUMO

Working memory (WM) represents a building-block of higher cognitive functions and a wide range of mental disorders are associated with WM impairments. Initial studies have shown that several sessions of functional near-infrared spectroscopy (fNIRS) informed real-time neurofeedback (NF) allow healthy individuals to volitionally increase activity in the dorsolateral prefrontal cortex (DLPFC), a region critically involved in WM. For the translation to therapeutic or neuroenhancement applications, however, it is critical to assess whether fNIRS-NF success transfers into neural and behavioral WM enhancement in the absence of feedback. We therefore combined single-session fNIRS-NF of the left DLPFC with a randomized sham-controlled design (N = 62 participants) and a subsequent WM challenge with concomitant functional MRI. Over four runs of fNIRS-NF, the left DLPFC NF training group demonstrated enhanced neural activity in this region, reflecting successful acquisition of neural self-regulation. During the subsequent WM challenge, we observed no evidence for performance differences between the training and the sham group. Importantly, however, examination of the fMRI data revealed that - compared to the sham group - the training group exhibited significantly increased regional activity in the bilateral DLPFC and decreased left DLPFC - left anterior insula functional connectivity during the WM challenge. Exploratory analyses revealed a negative association between DLPFC activity and WM reaction times in the NF group. Together, these findings indicate that healthy individuals can learn to volitionally increase left DLPFC activity in a single training session and that the training success translates into WM-related neural activation and connectivity changes in the absence of feedback. This renders fNIRS-NF as a promising and scalable WM intervention approach that could be applied to various mental disorders.


Assuntos
Memória de Curto Prazo , Neurorretroalimentação , Humanos , Memória de Curto Prazo/fisiologia , Neurorretroalimentação/métodos , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiologia , Imageamento por Ressonância Magnética/métodos , Cognição
14.
Sci Rep ; 14(1): 11847, 2024 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-38782921

RESUMO

Repetitive transcranial magnetic stimulation (rTMS) for alleviating negative symptoms and cognitive dysfunction in schizophrenia commonly targets the left dorsolateral prefrontal cortex (LDLPFC). However, the therapeutic effectiveness of rTMS at this site remains inconclusive and increasingly, studies are focusing on cerebellar rTMS. Recently, prolonged intermittent theta-burst stimulation (iTBS) has emerged as a rapid-acting form of rTMS with promising clinical benefits. This study explored the cognitive and neurophysiological effects of prolonged iTBS administered to the LDLPFC and cerebellum in a healthy cohort. 50 healthy participants took part in a cross-over study and received prolonged (1800 pulses) iTBS targeting the LDLPFC, cerebellar vermis, and sham iTBS. Mixed effects repeated measures models examined cognitive and event-related potentials (ERPs) from 2-back (P300, N200) and Stroop (N200, N450) tasks after stimulation. Exploratory non-parametric cluster-based permutation tests compared ERPs between conditions. There were no significant differences between conditions for behavioural and ERP outcomes on the 2-back and Stroop tasks. Exploratory cluster-based permutation tests of ERPs did not identify any significant differences between conditions. We did not find evidence that a single session of prolonged iTBS administered to either the LDLPFC or cerebellum could cause any cognitive or ERP changes compared to sham in a healthy sample.


Assuntos
Cerebelo , Potenciais Evocados , Função Executiva , Córtex Pré-Frontal , Estimulação Magnética Transcraniana , Humanos , Masculino , Estimulação Magnética Transcraniana/métodos , Feminino , Adulto , Cerebelo/fisiologia , Função Executiva/fisiologia , Córtex Pré-Frontal/fisiologia , Potenciais Evocados/fisiologia , Adulto Jovem , Voluntários Saudáveis , Estudos Cross-Over , Ritmo Teta/fisiologia , Cognição/fisiologia , Córtex Pré-Frontal Dorsolateral/fisiologia
15.
Brain Stimul ; 17(4): 928-937, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39089648

RESUMO

BACKGROUND: Our previous study synthesized the analgesic effects of repetitive Transcranial Magnetic Stimulation (rTMS) over the dorsolateral prefrontal cortex (DLPFC) trials up to 2019. There has been a significant increase in pain trials in the past few years, along with methodological variabilities such as sample size, stimulation intensity, and rTMS paradigms. OBJECTIVES/METHODS: This study therefore updated the effects of DLPFC-rTMS on chronic pain and quantified the impact of methodological differences across studies. RESULTS: A total of 36 studies were included. Among them, 26 studies were clinical trials (update = 9, 307/711 patients), and 10 (update = 1, 34/249 participants) were provoked pain studies. The updated meta-analysis does not support an effect on neuropathic pain after including the additional trials (pshort-term = 0.20, pmid-term = 0.50). However, there is medium-to-large analgesic effect in migraine trials extending up to six weeks follow-up (SMDmid-term = -0.80, SMDlong-term = -0.51), that was not previously reported. Methodological differences wthine the studies were considered. DLPFC-rTMS also induces potential improvement in the emotional aspects of pain (SMDshort-term = -0.28). CONCLUSIONS: The updated systematic meta-analysis continues to support analgesic effects for chronic pain overall. However, the updated results no longer support DLPFC-rTMS for pain relief in neuropathic pain, and do supports DLPFC-rTMS in the management of migraine. There is also evidence for DLPFC-rTMS to improve emotional aspects of pain.


Assuntos
Córtex Pré-Frontal Dorsolateral , Estimulação Magnética Transcraniana , Humanos , Estimulação Magnética Transcraniana/métodos , Córtex Pré-Frontal Dorsolateral/fisiologia , Manejo da Dor/métodos , Dor Crônica/terapia , Neuralgia/terapia , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal/fisiopatologia
16.
J Affect Disord ; 349: 21-31, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38190858

RESUMO

BACKGROUND: Although smoking remains a leading cause of preventable disease, the treatment options for smoking are limited. The present study evaluated the neural features underlying effects of repetitive transcranial magnetic stimulation (rTMS) for reducing smoking cravings. In addition, the efficacy of a simulated retrieval-extinction procedure to augment rTMS efficacy was examined. METHODS: Sixty-one individuals with tobacco use disorder (TUD) were randomized into three groups: classic rTMS, retrieval rTMS (viewed smoking videos before rTMS), and sham rTMS. rTMS was performed on the left dorsolateral prefrontal cortex (DLPFC) over 5 days using a standard figure-8 coil. Smoking cravings and brain responses to smoking cues were measured before and after rTMS treatment. Changes in functional connectivity (FC) among different brain regions were calculated. RESULTS: rTMS reduced smoking urges in TUD. Both active-rTMS groups demonstrated greater activations of the DLPFC, caudate, and bilateral insula relative to the sham group. Increased FC was observed between executive and reward network brain regions, and decreased FC was observed within reward network regions. Compared with standard rTMS, retrieval-extinction rTMS demonstrated similar outcomes and was associated with less activation of the medial frontal gyrus. CONCLUSIONS: rTMS increased activations in brain regions implicated in executive control and reward processing. Strengthened prefrontal-striatal pathway suggests that rTMS enhanced top-down control over smoking cravings. The retrieval-extinction process, although associated with some different and multiple similar neural correlates as the standard rTMS, did not enhance cessation outcomes.


Assuntos
Tabagismo , Humanos , Fissura/fisiologia , Neostriado , Córtex Pré-Frontal , Fumar , Tabagismo/terapia , Estimulação Magnética Transcraniana/métodos
17.
Clin Neuropsychiatry ; 21(1): 99-109, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38559434

RESUMO

Objective: Rumination is conceptualized as a critical transdiagnostic vulnerability and maintenance factor for affective dysregulation and related emotional disorders. Recent research has pointed to transcranial direct current stimulation (tDCS) as a novel therapeutic tool for alleviating rumination, especially stress-induced rumination. However, the mechanisms of action underlying this effect remain unclear, particularly regarding the potential moderating role of executive control and trait-like rumination. Therefore, in this study, we investigated the impact of anodal tDCS on stress-induced rumination and the potential moderating influence of executive control and trait-like rumination on this efect. Method: Forty participants from the general community (i.e., unselected sample) took part in a double-blind within-subjects design study wherein we compared anodal stimulation over the left dorsolateral prefrontal cortex(dlPFC) with a sham-stimulation procedure. Participants completed an N-back task, reflecting executive control, during tDCS stimulation, followed by a stress-induction protocol wherein we assessed stress-induced state rumination. Results: We found no significant effect of tDCS on stress-induced state rumination and no modulation by executive control or trait rumination. Post-hoc Bayesian analyses corroborated these results and even supported the hypothesis that anodal tDCS does not impact stress-induced rumination. Conclusions: From a clinical perspective, our results are at odds with the current outlook that tDCS is a viable tool for reducing rumination, particularly stress-induced rumination. However, we firmly believe that the results of null-finding studies, such as those from this study, are particularly valuable for future iterations and meta-researchon tDCS as a potential tool for targeting transdiagnostic processes, such as rumination. We also addressed methodological limitations and directions for future research in this area.

18.
Neuroscience ; 551: 237-245, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38838979

RESUMO

The ventrolateral prefrontal cortex (VLPFC) and dorsolateral prefrontal cortex (DLPFC) have been found to play important roles in negative emotion processing. However, the specific time window of their involvement remains unknown. This study addressed this issue in three experiments using single-pulse transcranial magnetic stimulation (TMS). We found that TMS applied over the VLPFC at 400 ms after negative emotional exposure significantly enhanced negative feelings compared to the vertex condition. Furthermore, TMS applied over the DLPFC at both 0 ms and 600 ms after negative emotional exposure also resulted in deteriorated negative feelings. These findings provide potential evidence for the VLPFC-dependent semantic processing (∼400 ms) and the DLPFC-dependent attentional and cognitive control (∼0/600 ms) in negative emotion processing. The asynchronous involvement of these frontal cortices not only deepens our understanding of the neural mechanisms underlying negative emotion processing but also provides valuable temporal parameters for neurostimulation therapy targeting patients with mood disorders.


Assuntos
Emoções , Córtex Pré-Frontal , Estimulação Magnética Transcraniana , Humanos , Estimulação Magnética Transcraniana/métodos , Emoções/fisiologia , Feminino , Masculino , Córtex Pré-Frontal/fisiologia , Adulto Jovem , Adulto , Córtex Pré-Frontal Dorsolateral/fisiologia
19.
Schizophr Bull ; 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38825587

RESUMO

BACKGROUND: Schizophrenia (SCZ) is a serious mental illness with complex pathology, including abnormalities in the glutamate system. Glutamate is rapidly removed from the synapse by excitatory amino acid transporters (EAATs). Changes in the expression and localization of the primary glutamate transporter EAAT2 are found in the brain in central nervous system (CNS) disorders including SCZ. We hypothesize that neuronal expression and function of EAAT2 are increased in the frontal cortex in subjects diagnosed with SCZ. STUDY DESIGN: EAAT2 protein expression and glutamate transporter function were assayed in synaptosome preparations from the dorsolateral prefrontal cortex (DLPFC) of SCZ subjects and age- and sex-matched nonpsychiatrically ill controls. EAAT2 splice variant transcript expression was assayed in enriched populations of neurons and astrocytes from the DLPFC. Pathway analysis of publicly available transcriptomic datasets was carried out to identify biological changes associated with EAAT2 perturbation in different cell types. RESULTS: We found no significant changes in EAAT2 protein expression or glutamate uptake in the DLPFC in SCZ subjects compared with controls (n = 10/group). Transcript expression of EAAT2 and signaling molecules associated with EAAT2b trafficking (CaMKIIa and DLG1) were significantly altered in enriched populations of astrocytes and pyramidal neurons (P < .05) in SCZ (n = 16/group). These changes were not associated with antipsychotic medications. Pathway analysis also identified cell-type-specific enrichment of biological pathways associated with perturbation of astrocyte (immune pathways) and neuronal (metabolic pathways) EAAT2 expression. CONCLUSIONS: Overall, these data support the growing body of evidence for the role of dysregulation of the glutamate system in the pathophysiology of SCZ.

20.
Brain Struct Funct ; 229(5): 1073-1086, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38519612

RESUMO

Goal neglect refers to when an aspect of task instructions is not utilised due to increased competition between goal representations, an attentional limit theoretically linked to working memory. In an attempt to alleviate goal neglect and to investigate the association between dorsolateral prefrontal cortex (DLPFC)-supported working memory and goal neglect, we used high-frequency repetitive transcranial magnetic stimulation to the left DLPFC whilst participants completed the letter-monitoring task, a measure of goal neglect, and an N3-back task, a working memory task known to be affected by rTMS of the left DLPFC, following 20 min of active and sham stimulation (run on separate days). We found increased accuracy on the N3-back task in addition to decreased goal neglect in the active compared to sham condition when controlling for age and fluid abilities (as assessed by matrix reasoning performance). Furthermore, analysis showed that active stimulation improvements on both the N3-back and letter-monitoring tasks were greater for those with higher fluid abilities. These findings provide support for the link between the DLPFC-support working memory and goal neglect. Increased performance on the N3-back task also supports the literature reporting a link between left DLPFC and verbal working memory. Results are evaluated in the context of potential use to alleviate symptoms of disorders related to goal neglect.


Assuntos
Córtex Pré-Frontal Dorsolateral , Objetivos , Memória de Curto Prazo , Transtornos da Percepção , Estimulação Magnética Transcraniana , Humanos , Masculino , Feminino , Estimulação Magnética Transcraniana/métodos , Memória de Curto Prazo/fisiologia , Transtornos da Percepção/fisiopatologia , Transtornos da Percepção/etiologia , Córtex Pré-Frontal Dorsolateral/fisiologia , Pessoa de Meia-Idade , Testes Neuropsicológicos , Adulto , Idoso , Atenção/fisiologia , Adulto Jovem , Lateralidade Funcional/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA