RESUMO
BACKGROUND: Whether borderline personality disorder (BPD) and bipolar disorder are the same or different disorders lacks consistency.AimsTo detect whether grey matter volume (GMV) and grey matter density (GMD) alterations show any similarities or differences between BPD and bipolar disorder. METHOD: Web-based publication databases were searched to conduct a meta-analysis of all voxel-based studies that compared BPD or bipolar disorder with healthy controls. We included 13 BPD studies (395 patients with BPD and 415 healthy controls) and 47 bipolar disorder studies (2111 patients with bipolar disorder and 3261 healthy controls). Peak coordinates from clusters with significant group differences were extracted. Effect-size signed differential mapping meta-analysis was performed to analyse peak coordinates of clusters and thresholds (P < 0.005, uncorrected). Conjunction analyses identified regions in which disorders showed common patterns of volumetric alteration. Correlation analyses were also performed. RESULTS: Patients with BPD showed decreased GMV and GMD in the bilateral medial prefrontal cortex network (mPFC), bilateral amygdala and right parahippocampal gyrus; patients with bipolar disorder showed decreased GMV and GMD in the bilateral medial orbital frontal cortex (mOFC), right insula and right thalamus, and increased GMV and GMD in the right putamen. Multi-modal analysis indicated smaller volumes in both disorders in clusters in the right medial orbital frontal cortex. Decreased bilateral mPFC in BPD was partly mediated by patient age. Increased GMV and GMD of the right putamen was positively correlated with Young Mania Rating Scale scores in bipolar disorder. CONCLUSIONS: Our results show different patterns of GMV and GMD alteration and do not support the hypothesis that bipolar disorder and BPD are on the same affective spectrum.Declaration of interestNone.
Assuntos
Transtorno Bipolar/patologia , Transtorno da Personalidade Borderline/patologia , Encéfalo/patologia , Substância Cinzenta/patologia , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Neuroimagem , Adulto JovemRESUMO
Whether remitted major depressive disorder (rMDD) and MDD present common or distinct neuropathological mechanisms remains unclear. We performed a meta-analysis of task-related whole-brain functional magnetic resonance imaging (fMRI) using anisotropic effect-size signed differential mapping software to compare brain activation between rMDD/MDD patients and healthy controls (HCs). We included 18 rMDD studies (458 patients and 476 HCs) and 120 MDD studies (3746 patients and 3863 HCs). The results showed that MDD and rMDD patients shared increased neural activation in the right temporal pole and right superior temporal gyrus. Several brain regions, including the right middle temporal gyrus, left inferior parietal, prefrontal cortex, left superior frontal gyrus and striatum, differed significantly between MDD and rMDD. Meta-regression analyses revealed that the percentage of females with MDD was positively associated with brain activity in the right lenticular nucleus/putamen. Our results provide valuable insights into the underlying neuropathology of brain dysfunction in MDD, developing more targeted and efficacious treatment and intervention strategies, and more importantly, providing potential neuroimaging targets for the early screening of MDD.
Assuntos
Transtorno Depressivo Maior , Feminino , Humanos , Transtorno Depressivo Maior/diagnóstico por imagem , Encéfalo , Mapeamento Encefálico , Córtex Pré-Frontal , Lobo Temporal , Imageamento por Ressonância Magnética/métodosRESUMO
Elucidating distinct morphological atrophy patterns of Alzheimer's disease (AD) and its prodromal stage, namely, mild cognitive impairment (MCI) helps to improve early diagnosis and medical intervention of AD. On that account, we aimed to obtain distinct patterns of voxel-wise morphological atrophy and its further perturbation on structural covariance network in AD and MCI compared with healthy controls (HCs). T1-weighted anatomical images of matched AD, MCI, and HCs were included in this study. Gray matter volume was obtained using voxel-based morphometry and compared among three groups. In addition, structural covariance network of identified brain regions exhibiting morphological difference was constructed and compared between pairs of three groups. Thus, patients with AD have a reduced hippocampal volume and an increased rate of atrophy compared with MCI and HCs. MCI exhibited a decreased trend in bilateral hippocampal volume compared with HCs and the accelerated right hippocampal atrophy rate than HCs. In AD, the hippocampus further exhibited increased structural covariance connected to reward related brain regions, including the anterior cingulate cortex, the putamen, the caudate, and the insula compared with HCs. In addition, the patients with AD exhibited increased structural covariance of left hippocampus with the bilateral insula, the inferior frontal gyrus, the superior temporal gyrus, and the cerebellum than MCI. These results reveal distinct patterns of morphological atrophy in AD and MCI, providing new insights into pathology of AD.