Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83.438
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 186(17): 3642-3658.e32, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37437570

RESUMO

A system for programmable export of RNA molecules from living cells would enable both non-destructive monitoring of cell dynamics and engineering of cells capable of delivering executable RNA programs to other cells. We developed genetically encoded cellular RNA exporters, inspired by viruses, that efficiently package and secrete cargo RNA molecules from mammalian cells within protective nanoparticles. Exporting and sequencing RNA barcodes enabled non-destructive monitoring of cell population dynamics with clonal resolution. Further, by incorporating fusogens into the nanoparticles, we demonstrated the delivery, expression, and functional activity of exported mRNA in recipient cells. We term these systems COURIER (controlled output and uptake of RNA for interrogation, expression, and regulation). COURIER enables measurement of cell dynamics and establishes a foundation for hybrid cell and gene therapies based on cell-to-cell delivery of RNA.


Assuntos
Técnicas Citológicas , Técnicas Genéticas , RNA , Animais , Transporte Biológico , Mamíferos/metabolismo , RNA/genética , RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Vírus/genética , Tipagem Molecular , Análise de Sequência de RNA
2.
Cell ; 185(2): 250-265.e16, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35021064

RESUMO

Methods to deliver gene editing agents in vivo as ribonucleoproteins could offer safety advantages over nucleic acid delivery approaches. We report the development and application of engineered DNA-free virus-like particles (eVLPs) that efficiently package and deliver base editor or Cas9 ribonucleoproteins. By engineering VLPs to overcome cargo packaging, release, and localization bottlenecks, we developed fourth-generation eVLPs that mediate efficient base editing in several primary mouse and human cell types. Using different glycoproteins in eVLPs alters their cellular tropism. Single injections of eVLPs into mice support therapeutic levels of base editing in multiple tissues, reducing serum Pcsk9 levels 78% following 63% liver editing, and partially restoring visual function in a mouse model of genetic blindness. In vitro and in vivo off-target editing from eVLPs was virtually undetected, an improvement over AAV or plasmid delivery. These results establish eVLPs as promising vehicles for therapeutic macromolecule delivery that combine key advantages of both viral and nonviral delivery.


Assuntos
Sistemas de Liberação de Medicamentos , Engenharia Genética , Proteínas/uso terapêutico , Vírion/genética , Animais , Sequência de Bases , Cegueira/genética , Cegueira/terapia , Encéfalo/metabolismo , DNA/metabolismo , Modelos Animais de Doenças , Fibroblastos/metabolismo , Edição de Genes , Células HEK293 , Humanos , Fígado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Pró-Proteína Convertase 9/metabolismo , Epitélio Pigmentado da Retina/patologia , Retroviridae , Vírion/ultraestrutura , Visão Ocular
3.
Cell ; 185(26): 4904-4920.e22, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36516854

RESUMO

Cells communicate with each other via receptor-ligand interactions. Here, we describe lentiviral-mediated cell entry by engineered receptor-ligand interaction (ENTER) to display ligand proteins, deliver payloads, and record receptor specificity. We optimize ENTER to decode interactions between T cell receptor (TCR)-MHC peptides, antibody-antigen, and other receptor-ligand pairs. A viral presentation strategy allows ENTER to capture interactions between B cell receptor and any antigen. We engineer ENTER to deliver genetic payloads to antigen-specific T or B cells to selectively modulate cellular behavior in mixed populations. Single-cell readout of ENTER by RNA sequencing (ENTER-seq) enables multiplexed enumeration of antigen specificities, TCR clonality, cell type, and states of individual T cells. ENTER-seq of CMV-seropositive patient blood samples reveals the viral epitopes that drive effector memory T cell differentiation and inter-clonal vs. intra-clonal phenotypic diversity targeting the same epitope. ENTER technology enables systematic discovery of receptor specificity, linkage to cell fates, and antigen-specific cargo delivery.


Assuntos
Receptores de Antígenos de Linfócitos T , Internalização do Vírus , Humanos , Biologia , Epitopos , Ligantes , Peptídeos , Receptores de Antígenos de Linfócitos T/metabolismo , Análise de Célula Única , Genômica
4.
Cell ; 185(13): 2248-2264.e21, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35617958

RESUMO

Hematopoietic stem/progenitor cell gene therapy (HSPC-GT) is proving successful to treat several genetic diseases. HSPCs are mobilized, harvested, genetically corrected ex vivo, and infused, after the administration of toxic myeloablative conditioning to deplete the bone marrow (BM) for the modified cells. We show that mobilizers create an opportunity for seamless engraftment of exogenous cells, which effectively outcompete those mobilized, to repopulate the depleted BM. The competitive advantage results from the rescue during ex vivo culture of a detrimental impact of mobilization on HSPCs and can be further enhanced by the transient overexpression of engraftment effectors exploiting optimized mRNA-based delivery. We show the therapeutic efficacy in a mouse model of hyper IgM syndrome and further developed it in human hematochimeric mice, showing its applicability and versatility when coupled with gene transfer and editing strategies. Overall, our findings provide a potentially valuable strategy paving the way to broader and safer use of HSPC-GT.


Assuntos
Edição de Genes , Transplante de Células-Tronco Hematopoéticas , Animais , Terapia Genética/métodos , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas , Humanos , Camundongos
5.
Cell ; 181(7): 1680-1692.e15, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32589958

RESUMO

Metabolism during pregnancy is a dynamic and precisely programmed process, the failure of which can bring devastating consequences to the mother and fetus. To define a high-resolution temporal profile of metabolites during healthy pregnancy, we analyzed the untargeted metabolome of 784 weekly blood samples from 30 pregnant women. Broad changes and a highly choreographed profile were revealed: 4,995 metabolic features (of 9,651 total), 460 annotated compounds (of 687 total), and 34 human metabolic pathways (of 48 total) were significantly changed during pregnancy. Using linear models, we built a metabolic clock with five metabolites that time gestational age in high accordance with ultrasound (R = 0.92). Furthermore, two to three metabolites can identify when labor occurs (time to delivery within two, four, and eight weeks, AUROC ≥ 0.85). Our study represents a weekly characterization of the human pregnancy metabolome, providing a high-resolution landscape for understanding pregnancy with potential clinical utilities.


Assuntos
Idade Gestacional , Metabolômica/métodos , Gravidez/metabolismo , Adulto , Biomarcadores/sangue , Feminino , Feto/metabolismo , Humanos , Redes e Vias Metabólicas/fisiologia , Metaboloma/fisiologia , Gestantes
6.
Annu Rev Neurosci ; 45: 447-469, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35440143

RESUMO

Recombinant adeno-associated viruses (AAVs) are commonly used gene delivery vehicles for neuroscience research. They have two engineerable features: the capsid (outer protein shell) and cargo (encapsulated genome). These features can be modified to enhance cell type or tissue tropism and control transgene expression, respectively. Several engineered AAV capsids with unique tropisms have been identified, including variants with enhanced central nervous system transduction, cell type specificity, and retrograde transport in neurons. Pairing these AAVs with modern gene regulatory elements and state-of-the-art reporter, sensor, and effector cargo enables highly specific transgene expression for anatomical and functional analyses of brain cells and circuits. Here, we discuss recent advances that provide a comprehensive (capsid and cargo) AAV toolkit for genetic access to molecularly defined brain cell types.


Assuntos
Dependovirus , Vetores Genéticos , Encéfalo , Capsídeo/metabolismo , Dependovirus/genética , Técnicas de Transferência de Genes
7.
Physiol Rev ; 102(4): 1625-1667, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35378997

RESUMO

For nearly 50 years the proximal tubule (PT) has been known to reabsorb, process, and either catabolize or transcytose albumin from the glomerular filtrate. Innovative techniques and approaches have provided insights into these processes. Several genetic diseases, nonselective PT cell defects, chronic kidney disease (CKD), and acute PT injury lead to significant albuminuria, reaching nephrotic range. Albumin is also known to stimulate PT injury cascades. Thus, the mechanisms of albumin reabsorption, catabolism, and transcytosis are being reexamined with the use of techniques that allow for novel molecular and cellular discoveries. Megalin, a scavenger receptor, cubilin, amnionless, and Dab2 form a nonselective multireceptor complex that mediates albumin binding and uptake and directs proteins for lysosomal degradation after endocytosis. Albumin transcytosis is mediated by a pH-dependent binding affinity to the neonatal Fc receptor (FcRn) in the endosomal compartments. This reclamation pathway rescues albumin from urinary losses and cellular catabolism, extending its serum half-life. Albumin that has been altered by oxidation, glycation, or carbamylation or because of other bound ligands that do not bind to FcRn traffics to the lysosome. This molecular sorting mechanism reclaims physiological albumin and eliminates potentially toxic albumin. The clinical importance of PT albumin metabolism has also increased as albumin is now being used to bind therapeutic agents to extend their half-life and minimize filtration and kidney injury. The purpose of this review is to update and integrate evolving information regarding the reabsorption and processing of albumin by proximal tubule cells including discussion of genetic disorders and therapeutic considerations.


Assuntos
Albuminas , Túbulos Renais Proximais , Albuminas/metabolismo , Transporte Biológico , Endocitose/fisiologia , Humanos , Túbulos Renais Proximais/metabolismo
8.
CA Cancer J Clin ; 72(5): 437-453, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35584404

RESUMO

Approximately one-half of individuals with cancer face personal economic burdens associated with the disease and its treatment, a problem known as financial toxicity (FT). FT more frequently affects socioeconomically vulnerable individuals and leads to subsequent adverse economic and health outcomes. Whereas multilevel systemic factors at the policy, payer, and provider levels drive FT, there are also accompanying intervenable patient-level factors that exacerbate FT in the setting of clinical care delivery. The primary strategy to intervene on FT at the patient level is financial navigation. Financial navigation uses comprehensive assessment of patients' risk factors for FT, guidance toward support resources, and referrals to assist patient financial needs during cancer care. Social workers or nurse navigators most frequently lead financial navigation. Oncologists and clinical provider teams are multidisciplinary partners who can support optimal FT management in the context of their clinical roles. Oncologists and clinical provider teams can proactively assess patient concerns about the financial hardship and employment effects of disease and treatment. They can respond by streamlining clinical treatment and care delivery planning and incorporating FT concerns into comprehensive goals of care discussions and coordinated symptom and psychosocial care. By understanding how age and life stage, socioeconomic, and cultural factors modify FT trajectory, oncologists and multidisciplinary health care teams can be engaged and informative in patient-centered, tailored FT management. The case presentations in this report provide a practical context to summarize authors' recommendations for patient-level FT management, supported by a review of key supporting evidence and a discussion of challenges to mitigating FT in oncology care. CA Cancer J Clin. 2022;72:437-453.


Assuntos
Neoplasias , Oncologistas , Estresse Financeiro , Humanos , Oncologia , Neoplasias/psicologia
9.
Mol Cell ; 81(20): 4271-4286.e4, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34403695

RESUMO

Helitrons are widespread eukaryotic DNA transposons that have significantly contributed to genome variability and evolution, in part because of their distinctive, replicative rolling-circle mechanism, which often mobilizes adjacent genes. Although most eukaryotic transposases form oligomers and use RNase H-like domains to break and rejoin double-stranded DNA (dsDNA), Helitron transposases contain a single-stranded DNA (ssDNA)-specific HUH endonuclease domain. Here, we report the cryo-electron microscopy structure of a Helitron transposase bound to the 5'-transposon end, providing insight into its multidomain architecture and function. The monomeric transposase forms a tightly packed assembly that buries the covalently attached cleaved end, protecting it until the second end becomes available. The structure reveals unexpected architectural similarity to TraI, a bacterial relaxase that also catalyzes ssDNA movement. The HUH active site suggests how two juxtaposed tyrosines, a feature of many replication initiators that use HUH nucleases, couple the conformational shift of an α-helix to control strand cleavage and ligation reactions.


Assuntos
Quirópteros/metabolismo , Elementos de DNA Transponíveis , DNA de Cadeia Simples/metabolismo , Transposases/metabolismo , Animais , Domínio Catalítico , Quirópteros/genética , Microscopia Crioeletrônica , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/ultraestrutura , Células HEK293 , Humanos , Modelos Moleculares , Conformação de Ácido Nucleico , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Relação Estrutura-Atividade , Transposases/genética , Transposases/ultraestrutura , Tirosina
10.
Trends Biochem Sci ; 49(4): 283-285, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38238217

RESUMO

Two reports by Dhuri et al. and Oyaghire et al., respectively, show that, through installing chiral centers at the backbone of the artificial nucleic acid, peptide nucleic acid (PNA), enhanced miRNA targeting and genome modification can be achieved, with important implications in fighting cancers and ß-thalassemia.


Assuntos
MicroRNAs , Ácidos Nucleicos Peptídicos , MicroRNAs/genética
11.
CA Cancer J Clin ; 71(1): 34-46, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32997807

RESUMO

The delivery of cancer care has never changed as rapidly and dramatically as we have seen with the coronavirus disease 2019 (COVID-19) pandemic. During the early phase of the pandemic, recommendations for the management of oncology patients issued by various professional societies and government agencies did not recognize the significant regional differences in the impact of the pandemic. California initially experienced lower than expected numbers of cases, and the health care system did not experience the same degree of the burden that had been the case in other parts of the country. In light of promising trends in COVID-19 infections and mortality in California, by late April 2020, discussions were initiated for a phased recovery of full-scale cancer services. However, by July 2020, a surge of cases was reported across the nation, including in California. In this review, the authors share the response and recovery planning experience of the University of California (UC) Cancer Consortium in an effort to provide guidance to oncology practices. The UC Cancer Consortium was established in 2017 to bring together 5 UC Comprehensive Cancer Centers: UC Davis Comprehensive Cancer Center, UC Los Angeles Jonsson Comprehensive Cancer Center, UC Irvine Chao Family Comprehensive Cancer Center, UC San Diego Moores Cancer Center, and the UC San Francisco Helen Diller Family Comprehensive Cancer Center. The interventions implemented in each of these cancer centers are highlighted, with a focus on opportunities for a redesign in care delivery models. The authors propose that their experiences gained during this pandemic will enhance pre-pandemic cancer care delivery.


Assuntos
COVID-19 , Institutos de Câncer/organização & administração , Atenção à Saúde/organização & administração , Neoplasias/terapia , COVID-19/complicações , COVID-19/diagnóstico , COVID-19/epidemiologia , COVID-19/prevenção & controle , Teste para COVID-19 , California/epidemiologia , Saúde Global , Humanos , Controle de Infecções/métodos , Controle de Infecções/organização & administração , Neoplasias/complicações , Neoplasias/diagnóstico , Pandemias , Telemedicina/métodos , Telemedicina/organização & administração
12.
Immunol Rev ; 321(1): 94-114, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37550950

RESUMO

Immunogenic cell death (ICD) is a unique mode of cell death, which can release immunogenic damage-associated molecular patterns (DAMPs) and tumor-associated antigens to trigger long-term protective antitumor immune responses. Thus, amplifying "eat me signal" during tumor ICD cascade is critical for cancer immunotherapy. Some therapies (radiotherapy, photodynamic therapy (PDT), photothermal therapy (PTT), etc.) and inducers (chemotherapeutic agents, etc.) have enabled to initiate and/or facilitate ICD and activate antitumor immune responses. Recently, nanostructure-based drug delivery systems have been synthesized for inducing ICD through combining treatment of chemotherapeutic agents, photosensitizers for PDT, photothermal transformation agents for PTT, radiosensitizers for radiotherapy, etc., which can release loaded agents at an appropriate dosage in the designated place at the appropriate time, contributing to higher efficiency and lower toxicity. Also, immunotherapeutic agents in combination with nanostructure-based drug delivery systems can produce synergetic antitumor effects, thus potentiating immunotherapy. Overall, our review outlines the emerging ICD inducers, and nanostructure drug delivery systems loading diverse agents to evoke ICD through chemoradiotherapy, PDT, and PTT or combining immunotherapeutic agents. Moreover, we discuss the prospects and challenges of harnessing ICD induction-based immunotherapy, and highlight the significance of multidisciplinary and interprofessional collaboration to promote the optimal translation of this treatment strategy.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Morte Celular Imunogênica , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Morte Celular , Imunoterapia
13.
Trends Genet ; 40(4): 352-363, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38320883

RESUMO

Plant biotechnology plays a crucial role in developing modern agriculture and plant science research. However, the delivery of exogenous genetic material into plants has been a long-standing obstacle. Nanoparticle-based delivery systems are being established to address this limitation and are proving to be a feasible, versatile, and efficient approach to facilitate the internalization of functional RNA and DNA by plants. The nanoparticle-based delivery systems can also be designed for subcellular delivery and controlled release of the biomolecular cargo. In this review, we provide a concise overview of the recent advances in nanocarriers for the delivery of biomolecules into plants, with a specific focus on applications to enhance RNA interference, foreign gene transfer, and genome editing in plants.


Assuntos
Nanopartículas , Ácidos Nucleicos , Sistemas CRISPR-Cas , Genoma de Planta , Plantas/genética , Biotecnologia , Edição de Genes , Plantas Geneticamente Modificadas/genética
14.
Trends Genet ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38845265

RESUMO

Extracellular vesicles (EVs), emerging as novel mediators between intercellular communication, encapsulate distinct bioactive cargoes to modulate multiple biological events, such as epigenetic remodeling. In essence, EVs and epigenomic profiles are tightly linked and reciprocally regulated. Epigenetic factors, including histone and DNA modifications, noncoding RNAs, and protein post-translational modifications (PTMs) dynamically regulate EV biogenesis to contribute to EV heterogeneity. Alternatively, EVs actively modify DNA, RNA, and histone profiles in recipient cells by delivering RNA and protein cargoes for downstream epigenetic enzyme regulation. Moreover, EVs display great potential as diagnostic markers and drug-delivery vehicles for therapeutic applications. The combination of parental cell epigenomic modification with single EV characterization would be a promising strategy for EV engineering to enhance the epidrug loading efficacy and accuracy.

15.
Development ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39171380

RESUMO

Delivering molecular tools into oocytes is essential for developmental and reproductive biology. Microinjection, the conventional method, is equipment-intensive, often technically challenging, and low-yield, and is impractical in species with delicate oocytes or restricted spawning seasons. To overcome these limitations, we developed VitelloTag, a cost-effective, high-throughput system using vitellogenin-derived fusion proteins to enable efficient cargo delivery via receptor-mediated endocytosis. We demonstrate its utility by delivering Cas9/sgRNA complexes in two distantly related species for gene knockout.

16.
Trends Immunol ; 45(4): 274-287, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38494365

RESUMO

Lipopolysaccharide (LPS), a key component of the outer membrane in Gram-negative bacteria (GNB), is widely recognized for its crucial role in mammalian innate immunity and its link to mortality in intensive care units. While its recognition via the Toll-like receptor (TLR)-4 receptor on cell membranes is well established, the activation of the cytosolic receptor caspase-11 by LPS is now known to lead to inflammasome activation and subsequent induction of pyroptosis. Nevertheless, a fundamental question persists regarding the mechanism by which LPS enters host cells. Recent investigations have identified at least four primary pathways that can facilitate this process: bacterial outer membrane vesicles (OMVs); the spike (S) protein of SARS-CoV-2; host-secreted proteins; and host extracellular vesicles (EVs). These delivery systems provide new avenues for therapeutic interventions against sepsis and infectious diseases.


Assuntos
Imunidade Inata , Lipopolissacarídeos , Animais , Humanos , Inflamassomos/metabolismo , Caspases/metabolismo , Mamíferos
17.
Trends Immunol ; 45(1): 20-31, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38142147

RESUMO

Owing to their outstanding performance against COVID-19, mRNA vaccines have brought great hope for combating various incurable diseases, including cancer. Differences in the encoded proteins result in different molecular and cellular mechanisms of mRNA vaccines. With the rapid development of nanotechnology and molecular medicine, personalized antigen-encoding mRNA vaccines that enhance antigen presentation can trigger effective immune responses and prevent off-target toxicities. Herein, we review new insights into the influence of encoded antigens, cytokines, and other functional proteins on the mechanisms of mRNA vaccines. We also highlight the importance of delivery systems and chemical modifications for mRNA translation efficiency, stability, and targeting, and we discuss the potential problems and application prospects of mRNA vaccines as versatile tools for combating cancer.


Assuntos
Vacinas Anticâncer , Neoplasias , Humanos , Nanomedicina , Vacinas de mRNA , Neoplasias/terapia , Imunoterapia , Vacinas Anticâncer/uso terapêutico
18.
Trends Immunol ; 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39191543

RESUMO

In complex diseases such as cancer, modulating cytokine signatures of disease using innate immune agonists holds therapeutic promise. Novel multi-agonist treatments offer tunable control of the immune system because they are uniquely pathogen inspired, eliciting robust antitumor responses by promoting synergistic cytokine responses. However, the chief strategic hurdle is ensuring multi-agonist delivery to the same target cells, highlighting the importance of using nanomaterial-based carriers. Here, we place nanocarriers in center stage and review the delivery hurdles related to the varying extra- and intracellular localizations of innate immune receptors. We discuss a range of nanomaterials used for multi-agonist delivery, highlighting their respective benefits and drawbacks. Our overarching stance is that rational nanocarrier design is crucial for developing pathogen-inspired multi-agonist immunotherapies.

19.
Proc Natl Acad Sci U S A ; 121(11): e2307796121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38437567

RESUMO

Cell-type-specific in vivo delivery of genome editing molecules is the next breakthrough that will drive biological discovery and transform the field of cell and gene therapy. Here, we discuss recent advances in the delivery of CRISPR-Cas genome editors either as preassembled ribonucleoproteins or encoded in mRNA. Both strategies avoid pitfalls of viral vector-mediated delivery and offer advantages including transient editor lifetime and potentially streamlined manufacturing capability that are already proving valuable for clinical use. We review current applications and future opportunities of these emerging delivery approaches that could make genome editing more efficacious and accessible in the future.


Assuntos
Comércio , Edição de Genes , Terapia Genética , RNA Mensageiro , Ribonucleoproteínas
20.
Proc Natl Acad Sci U S A ; 121(11): e2307813120, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38437570

RESUMO

Lipid nanoparticles (LNPs) largely rely on ionizable lipids to yield successful nucleic acid delivery via electrostatic disruption of the endosomal membrane. Here, we report the identification and evaluation of ionizable lipids containing a thiophene moiety (Thio-lipids). The Thio-lipids can be readily synthesized via the Gewald reaction, allowing for modular lipid design with functional constituents at various positions of the thiophene ring. Through the rational design of ionizable lipid structure, we prepared 47 Thio-lipids and identified some structural criteria required in Thio-lipids for efficient mRNA (messenger RNA) encapsulation and delivery in vitro and in vivo. Notably, none of the tested lipids have a pH-response profile like traditional ionizable lipids, potentially due to the electron delocalization in the thiophene core. Placement of the tails and localization of the ionizable headgroup in the thiophene core can endow the nanoparticles with the capability to reach various tissues. Using high-throughput formulation and barcoding techniques, we optimized the formulations to select two top lipids-20b and 29d-and investigated their biodistribution in mice. Lipid 20b enabled LNPs to transfect the liver and spleen, and 29d LNP transfected the lung and spleen. Unexpectedly, LNP with lipid 20b was especially potent in mRNA delivery to the retina with no acute toxicity, leading to the successful delivery to the photoreceptors and retinal pigment epithelium in non-human primates.


Assuntos
Pulmão , Retina , Animais , Camundongos , Distribuição Tecidual , RNA Mensageiro/genética , Lipídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA