Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 407(29): 8753-64, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26403236

RESUMO

The use of mixed hemimicelles of ionic liquid (IL)-based surfactants in a magnetic-based micro-dispersive solid-phase extraction (m-µdSPE) approach is described. Not only is the symmetric monocationic IL-based surfactant 1,3-didodecylimidazolium bromide (C12C12Im-Br) studied for first time in m-µdSPE, but double-salt (DS) IL (DSIL)-based surfactants are also examined. Nine DSIL-based surfactants were formed by combination of C12C12Im-Br with other IL-based surfactants, including nonsymmetric monocationic and dicationic ILs combined at three different molar fractions. The analytical application was focused on the determination of a group of eight phenols, including bisphenol A, in water samples. The best results were obtained with the DSIL formed by C12C12Im-Br (molar fraction 0.5) and 1-hexadecyl-3-methylimidazolium bromide (C16MIm-Br), after proper optimization of the overall method in combination with high-performance liquid chromatography (HPLC) and diode-array detection (DAD). The optimum conditions for 100 mL of water samples require a small amount (10 mg) of Fe3O4 magnetic nanoparticles, a low content (5.0 mg of C12C12Im-Br and 3.9 mg of C16MIm-Br) of the selected DSIL, pH 11, a sonication time of 2.5 min, and an equilibration time of 5 min with the aid of NdFeB magnets, followed by elution of phenols, evaporation, and reconstitution with 0.5 mL of acetonitrile. The overall m-µdSPE-HPLC-DAD method is characterized for limits of detection down to 1.3 µg · L(-1), intraday relative standard deviations lower than 13 % (n = 3), and interday relative standard deviations lower than 17 % (n = 9), with a spiking level of 15 µg · L(-1); with enrichment factors between 15.7 and 141, and average relative recoveries of 99.9 %.

2.
Int J Biol Macromol ; 267(Pt 1): 131331, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574918

RESUMO

The dissolution of cellulose in double salt ionic liquids (DSILs) was studied in detail and compared with the dissolution in individual constituent ionic liquids (ILs). The DSILs, [C4mim](CH3CO2)xCl1-x (x is the mole fraction of the single component ILs), were synthesized using acetate and chloride salts of 1-butyl-3-methylimidazolium. These DSILs were then used for the investigation of the solubility of cellulose in the whole mole fraction range. Commercial cellulose (CC) powder, kraft pulp (KP), and prehydrolysis kraft pulp (PHKP) of jute were chosen as cellulose sources. The solubility of cellulose increased with an increasing temperature for [C4mim](CH3CO2)0.6Cl0.4 and with increasing amount of [C4mim]Cl in DSILs. The maximum solubility of CC powder was 32.8 wt% in [C4mim](CH3CO2)0.6Cl0.4 at 100 °C, while for KP and PHKP, solubilities were 30.1 and 30.5 wt%, respectively under the identical condition. Cellulose could be regenerated from the DSILs using water as an antisolvent. Structure, morphology, and thermal stability of the regenerated cellulosic materials were analyzed. DSILs could be recycled >99 % without a discernible change in structure. This work demonstrates that DSILs display enhanced solubility over ILs system and have potential as a chemical processing methodology.


Assuntos
Celulose , Imidazóis , Líquidos Iônicos , Solubilidade , Celulose/química , Líquidos Iônicos/química , Imidazóis/química , Sais/química , Temperatura
3.
Chempluschem ; 83(6): 529-541, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31950654

RESUMO

In this study, two homologous series of novel herbicidal ionic liquids (HILs) were synthesized in a simple metathesis reaction between alkyl[2-(2-hydroxyethoxy)ethyl]dimethylammonium bromides and alkali metal salts of 4-chloro-2-methylphenoxyacetic acid (MCPA) or 3,6-dichloro-2-methoxybenzoic acid (dicamba), known as popular herbicides from the class of growth regulators. These HILs were subsequently mixed to prepare double-salt herbicidal ionic liquids (DSHILs). The DSHILs were characterized by substantially altered parameters of viscosity, refractive index, glass transition temperatures and surface activity compared to the average values expected for ideal mixtures of their individual components (HILs). Interestingly, DSHILs possessed superior physicochemical properties such as relatively low viscosity or facilitated formation of micelles, which emphasizes the complex nature of multi-ion interactions in the microstructures of ionic liquid mixtures. The biological tests showed improved efficiency of DSHILs against tested weeds compared to the reference herbicides and parent HILs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA