Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.427
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Pathol ; 263(1): 5-7, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38404051

RESUMO

Advances in the digital pathology field have facilitated the characterization of histology samples for both clinical and preclinical research. However, uncovering subtle correlations between bioimaging, clinical and molecular parameters requires extensive statistical analysis. As a user-friendly software, Hourglass, simplifies multiparametric dataset analysis through intuitive data visualization and statistical tools. Systemic analysis of interleukin-6 (IL-6)/pStat3 signaling pathway through Hourglass revealed differences in regional immune cell composition within tumors. Moreover, these regional disparities were partially mediated by sex. Overall, Hourglass simplifies information extraction from complex datasets, resolving overlooked regional and global spatial tumor differences. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patologia , Transdução de Sinais , Software , Reino Unido
2.
J Pathol ; 263(1): 89-98, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38433721

RESUMO

Brain metastases can occur in nearly half of patients with early and locally advanced (stage I-III) non-small cell lung cancer (NSCLC). There are no reliable histopathologic or molecular means to identify those who are likely to develop brain metastases. We sought to determine if deep learning (DL) could be applied to routine H&E-stained primary tumor tissue sections from stage I-III NSCLC patients to predict the development of brain metastasis. Diagnostic slides from 158 patients with stage I-III NSCLC followed for at least 5 years for the development of brain metastases (Met+, 65 patients) versus no progression (Met-, 93 patients) were subjected to whole-slide imaging. Three separate iterations were performed by first selecting 118 cases (45 Met+, 73 Met-) to train and validate the DL algorithm, while 40 separate cases (20 Met+, 20 Met-) were used as the test set. The DL algorithm results were compared to a blinded review by four expert pathologists. The DL-based algorithm was able to distinguish the eventual development of brain metastases with an accuracy of 87% (p < 0.0001) compared with an average of 57.3% by the four pathologists and appears to be particularly useful in predicting brain metastases in stage I patients. The DL algorithm appears to focus on a complex set of histologic features. DL-based algorithms using routine H&E-stained slides may identify patients who are likely to develop brain metastases from those who will remain disease free over extended (>5 year) follow-up and may thus be spared systemic therapy. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias Encefálicas , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Algoritmos , Patologistas
3.
J Pathol ; 264(1): 80-89, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38984400

RESUMO

Whole slide imaging (WSI) of pathology glass slides using high-resolution scanners has enabled the large-scale application of artificial intelligence (AI) in pathology, to support the detection and diagnosis of disease, potentially increasing efficiency and accuracy in tissue diagnosis. Despite the promise of AI, it has limitations. 'Brittleness' or sensitivity to variation in inputs necessitates that large amounts of data are used for training. AI is often trained on data from different scanners but not usually by replicating the same slide across scanners. The utilisation of multiple WSI instruments to produce digital replicas of the same slides will make more comprehensive datasets and may improve the robustness and generalisability of AI algorithms as well as reduce the overall data requirements of AI training. To this end, the National Pathology Imaging Cooperative (NPIC) has built the AI FORGE (Facilitating Opportunities for Robust Generalisable data Emulation), a unique multi-scanner facility embedded in a clinical site in the NHS to (1) compare scanner performance, (2) replicate digital pathology image datasets across WSI systems, and (3) support the evaluation of clinical AI algorithms. The NPIC AI FORGE currently comprises 15 scanners from nine manufacturers. It can generate approximately 4,000 WSI images per day (approximately 7 TB of image data). This paper describes the process followed to plan and build such a facility. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Inteligência Artificial , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Algoritmos , Patologia Clínica/métodos , Processamento de Imagem Assistida por Computador/métodos
4.
Semin Cancer Biol ; 91: 110-123, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36907387

RESUMO

Glioma represents a dominant primary intracranial malignancy in the central nervous system. Artificial intelligence that mainly includes machine learning, and deep learning computational approaches, presents a unique opportunity to enhance clinical management of glioma through improving tumor segmentation, diagnosis, differentiation, grading, treatment, prediction of clinical outcomes (prognosis, and recurrence), molecular features, clinical classification, characterization of the tumor microenvironment, and drug discovery. A growing body of recent studies apply artificial intelligence-based models to disparate data sources of glioma, covering imaging modalities, digital pathology, high-throughput multi-omics data (especially emerging single-cell RNA sequencing and spatial transcriptome), etc. While these early findings are promising, future studies are required to normalize artificial intelligence-based models to improve the generalizability and interpretability of the results. Despite prominent issues, targeted clinical application of artificial intelligence approaches in glioma will facilitate the development of precision medicine of this field. If these challenges can be overcome, artificial intelligence has the potential to profoundly change the way patients with or at risk of glioma are provided with more rational care.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Inteligência Artificial , Glioma/diagnóstico , Glioma/genética , Glioma/terapia , Aprendizado de Máquina , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Medicina de Precisão , Microambiente Tumoral
5.
BMC Bioinformatics ; 25(1): 134, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539070

RESUMO

Deep learning methods have emerged as powerful tools for analyzing histopathological images, but current methods are often specialized for specific domains and software environments, and few open-source options exist for deploying models in an interactive interface. Experimenting with different deep learning approaches typically requires switching software libraries and reprocessing data, reducing the feasibility and practicality of experimenting with new architectures. We developed a flexible deep learning library for histopathology called Slideflow, a package which supports a broad array of deep learning methods for digital pathology and includes a fast whole-slide interface for deploying trained models. Slideflow includes unique tools for whole-slide image data processing, efficient stain normalization and augmentation, weakly-supervised whole-slide classification, uncertainty quantification, feature generation, feature space analysis, and explainability. Whole-slide image processing is highly optimized, enabling whole-slide tile extraction at 40x magnification in 2.5 s per slide. The framework-agnostic data processing pipeline enables rapid experimentation with new methods built with either Tensorflow or PyTorch, and the graphical user interface supports real-time visualization of slides, predictions, heatmaps, and feature space characteristics on a variety of hardware devices, including ARM-based devices such as the Raspberry Pi.


Assuntos
Aprendizado Profundo , Software , Computadores , Processamento de Imagem Assistida por Computador/métodos
6.
J Cell Mol Med ; 28(9): e18394, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38751024

RESUMO

This study aims to enhance the prognosis prediction of Head and Neck Squamous Cell Carcinoma (HNSCC) by employing artificial intelligence (AI) to analyse CDKN2A gene expression from pathology images, directly correlating with patient outcomes. Our approach introduces a novel AI-driven pathomics framework, delineating a more precise relationship between CDKN2A expression and survival rates compared to previous studies. Utilizing 475 HNSCC cases from the TCGA database, we stratified patients into high-risk and low-risk groups based on CDKN2A expression thresholds. Through pathomics analysis of 271 cases with available slides, we extracted 465 distinctive features to construct a Gradient Boosting Machine (GBM) model. This model was then employed to compute Pathomics scores (PS), predicting CDKN2A expression levels with validation for accuracy and pathway association analysis. Our study demonstrates a significant correlation between higher CDKN2A expression and improved median overall survival (66.73 months for high expression vs. 42.97 months for low expression, p = 0.013), establishing CDKN2A's prognostic value. The pathomic model exhibited exceptional predictive accuracy (training AUC: 0.806; validation AUC: 0.710) and identified a strong link between higher Pathomics scores and cell cycle activation pathways. Validation through tissue microarray corroborated the predictive capacity of our model. Confirming CDKN2A as a crucial prognostic marker in HNSCC, this study advances the existing literature by implementing an AI-driven pathomics analysis for gene expression evaluation. This innovative methodology offers a cost-efficient and non-invasive alternative to traditional diagnostic procedures, potentially revolutionizing personalized medicine in oncology.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina , Aprendizado de Máquina , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/diagnóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/mortalidade , Prognóstico , Masculino , Feminino , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/diagnóstico , Neoplasias de Cabeça e Pescoço/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Pessoa de Meia-Idade , Idoso
7.
Pflugers Arch ; 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39095655

RESUMO

Traditional histopathology, characterized by manual quantifications and assessments, faces challenges such as low-throughput and inter-observer variability that hinder the introduction of precision medicine in pathology diagnostics and research. The advent of digital pathology allowed the introduction of computational pathology, a discipline that leverages computational methods, especially based on deep learning (DL) techniques, to analyze histopathology specimens. A growing body of research shows impressive performances of DL-based models in pathology for a multitude of tasks, such as mutation prediction, large-scale pathomics analyses, or prognosis prediction. New approaches integrate multimodal data sources and increasingly rely on multi-purpose foundation models. This review provides an introductory overview of advancements in computational pathology and discusses their implications for the future of histopathology in research and diagnostics.

8.
Lab Invest ; 104(5): 102043, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38431118

RESUMO

This review aims to present a comprehensive overview of the current landscape of artificial intelligence (AI) applications in the analysis of tubular gastrointestinal biopsies. These publications cover a spectrum of conditions, ranging from inflammatory ailments to malignancies. Moving beyond the conventional diagnosis based on hematoxylin and eosin-stained whole-slide images, the review explores additional implications of AI, including its involvement in interpreting immunohistochemical results, molecular subtyping, and the identification of cellular spatial biomarkers. Furthermore, the review examines how AI can contribute to enhancing the quality and control of diagnostic processes, introducing new workflow options, and addressing the limitations and caveats associated with current AI platforms in this context.


Assuntos
Inteligência Artificial , Trato Gastrointestinal , Fluxo de Trabalho , Humanos , Biópsia/métodos , Trato Gastrointestinal/patologia , Trato Gastrointestinal/metabolismo , Gastroenteropatias/patologia , Gastroenteropatias/diagnóstico
9.
Lab Invest ; 104(5): 100341, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38280634

RESUMO

Ki-67 is a nuclear protein associated with proliferation, and a strong potential biomarker in breast cancer, but is not routinely measured in current clinical management owing to a lack of standardization. Digital image analysis (DIA) is a promising technology that could allow high-throughput analysis and standardization. There is a dearth of data on the clinical reliability as well as intra- and interalgorithmic variability of different DIA methods. In this study, we scored and compared a set of breast cancer cases in which manually counted Ki-67 has already been demonstrated to have prognostic value (n = 278) to 5 DIA methods, namely Aperio ePathology (Lieca Biosystems), Definiens Tissue Studio (Definiens AG), Qupath, an unsupervised immunohistochemical color histogram algorithm, and a deep-learning pipeline piNET. The piNET system achieved high agreement (interclass correlation coefficient: 0.850) and correlation (R = 0.85) with the reference score. The Qupath algorithm exhibited a high degree of reproducibility among all rater instances (interclass correlation coefficient: 0.889). Although piNET performed well against absolute manual counts, none of the tested DIA methods classified common Ki-67 cutoffs with high agreement or reached the clinically relevant Cohen's κ of at least 0.8. The highest agreement achieved was a Cohen's κ statistic of 0.73 for cutoffs 20% and 25% by the piNET system. The main contributors to interalgorithmic variation and poor cutoff characterization included heterogeneous tumor biology, varying algorithm implementation, and setting assignments. It appears that image segmentation is the primary explanation for semiautomated intra-algorithmic variation, which involves significant manual intervention to correct. Automated pipelines, such as piNET, may be crucial in developing robust and reproducible unbiased DIA approaches to accurately quantify Ki-67 for clinical diagnosis in the future.


Assuntos
Neoplasias da Mama , Processamento de Imagem Assistida por Computador , Antígeno Ki-67 , Humanos , Antígeno Ki-67/análise , Antígeno Ki-67/metabolismo , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Feminino , Reprodutibilidade dos Testes , Processamento de Imagem Assistida por Computador/métodos , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/análise , Algoritmos , Imuno-Histoquímica/métodos
10.
Lab Invest ; 104(9): 102122, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39098628

RESUMO

The assessment of chemotherapy response in osteosarcoma (OS) based on the average percentage of viable cells is limited, as it overlooks the spatial heterogeneity of tumor cell response (foci of resistant cells), immune microenvironment, and bone microarchitecture. Despite the resulting positive classification for response to chemotherapy, some patients experience early metastatic recurrence, demonstrating that our conventional tools for evaluating treatment response are insufficient. We studied the interactions between tumor cells, immune cells (lymphocytes, histiocytes, and osteoclasts), and bone extracellular matrix (ECM) in 18 surgical resection samples of OS using multiplex and conventional immunohistochemistry (IHC: CD8, CD163, CD68, and SATB2), combined with multiscale characterization approaches in territories of good and poor response (GRT/PRT) to treatment. GRT and PRT were defined as subregions with <10% and ≥10% of viable tumor cells, respectively. Local correlations between bone ECM porosity and density of immune cells were assessed in these territories. Immune cell density was then correlated to overall patient survival. Two patterns were identified for histiocytes and osteoclasts. In poor responder patients, CD68 osteoclast density exceeded that of CD163 histiocytes but was not related to bone ECM load. Conversely, in good responder patients, CD163 histiocytes were more numerous than CD68 osteoclasts. For both of them, a significant negative local correlation with bone ECM porosity was found (P < .01). Moreover, in PRT, multinucleated osteoclasts were rounded and intermingled with tumor cells, whereas in GRT, they were elongated and found in close contact with bone trabeculae. CD8 levels were always low in metastatic patients, and those initially considered good responders rapidly died from their disease. The specific recruitment of histiocytes and osteoclasts within the bone ECM, and the level of CD8 represent new features of OS response to treatment. The associated prognostic signatures should be integrated into the therapeutic stratification algorithm of patients after surgery.


Assuntos
Neoplasias Ósseas , Matriz Extracelular , Osteossarcoma , Microambiente Tumoral , Humanos , Osteossarcoma/imunologia , Osteossarcoma/patologia , Osteossarcoma/terapia , Osteossarcoma/metabolismo , Neoplasias Ósseas/imunologia , Neoplasias Ósseas/patologia , Feminino , Masculino , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Adulto , Adolescente , Matriz Óssea/metabolismo , Adulto Jovem , Criança , Antígenos CD/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA