Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Funct Integr Genomics ; 24(5): 140, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39160285

RESUMO

Acute pancreatitis (AP) is an inflammatory disease of the pancreas and the main cause of hospital admissions for gastrointestinal diseases. Here, the work studied the circular RNA DTNB/microRNA-485-5p/MCL1 axis in AP and hoped to unravel the related mechanism. Caerulein exposure replicated an AP model in AR42J cells, and caerulein-mediated expression of circDTNB, miR-485-5p, and MCL1 was recorded. After exposure, cells were intervened with transfection plasmids and tested for LDH release, apoptosis, and inflammation. To determine the interwork of circDTNB, miR-485-5p, and MCL1, prediction results and verification experiments were conducted. Caerulein exposure reduced circDTNB and MCL1, while elevated miR-485-5p levels in AR42J cells. Upregulating circDTNB protected AR42J cells from caerulein-induced LDH cytotoxicity, apoptosis, and inflammation, but circDTNB upregulation-induced protections could be muffled by inhibiting MCL1. On the contrary, downregulating circDTNB further damaged AR42J cells under caerulein exposure, however, this phenomenon could be partially rescued after silencing miR-485-5p. miR-485-5p was mechanistically verified to be a target of circDTNB to mediate MCL1. Overall, the circDTNB/miR-485-5p/MCL1 axis protects inflammatory response and apoptosis in caerulein-exposed AR42J cells, promisingly identifying circDTNB as a novel molecule for AP treatment.


Assuntos
Apoptose , Ceruletídeo , Inflamação , MicroRNAs , Proteína de Sequência 1 de Leucemia de Células Mieloides , RNA Circular , Animais , Ratos , Linhagem Celular , Inflamação/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Pancreatite/genética , Pancreatite/metabolismo , Pancreatite/induzido quimicamente , Pancreatite/patologia , RNA Circular/genética , RNA Circular/metabolismo
2.
Int J Mol Sci ; 24(16)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37628764

RESUMO

COVID-19 progression often involves severe lung injury, inflammation, coagulopathy, and leukocyte infiltration into pulmonary tissues. The pathogenesis of these complications is unknown. Because vascular endothelium and neutrophils express angiotensin-converting enzyme-2 and spike (S)-proteins, which are present in bodily fluids and tissues of SARS-CoV-2-infected patients, we investigated the effect of S-proteins and cell-cell communication on human lung microvascular endothelial cells and neutrophils expression of P-selectin, markers of coagulopathy, NETosis, and inflammation. Exposure of endothelial cells or neutrophils to S-proteins and endothelial-neutrophils co-culture induced P-selectin transcription and expression, significantly increased expression/secretion of IL-6, von Willebrand factor (vWF, pro-coagulant), and citrullinated histone H3 (cit-H3, NETosis marker). Compared to the SARS-CoV-2 Wuhan variant, Delta variant S-proteins induced 1.4-15-fold higher P-selectin and higher IL-6 and vWF. Recombinant tissue factor pathway inhibitor (rTFPI), 5,5'-dithio-bis-(2-nitrobenzoic acid) (thiol blocker), and thrombomodulin (anticoagulant) blocked S-protein-induced vWF, IL-6, and cit-H3. This suggests that following SARS-CoV-2 contact with the pulmonary endothelium or neutrophils and endothelial-neutrophil interactions, S-proteins increase adhesion molecules, induce endothelial injury, inflammation, NETosis and coagulopathy via the tissue factor pathway, mechanisms involving functional thiol groups, and/or the fibrinolysis system. Using rTFPI, effectors of the fibrinolysis system and/or thiol-based drugs could be viable therapeutic strategies against SARS-CoV-2-induced endothelial injury, inflammation, NETosis, and coagulopathy.


Assuntos
COVID-19 , Células Endoteliais , Humanos , Glicoproteína da Espícula de Coronavírus , Neutrófilos , SARS-CoV-2 , Selectina-P , Fator de von Willebrand , Interleucina-6/genética , Endotélio Vascular , Inflamação , Pulmão
3.
Arch Biochem Biophys ; 726: 109174, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35300941

RESUMO

This commentary features the groundbreaking manuscript published in the 1959 issue of Archives of Biochemistry and Biophysics by George L. Ellman. The studies describe the quantification of thiols in tissues and purified proteins using DTNB (Ellman's Reagent). This highly referenced manuscript is recognized in this anniversary issue because of the impact these studies have played across diverse scientific fields.


Assuntos
Proteínas , Compostos de Sulfidrila , Ácido Ditionitrobenzoico , Proteínas/metabolismo
4.
Int J Mol Sci ; 23(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36142345

RESUMO

In SARS-CoV-2-infected humans, disease progression is often associated with acute respiratory distress syndrome involving severe lung injury, coagulopathy, and thrombosis of the alveolar capillaries. The pathogenesis of these pulmonary complications in COVID-19 patients has not been elucidated. Autopsy study of these patients showed SARS-CoV-2 virions in pulmonary vessels and sequestrated leukocytes infiltrates associated with endotheliopathy and microvascular thrombosis. Since SARS-CoV-2 enters and infects target cells by binding its spike (S) protein to cellular angiotensin-converting enzyme 2 (ACE2), and there is evidence that vascular endothelial cells and neutrophils express ACE2, we investigated the effect of S-proteins and cell-cell communication on primary human lung microvascular endothelial cells (HLMEC) and neutrophils expression of thrombogenic factors and the potential mechanisms. Using S-proteins of two different SARS-CoV-2 variants (Wuhan and Delta), we demonstrate that exposure of HLMEC or neutrophils to S-proteins, co-culture of HLMEC exposed to S-proteins with non-exposed neutrophils, or co-culture of neutrophils exposed to S-proteins with non-exposed HLMEC induced transcriptional upregulation of tissue factor (TF), significantly increased the expression and secretion of factor (F)-V, thrombin, and fibrinogen and inhibited tissue factor pathway inhibitor (TFPI), the primary regulator of the extrinsic pathway of blood coagulation, in both cell types. Recombinant (r)TFPI and a thiol blocker (5,5'-dithio-bis-(2-nitrobenzoic acid)) prevented S-protein-induced expression and secretion of Factor-V, thrombin, and fibrinogen. Thrombomodulin blocked S-protein-induced expression and secretion of fibrinogen but had no effect on S-protein-induced expression of Factor-V or thrombin. These results suggests that following SARS-CoV-2 contact with the pulmonary endothelium or neutrophils and endothelial-neutrophil interactions, viral S-proteins induce coagulopathy via the TF pathway and mechanisms involving functional thiol groups. These findings suggest that using rTFPI and/or thiol-based drugs could be a viable therapeutic strategy against SARS-CoV-2-induced coagulopathy and thrombosis.


Assuntos
Transtornos da Coagulação Sanguínea , COVID-19 , Trombose , Enzima de Conversão de Angiotensina 2 , Comunicação Celular , Células Endoteliais/metabolismo , Endotélio/metabolismo , Fibrinogênio , Humanos , Lipoproteínas , Pulmão/metabolismo , Neutrófilos/metabolismo , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo , Compostos de Sulfidrila , Trombina , Trombomodulina , Tromboplastina , Trombose/etiologia
5.
J Mol Liq ; 367: 120359, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36128020

RESUMO

Niclosamide is an FDA-approved oral anthelmintic drug currently being repurposed for COVID-19 infection. Its interesting applicability in multiple therapeutic indications has sparked interest in this drug/ scaffold. Despite its therapeutic use for several years, its detailed solubility information from Chemistry Manufacturing & Controls perspective is unavailable. Thus, the present study is intended to determine the mole fraction solubility of niclosamide in commonly used solvents and cosolvents at a temperature range of 298.15-323.15 K. The polymorphic changes from crystalline to monohydrate forms post-equilibration in various solvents were observed. The maximum mole fraction solubility of niclosamide at 323.15 K is 1.103 × 10-3 in PEG400, followed by PEG200 (5.272 × 10-4), 1-butanol (3.047 × 10-4), 2-propanol (2.42 × 10-4), ethanol (1.66 × 10-4), DMSO (1.52 × 10-4), methanol (7.78 × 10-5) and water (3.27 × 10-7). The molecular electrostatic potential showed a linear correlation with the solubility. PEG400 has higher electrostatic potential, and H-bond acceptor count, which forms a hydrogen bond with phenolic -OH of niclosamide and thus enhances its solubility. This data is valuable for the drug discovery and development teams working on the medicinal chemistry and process chemistry of this scaffold.

6.
S Afr J Bot ; 136: 91-99, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32982003

RESUMO

Alzheimer's disease is considered the most common cause of dementia and, in an increasingly aging population worldwide, the quest for treatment is a priority. Amaryllidaceae alkaloids are of main interest because of their cholinesterase inhibition potential, which is the main palliative treatment available for this disease. We evaluated the alkaloidal profile and the in vitro inhibitory activity on acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) of bulb alkaloid extract of Phaedranassa dubia and Phaedranassa brevifolia collected in Ecuador. Using gas chromatography coupled to mass spectrometry (GC-MS), we identified typical Amaryllidaceae alkaloids in these species, highlighting the presence of lycorine-type alkaloids in P. dubia and haemanthamine/crinine-type in P. brevifolia. The species P. dubia and P. brevifolia showed inhibitory activities against AChE (IC50 values of 25.48 ± 0.39 and 3.45 ± 0.29 µg.mL-1, respectively) and BuChE (IC50 values of 114.96 ± 4.94 and 58.89 ± 0.55 µg.mL-1, respectively). Computational experiments allowed us to understand the interactions of the alkaloids identified in these samples toward the active sites of AChE and BuChE. In silico, some alkaloids detected in these Amaryllidaceae species presented higher estimated binding free energy toward BuChE than galanthamine. This is the first study about the alkaloid profile and biological potential of P. brevifolia species.

7.
Mikrochim Acta ; 187(7): 384, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32533266

RESUMO

A novel surface-enhanced Raman scattering (SERS) analysis strategy has been designed combining Au@DTNB@Ag core-shell nanoparticles (DTNB attachment on gold nanoparticles, then encapsulated in Ag shell nanoparticles named as ADANPs) and duplex-specific nuclease signal amplification (DSNSA) platform. Firstly, ADANPs and magnetic substrate of Fe3O4 nanoparticles were covalently attached to the 3'- and 5'- end of capture probe (CP) targeting miRNA-21. Upon the addition of target miRNA-21, these heteroduplexes were specifically cleaved by DSN and resulted in ADANPs that were released from the surface of Fe3O4 nanoparticles (Fe3O4 NPs). At the same time, miRNA-21 remained intact and can rehybridize another DNA probe to trigger the signal-amplifying reaction. Based on this principle, the developed SERS method exhibited good linearity in the range 0 to 1 nM for miRNA-21 with a limit of detection (LOD) of 0.084 fM and has an ability to differentiate even a single-base mismatched sequence on the target sequence or other miRNA sequence. The results provide a novel SERS method which can successfully been applied to the miRNA-21 detection in human serum. Graphical abstract a shows the synthesis of Fe3O4 NPs and the conjugation of Au@DTNB@Ag NPs (ADANPs) for the detection of miRNA-21, b shows the operating principle of DSN-assisted signal amplification strategy for miRNA detection based on Fe3O4@CP@ADA NPs.


Assuntos
Endonucleases/química , Nanopartículas de Magnetita/química , MicroRNAs/sangue , Análise Espectral Raman/métodos , Sequência de Bases , Linhagem Celular Tumoral , DNA/química , DNA/genética , Ácido Ditionitrobenzoico/química , Ouro/química , Humanos , Ácidos Nucleicos Imobilizados/química , Ácidos Nucleicos Imobilizados/genética , Limite de Detecção , MicroRNAs/química , MicroRNAs/genética , Hibridização de Ácido Nucleico , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Prata/química
8.
Anal Biochem ; 527: 33-44, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28432000

RESUMO

An in-line size-exclusion (SE) ultra-high-performance liquid chromatography (UHPLC)- 5,5-dithio-bis-(2-nitrobenzoic acid) (DTNB) method to quantify thiols in monoclonal antibodies (mAb) when manufacturing antibody-drug conjugates (ADCs) was developed. The mAbs are separated on an SE-UHPLC column and monitored with a UV detector at a wavelength of 280 nm. Eluents are channeled into a reaction coil and mixed with DTNB to form 5-thio-2-nitrobenzoic acid (TNB). Thiol concentration is calculated using absorption at 412 nm. Using optimized conditions, partially reduced mAbs can be separated from low-molecular weight contaminants and undergo the DTNB reaction. The standard curve of L-cysteine had good linearity between 100 and 1000 µM. The selectivity, linearity, repeatability, and robustness of this method were evaluated. The calculated free-SH:protein ratios of partially reduced mAbs were consistent between in-line SE-UHPLC-DTNB and conventional methods. The SE-UHPLC-DTNB method showed time- and temperature-dependent changes in the free-SH:protein ratio of mAbs during reduction. The changes in drug-antibody ratio (DAR) of ADCs during the conjugation reaction were also evaluated. This method is an inexpensive and versatile alternative to conventional methods of estimating the free-SH:protein ratio of mAbs and the DAR of ADCs. This method also minimizes assay time.


Assuntos
Aminobenzoatos/análise , Anticorpos Monoclonais/análise , Cromatografia em Gel/métodos , Ácido Ditionitrobenzoico/química , Imunoconjugados/análise , Oligopeptídeos/análise , Compostos de Sulfidrila/análise , Aminobenzoatos/química , Anticorpos Monoclonais/química , Calibragem , Cromatografia Líquida de Alta Pressão , Cisteína/análise , Humanos , Imunoconjugados/química , Imunoglobulina G/análise , Imunoglobulina G/química , Cinética , Oligopeptídeos/química , Oxirredução , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Compostos de Sulfidrila/química
9.
Hemoglobin ; 41(4-6): 300-305, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29210301

RESUMO

In general, the reactivity of cysteine residues of proteins is measured by 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) kinetics using spectrophotometry. Proteins with several cysteine residues may exhibit varying DTNB kinetics but residue level information can only be obtained with the prior knowledge of their three-dimensional structure. However, this method is limited in its application to the proteins containing chromophores having overlapping absorption profile with 2-nitro-5-thiobenzoic acid, such as hemoglobin (Hb). Additionally, this method is incapable of assigning cysteine reactivity at the residue levels of proteins with unknown crystal structures. However, a mass spectrometry (MS)-based platform might provide a solution to these problems. In the present study, alkylation kinetics of cysteine residues of adult human Hb (Hb A; α2ß2) and sickle cell Hb (Hb S; HBB: c.20A>T) were investigated using matrix-assisted laser desorption/ionization (MALDI) MS. Differential site-specific reactivities of cysteine residues of Hb were investigated using alkylation kinetics with iodoacetamide (IAM). The observed reactivities corroborated well with the differential surface accessibilities of cysteine residues in the crystal structures of human Hb. The proposed method might be used to investigate cysteine reactivities of all the genetic and post-translational variants of Hb discovered to date. In addition, this method can be extended to explore cysteine reactivities of proteins, irrespective of the presence of chromophores and availability of crystal structures.


Assuntos
Cisteína/química , Dinitrobenzenos/química , Hemoglobinas/química , Espectrometria de Massas/métodos , Humanos
10.
Biochim Biophys Acta ; 1840(3): 970-6, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24252277

RESUMO

BACKGROUND: Serum albumin binds avidly to heme to form heme-serum albumin complex, also called methemalbumin, and this binding is thought to protect against the potentially toxic effects of heme. However, the mechanism of detoxification has not been fully elucidated. METHODS: SDS-PAGE and Western blot were used to determine the efficiency of methemalbumin on catalyzing protein carbonylation and nitration. HPLC was used to test the formation of heme to protein cross-linked methemalbumin. RESULTS: The peroxidase activity of heme increased upon human serum albumin (HSA) binding. Methemalbumin showed higher efficiency in catalyzing tyrosine oxidation than free heme in the presence of H2O2. Methemalbumin catalyzed self-nitration and significantly promoted the nitration of tyrosine in coexistent protein, but decreased the carbonylation of coexistent protein compared with heme. The heme to protein cross-linked form of methemalbumin suggested that HSA trapped the free radical accompanied by the formation of ferryl heme. When tyrosine residues in HSA were modified by iodination, HSA lost of protection effect on protein carbonylation. The low concentration of glutathione could effectively inhibit tyrosine nitration, but had no effect on protein carbonylation. CONCLUSION: HSA protects against the toxic effect of heme by transferring the free radical to tyrosine residues in HSA, therefore protecting surrounding proteins from irreversible oxidation, rather than by direct inhibiting the peroxidase activity. The increased tyrosine radicals can be reduced by endogenic antioxidants such as GSH. GENERAL SIGNIFICANCE: This investigation indicated the important role of tyrosine residues in heme detoxification by HSA and suggested a possible novel mechanism.


Assuntos
Heme/metabolismo , Albumina Sérica/metabolismo , Tirosina/metabolismo , Humanos , Nitratos/metabolismo , Peroxidases/metabolismo , Carbonilação Proteica
11.
Biochim Biophys Acta ; 1840(2): 876-91, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23769856

RESUMO

BACKGROUND: Owing to recent discoveries of many hydrogen sulfide-mediated physiological processes, sulfide biology is in the focus of scientific research. However, the promiscuous chemical properties of sulfide pose complications for biological studies, which led to accumulation of controversial observations in the literature. SCOPE OF REVIEW: We intend to provide an overview of fundamental thermodynamic and kinetic features of sulfide redox- and coordination-chemical reactions and protonation equilibria in relation to its biological functions. In light of these chemical properties we review the strengths and limitations of the most commonly used sulfide detection methods and recently developed fluorescent probes. We also give a personal perspective on blood and tissue sulfide measurements based on proposed biomolecule-sulfide interactions and point out important chemical aspects of handling sulfide reagent solutions. MAJOR CONCLUSIONS: The diverse chemistries of sulfide detection methods resulted in orders of magnitude differences in measured physiological sulfide levels. Investigations that were aimed to dissect the underlying molecular reasons responsible for these controversies made the important recognition that there are large sulfide reserves in biological systems. These sulfide pools are tightly regulated in a dynamic manner and they are likely to play a major role in regulation of endogenous-sulfide-mediated biological functions and avoiding toxic side effects. GENERAL SIGNIFICANCE: Working with sulfide is challenging, because it requires considerable amounts of chemical knowledge to adequately handle reagent sulfide solutions and interpret biological observations. Therefore, we propose that a rigorous chemical approach could aid the reconciliation of the increasing number of controversies in sulfide biology. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.


Assuntos
Fenômenos Fisiológicos Celulares , Sulfeto de Hidrogênio/análise , Animais , Corantes Fluorescentes , Humanos
12.
Biochim Biophys Acta ; 1840(2): 838-46, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23567800

RESUMO

BACKGROUND: Disulfide bond formation is a key posttranslational modification, with implications for structure, function and stability of numerous proteins. While disulfide bond formation is a necessary and essential process for many proteins, it is deleterious and disruptive for others. Cells go to great lengths to regulate thiol-disulfide bond homeostasis, typically with several, apparently redundant, systems working in parallel. Dissecting the extent of oxidation and reduction of disulfides is an ongoing challenge due, in part, to the facility of thiol/disulfide exchange reactions. SCOPE OF REVIEW: In the present account, we briefly survey the toolbox available to the experimentalist for the chemical determination of thiols and disulfides. We have chosen to focus on the key chemical aspects of current methodology, together with identifying potential difficulties inherent in their experimental implementation. MAJOR CONCLUSIONS: While many reagents have been described for the measurement and manipulation of the redox status of thiols and disulfides, a number of these methods remain underutilized. The ability to effectively quantify changes in redox conditions in living cells presents a continuing challenge. GENERAL SIGNIFICANCE: Many unresolved questions in the metabolic interconversion of thiols and disulfides remain. For example, while pool sizes of redox pairs and their intracellular distribution are being uncovered, very little is known about the flux in thiol-disulfide exchange pathways. New tools are needed to address this important aspect of cellular metabolism. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.


Assuntos
Dissulfetos/análise , Proteínas/química , Compostos de Sulfidrila/análise , Animais , Dissulfetos/química , Humanos , Oxirredução , Compostos de Sulfidrila/química
13.
Biochim Biophys Acta ; 1844(2): 465-72, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24291053

RESUMO

Cystathionine γ-lyase (CGL) catalyzes the hydrolysis of l-cystathionine (l-Cth), producing l-cysteine (l-Cys), α-ketobutyrate and ammonia, in the second step of the reverse transsulfuration pathway, which converts l-homocysteine (l-Hcys) to l-Cys. Site-directed variants substituting residues E48 and E333 with alanine, aspartate and glutamine were characterized to probe the roles of these acidic residues, conserved in fungal and mammalian CGL sequences, in the active-site of CGL from Saccharomyces cerevisiae (yCGL). The pH optimum of variants containing the alanine or glutamine substitutions of E333 is increased by 0.4-1.2 pH units, likely due to repositioning of the cofactor and modification of the pKa of the pyridinium nitrogen. The pH profile of yCGL-E48A/E333A resembles that of Escherichia coli cystathionine ß-lyase. The effect of substituting E48, E333 or both residues is the 1.3-3, 26-58 and 124-568-fold reduction, respectively, of the catalytic efficiency of l-Cth hydrolysis. The Km(l-Cth) of E333 substitution variants is increased ~17-fold, while Km(l-OAS) is within 2.5-fold of the wild-type enzyme, indicating that residue E333 interacts with the distal amine moiety of l-Cth, which is not present in the alternative substrate O-acetyl-l-serine. The catalytic efficiency of yCGL for α,γ-elimination of O-succinyl-l-homoserine (kcat/Km(l-OSHS)=7±2), which possesses a distal carboxylate, but lacks an amino group, is 300-fold lower than that of the physiological l-Cth substrate (kcat/Km(l-Cth)=2100±100) and 260-fold higher than that of l-Hcys (kcat/Km(l-Hcys)=0.027±0.005), which lacks both distal polar moieties. The results of this study suggest that the glutamate residue at position 333 is a determinant of specificity.


Assuntos
Cistationina gama-Liase/química , Cistationina gama-Liase/metabolismo , Ácido Glutâmico/fisiologia , Saccharomyces cerevisiae/enzimologia , Domínio Catalítico , Cistationina gama-Liase/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Liases/química , Liases/metabolismo , Mutagênese Sítio-Dirigida , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas/fisiologia , Saccharomyces cerevisiae/genética , Especificidade por Substrato
14.
Biochim Biophys Acta ; 1840(1): 219-44, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23999088

RESUMO

BACKGROUND: Diethylnitrosamine (DEN) and carbon tetrachloride (CCl4) have been used as initiator and promoter respectively to establish an animal model for investigating molecular events appear to be involved in development of liver cancer. Use of herbal medicine in therapeutics to avoid the recurrence of hepatocarcinoma has already generated considerable interest among oncologists. In this context studies involving S-allyl-cysteine (SAC) and berberine have come up with promising results. Here we have determined the individual effect of SAC and berberine on the biomolecules associated with DEN+CCl4 induced hepatocarcinoma. Effective therapeutic value of combined treatment has also been estimated. METHODS: ROS accumulation was analyzed by FACS following DCFDA incubation. Bcl2-Bax and HDAC1-pMdm2 interaction were demonstrated by co-immunoprecipitation. Immunosorbent assay was performed to analyze PP2A and caspase3 activities. MMP was determined cytofluorimetrically by investigating JC-1 fluorescence. AnnexinV binding was demonstrated by labeling the cells with AnV-FITC followed by flow cytometry. RESULTS: CytochromeP4502E1 mediated bioactivation of DEN+CCl4 induced Akt dependent pMdm2-HDAC1 interaction that led to p53 deacetylation, probable cause of its degradation. In parallel, oxidative stress dependent Nrf2-HO1 activation increased Bcl2 expression which in turn stimulated cell proliferation. SAC in combination with berberine inhibited Akt mediated cell proliferation. Activation of PP2A as well as inhibition of JNK resulted in induction of apoptosis after 30 days of treatment. Extension of combined treatment reverted tissue physiology towards control. Co-treated group displayed normal tissue structure. CONCLUSION AND GENERAL SIGNIFICANCE: SAC and berberine mediated HDAC1/Akt inhibition implicates the efficacy of combined treatment in the amelioration of DEN+CCl4 induced hepatocarcinoma.


Assuntos
Antineoplásicos/farmacologia , Berberina/farmacologia , Tetracloreto de Carbono/toxicidade , Carcinoma Hepatocelular/prevenção & controle , Cisteína/análogos & derivados , Dietilnitrosamina/toxicidade , Neoplasias Hepáticas/prevenção & controle , Alquilantes/toxicidade , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/metabolismo , Caspase 3/metabolismo , Células Cultivadas , Cisteína/farmacologia , Citocromo P-450 CYP2E1/metabolismo , Citocromos c/metabolismo , Citometria de Fluxo , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Histona Desacetilase 1/metabolismo , Técnicas Imunoenzimáticas , Imunoprecipitação , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/metabolismo , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Proteínas de Transporte da Membrana Mitocondrial , Poro de Transição de Permeabilidade Mitocondrial , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
15.
Methods ; 65(2): 184-9, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23831336

RESUMO

Recent studies have revealed that reactive oxygen species (ROS) are actively generated in cells and function as second messengers to mediate physiological intracellular signaling. ROS exert their effects on intracellular signaling via ROS effector proteins, which are sensitively and reversibly oxidized by ROS. Among various ROS effector proteins, the protein tyrosine phosphatase (PTP) family is of special interest. In the catalytic pocket, PTP proteins commonly possess a highly reactive cysteine (Cys) residue, which is susceptible to oxidation by ROS. Phosphatase of regenerating liver (PRL) belongs to the PTP family and is oxidized by ROS to form an intramolecular disulfide bond. In general, disulfide bonds in proteins can be reduced in cells with the help of various reducing enzymes, which enables the reversible redox regulation of PRL proteins. In the case of PRL proteins, thioredoxin-related protein 32 specifically catalyzes the reducing reaction, indicating the importance of redox regulation for ROS effector proteins.


Assuntos
Proteínas Tirosina Quinases/metabolismo , Bioensaio , Domínio Catalítico , Cisteína/química , Oxirredução , Proteínas Tirosina Quinases/química , Espécies Reativas de Oxigênio/química
16.
Biochim Biophys Acta ; 1834(12): 2702-11, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24056040

RESUMO

The deficiency of human triosephosphate isomerase (HsTIM) generates neurological alterations, cardiomyopathy and premature death. The mutation E104D is the most frequent cause of the disease. Although the wild type and mutant exhibit similar kinetic parameters, it has been shown that the E104D substitution induces perturbation of an interfacial water network that, in turn, reduces the association constant between subunits promoting enzyme inactivation. To gain further insight into the effects of the mutation on the structure, stability and function of the enzyme, we measured the sensitivity of recombinant E104D mutant and wild type HsTIM to limited proteolysis. The mutation increases the susceptibility to proteolysis as consequence of the loss of rigidity of its overall 3-D structure. Unexpectedly, it was observed that proteolysis of wild type HsTIM generated two different stable nicked dimers. One was formed in relatively short times of incubation with proteinase K; as shown by spectrometric and crystallographic data, it corresponded to a dimer containing a nicked monomer and an intact monomer. The formation of the other nicked species requires relatively long incubation times with proteinase K and corresponds to a dimer with two clipped subunits. The first species retains 50% of the original activity, whereas the second species is inactive. Collectively, we found that the E104D mutant is highly susceptible to proteolysis, which in all likelihood contributes to the pathogenesis of enzymopathy. In addition, the proteolysis data on wild type HsTIM illustrate an asymmetric conduct of the two monomers.


Assuntos
Substituição de Aminoácidos , Mutação de Sentido Incorreto , Multimerização Proteica , Proteólise , Triose-Fosfato Isomerase/química , Anemia Hemolítica Congênita não Esferocítica/enzimologia , Anemia Hemolítica Congênita não Esferocítica/genética , Erros Inatos do Metabolismo dos Carboidratos/enzimologia , Erros Inatos do Metabolismo dos Carboidratos/genética , Estabilidade Enzimática/genética , Humanos , Estrutura Quaternária de Proteína , Triose-Fosfato Isomerase/deficiência , Triose-Fosfato Isomerase/genética , Triose-Fosfato Isomerase/metabolismo
17.
Biochim Biophys Acta ; 1834(12): 2494-501, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24012560

RESUMO

A combination of site-directed mutagenesis and chemical modification was employed to alter protein structure with the objective of improving diastereopreference over that achieved by simple site-directed mutagenesis. Conformational analysis using molecular dynamic (MD) simulation of Pseudomonas alcaligenes lipase (PAL) indicated that stronger steric exclusion and structural rigidity facilitated diastereopreference. A cysteine (Cys) residue was introduced using site-directed mutagenesis to construct variant A272C. The modifier 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) was then reacted with the introduced Cys residue to provide stronger steric exclusion and structural rigidity. The modification was verified by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Diastereopreference was improved significantly. The diastereomeric excess (dep) of l-menthol increased from 35% with wild type PAL to 90% with A272C-DTNB modified PAL when the conversion ratio of l-menthyl propionate was nearly 100%. Conformation and kinetic parameter analysis showed that A272C-DTNB modified PAL exhibited stronger steric exclusion and increased structural rigidity around the modification site that inhibited the hydrolysis of non-targeted substrates. The combination of site-directed mutagenesis and chemical modification could be an effective method to alter protein properties and enhance diastereopreference through the combined effect of steric exclusion and structural rigidity.


Assuntos
Substituição de Aminoácidos , Proteínas de Bactérias/química , Lipase/química , Pseudomonas alcaligenes/enzimologia , Proteínas de Bactérias/genética , Estabilidade Enzimática/genética , Lipase/genética , Mentol/química , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Pseudomonas alcaligenes/genética , Especificidade por Substrato/genética
18.
Biochim Biophys Acta ; 1830(10): 4524-36, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23707661

RESUMO

BACKGROUND: Myeloperoxidase (MPO) is an abundant hemoprotein expressed by neutrophil granulocytes that is recognized to play an important role in the development of vascular diseases. Upon degranulation from circulating neutrophil granulocytes, MPO binds to the surface of endothelial cells in an electrostatic-dependent manner and undergoes transcytotic migration to the underlying extracellular matrix (ECM). However, the mechanisms governing the binding of MPO to subendothelial ECM proteins, and whether this binding modulates its enzymatic functions are not well understood. METHODS: We investigated MPO binding to ECM derived from aortic endothelial cells, aortic smooth muscle cells, and fibroblasts, and to purified ECM proteins, and the modulation of these associations by glycosaminoglycans. The oxidizing and chlorinating potential of MPO upon binding to ECM proteins was tested. RESULTS: MPO binds to the ECM proteins collagen IV and fibronectin, and this association is enhanced by the pre-incubation of these proteins with glycosaminoglycans. Correspondingly, an excess of glycosaminoglycans in solution during incubation inhibits the binding of MPO to collagen IV and fibronectin. These observations were confirmed with cell-derived ECM. The oxidizing and chlorinating potential of MPO was preserved upon binding to collagen IV and fibronectin; even the potentiation of MPO activity in the presence of collagen IV and fibronectin was observed. CONCLUSIONS: Collectively, the data reveal that MPO binds to ECM proteins on the basis of electrostatic interactions, and MPO chlorinating and oxidizing activity is potentiated upon association with these proteins. GENERAL SIGNIFICANCE: Our findings provide new insights into the molecular mechanisms underlying the interaction of MPO with ECM proteins.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , Glicosaminoglicanos/metabolismo , Peroxidase/metabolismo , Células Cultivadas , Colágeno Tipo IV/metabolismo , Dimerização , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Proteínas da Matriz Extracelular/química , Fibronectinas/metabolismo , Humanos , Nitratos/metabolismo , Estresse Oxidativo , Ligação Proteica , Tirosina/metabolismo
19.
Biochim Biophys Acta ; 1832(12): 1989-97, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23846016

RESUMO

Hydrogen sulfide (H2S) produced by cystathionine ß-synthase (CBS) and cystathionine γ-lyase (CSE) in the transsulfuration pathway of homocysteine plays a number of pathophysiological roles. Hyperhomocysteinemia is involved in kidney fibrosis. However, the role of H2S in kidney fibrosis remains to be defined. Here, we investigated the role of H2S and its acting mechanism in unilateral ureteral obstruction (UO)-induced kidney fibrosis in mice. UO decreased expressions of CBS and CSE in the kidney with decrease of H2S concentration. Treatment with sodium hydrogen sulfide (NaHS, a H2S producer) during UO reduced UO-induced oxidative stress with preservations of catalase, copper-zinc superoxide dismutase (CuZnSOD), and manganese superoxide dismutase (MnSOD) expression, and glutathione level. In addition, NaHS mitigated decreases of CBS and CSE expressions, and H2S concentration in the kidney. NaHS treatment attenuated UO-induced increases in levels of TGF-ß1, activated Smad3, and activated NF-κB. This study provided the first evidence of involvement of the transsulfuration pathway and H2S in UO-induced kidney fibrosis, suggesting that H2S and its transsulfuration pathway may be a potential target for development of therapeutics for fibrosis-related diseases.


Assuntos
Fibrose/patologia , Homocisteína/metabolismo , Sulfeto de Hidrogênio/metabolismo , Nefropatias/patologia , Sulfetos/metabolismo , Obstrução Ureteral/patologia , Animais , Pressão Sanguínea , Western Blotting , Cistationina beta-Sintase/metabolismo , Cistationina gama-Liase/metabolismo , Progressão da Doença , Fibrose/etiologia , Fibrose/metabolismo , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Técnicas Imunoenzimáticas , Nefropatias/etiologia , Nefropatias/metabolismo , Peroxidação de Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Estresse Oxidativo , Transdução de Sinais , Superóxido Dismutase/metabolismo , Superóxidos/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Obstrução Ureteral/complicações , Obstrução Ureteral/metabolismo
20.
Biochim Biophys Acta ; 1832(10): 1591-604, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23643711

RESUMO

The mitochondrial redox state plays a central role in the link between mitochondrial overloading and insulin resistance. However, the mechanism by which the ROS induce insulin resistance in skeletal muscle cells is not completely understood. We examined the association between mitochondrial function and H2O2 production in insulin resistant cells. Our hypothesis is that the low mitochondrial oxygen consumption leads to elevated ROS production by a mechanism associated with reduced PGC1α transcription and low content of phosphorylated CREB. The cells were transfected with either the encoded sequence for catalase overexpression or the specific siRNA for catalase inhibition. After transfection, myotubes were incubated with palmitic acid (500µM) and the insulin response, as well as mitochondrial function and fatty acid metabolism, was determined. The low mitochondrial oxygen consumption led to elevated ROS production by a mechanism associated with ß-oxidation of fatty acids. Rotenone was observed to reduce the ratio of ROS production. The elevated H2O2 production markedly decreased the PGC1α transcription, an effect that was accompanied by a reduced phosphorylation of Akt and CREB. The catalase transfection prevented the reduction in the phosphorylated level of Akt and upregulated the levels of phosphorylated CREB. The mitochondrial function was elevated and H2O2 production reduced, thus increasing the insulin sensitivity. The catalase overexpression improved mitochondrial respiration protecting the cells from fatty acid-induced, insulin resistance. This effect indicates that control of hydrogen peroxide production regulates the mitochondrial respiration preventing the insulin resistance in skeletal muscle cells by a mechanism associated with CREB phosphorylation and ß-oxidation of fatty acids.


Assuntos
Catalase/metabolismo , Peróxido de Hidrogênio/metabolismo , Resistência à Insulina , Mitocôndrias Musculares/fisiologia , Animais , Antioxidantes/metabolismo , Células Cultivadas , Masculino , Mitocôndrias Musculares/enzimologia , Músculo Esquelético/citologia , Músculo Esquelético/enzimologia , Músculo Esquelético/metabolismo , Consumo de Oxigênio , Ácido Palmítico/farmacologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA