Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.043
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 186(4): 877-891.e14, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36708705

RESUMO

We introduce BacDrop, a highly scalable technology for bacterial single-cell RNA sequencing that has overcome many challenges hindering the development of scRNA-seq in bacteria. BacDrop can be applied to thousands to millions of cells from both gram-negative and gram-positive species. It features universal ribosomal RNA depletion and combinatorial barcodes that enable multiplexing and massively parallel sequencing. We applied BacDrop to study Klebsiella pneumoniae clinical isolates and to elucidate their heterogeneous responses to antibiotic stress. In an unperturbed population presumed to be homogeneous, we found within-population heterogeneity largely driven by the expression of mobile genetic elements that promote the evolution of antibiotic resistance. Under antibiotic perturbation, BacDrop revealed transcriptionally distinct subpopulations associated with different phenotypic outcomes including antibiotic persistence. BacDrop thus can capture cellular states that cannot be detected by bulk RNA-seq, which will unlock new microbiological insights into bacterial responses to perturbations and larger bacterial communities such as the microbiome.


Assuntos
Perfilação da Expressão Gênica , Análise da Expressão Gênica de Célula Única , Análise de Sequência de RNA , RNA-Seq , Bactérias/genética , Análise de Célula Única
2.
Cell ; 177(6): 1522-1535.e14, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31130380

RESUMO

Metabolic coordination between neurons and astrocytes is critical for the health of the brain. However, neuron-astrocyte coupling of lipid metabolism, particularly in response to neural activity, remains largely uncharacterized. Here, we demonstrate that toxic fatty acids (FAs) produced in hyperactive neurons are transferred to astrocytic lipid droplets by ApoE-positive lipid particles. Astrocytes consume the FAs stored in lipid droplets via mitochondrial ß-oxidation in response to neuronal activity and turn on a detoxification gene expression program. Our findings reveal that FA metabolism is coupled in neurons and astrocytes to protect neurons from FA toxicity during periods of enhanced activity. This coordinated mechanism for metabolizing FAs could underlie both homeostasis and a variety of disease states of the brain.


Assuntos
Astrócitos/metabolismo , Ácidos Graxos/metabolismo , Neurônios/metabolismo , Animais , Apolipoproteínas E/metabolismo , Apolipoproteínas E/fisiologia , Astrócitos/fisiologia , Encéfalo/metabolismo , Ácidos Graxos/toxicidade , Homeostase , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Oxirredução , Ratos , Ratos Sprague-Dawley
3.
Annu Rev Cell Dev Biol ; 36: 115-139, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33021827

RESUMO

Lipid droplets (LDs) are endoplasmic reticulum-derived organelles that consist of a core of neutral lipids encircled by a phospholipid monolayer decorated with proteins. As hubs of cellular lipid and energy metabolism, LDs are inherently involved in the etiology of prevalent metabolic diseases such as obesity and nonalcoholic fatty liver disease. The functions of LDs are regulated by a unique set of associated proteins, the LD proteome, which includes integral membrane and peripheral proteins. These proteins control key activities of LDs such as triacylglycerol synthesis and breakdown, nutrient sensing and signal integration, and interactions with other organelles. Here we review the mechanisms that regulate the composition of the LD proteome, such as pathways that mediate selective and bulk LD protein degradation and potential connections between LDs and cellular protein quality control.


Assuntos
Gotículas Lipídicas/metabolismo , Proteínas/metabolismo , Animais , Autofagia , Humanos , Proteólise , Proteoma/metabolismo , Ubiquitina/metabolismo
4.
Cell ; 171(3): 615-627.e16, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-28942918

RESUMO

Polymerization and phase separation of proteins containing low-complexity (LC) domains are important factors in gene expression, mRNA processing and trafficking, and localization of translation. We have used solid-state nuclear magnetic resonance methods to characterize the molecular structure of self-assembling fibrils formed by the LC domain of the fused in sarcoma (FUS) RNA-binding protein. From the 214-residue LC domain of FUS (FUS-LC), a segment of only 57 residues forms the fibril core, while other segments remain dynamically disordered. Unlike pathogenic amyloid fibrils, FUS-LC fibrils lack hydrophobic interactions within the core and are not polymorphic at the molecular structural level. Phosphorylation of core-forming residues by DNA-dependent protein kinase blocks binding of soluble FUS-LC to FUS-LC hydrogels and dissolves phase-separated, liquid-like FUS-LC droplets. These studies offer a structural basis for understanding LC domain self-assembly, phase separation, and regulation by post-translational modification.


Assuntos
Proteína FUS de Ligação a RNA/química , Sequência de Aminoácidos , Humanos , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Fosforilação , Domínios Proteicos , Proteína FUS de Ligação a RNA/metabolismo
5.
Mol Cell ; 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37657444

RESUMO

N6-methyladenosine (m6A) RNA modification plays important roles in the governance of gene expression and is temporally regulated in different cell states. In contrast to global m6A profiling in bulk sequencing, single-cell technologies for analyzing m6A heterogeneity are not extensively established. Here, we developed single-nucleus m6A-CUT&Tag (sn-m6A-CT) for simultaneous profiling of m6A methylomes and transcriptomes within a single nucleus using mouse embryonic stem cells (mESCs). m6A-CT is capable of enriching m6A-marked RNA molecules in situ, without isolating RNAs from cells. We adapted m6A-CT to the droplet-based single-cell omics platform and demonstrated high-throughput performance in analyzing nuclei isolated from thousands of cells from various cell types. We show that sn-m6A-CT profiling is sufficient to determine cell identity and allows the generation of cell-type-specific m6A methylome landscapes from heterogeneous populations. These indicate that sn-m6A-CT provides additional dimensions to multimodal datasets and insights into epitranscriptomic landscape in defining cell fate identity and states.

6.
Mol Cell ; 83(19): 3485-3501.e11, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37802024

RESUMO

p62 is a well-characterized autophagy receptor that recognizes and sequesters specific cargoes into autophagosomes for degradation. p62 promotes the assembly and removal of ubiquitinated proteins by forming p62-liquid droplets. However, it remains unclear how autophagosomes efficiently sequester p62 droplets. Herein, we report that p62 undergoes reversible S-acylation in multiple human-, rat-, and mouse-derived cell lines, catalyzed by zinc-finger Asp-His-His-Cys S-acyltransferase 19 (ZDHHC19) and deacylated by acyl protein thioesterase 1 (APT1). S-acylation of p62 enhances the affinity of p62 for microtubule-associated protein 1 light chain 3 (LC3)-positive membranes and promotes autophagic membrane localization of p62 droplets, thereby leading to the production of small LC3-positive p62 droplets and efficient autophagic degradation of p62-cargo complexes. Specifically, increasing p62 acylation by upregulating ZDHHC19 or by genetic knockout of APT1 accelerates p62 degradation and p62-mediated autophagic clearance of ubiquitinated proteins. Thus, the protein S-acylation-deacylation cycle regulates p62 droplet recruitment to the autophagic membrane and selective autophagic flux, thereby contributing to the control of selective autophagic clearance of ubiquitinated proteins.


Assuntos
Autofagossomos , Proteínas Ubiquitinadas , Camundongos , Ratos , Humanos , Animais , Autofagossomos/metabolismo , Proteínas Ubiquitinadas/metabolismo , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo , Autofagia/genética , Acilação , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mamíferos/metabolismo
7.
Mol Cell ; 82(16): 3030-3044.e8, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35764091

RESUMO

Characterized by intracellular lipid droplet accumulation, clear cell renal cell carcinoma (ccRCC) is resistant to cytotoxic chemotherapy and is a lethal disease. Through an unbiased siRNA screen of 2-oxoglutarate (2-OG)-dependent enzymes, which play a critical role in tumorigenesis, we identified Jumonji domain-containing 6 (JMJD6) as an essential gene for ccRCC tumor development. The downregulation of JMJD6 abolished ccRCC colony formation in vitro and inhibited orthotopic tumor growth in vivo. Integrated ChIP-seq and RNA-seq analyses uncovered diacylglycerol O-acyltransferase 1 (DGAT1) as a critical JMJD6 effector. Mechanistically, JMJD6 interacted with RBM39 and co-occupied DGAT1 gene promoter with H3K4me3 to induce DGAT1 expression. JMJD6 silencing reduced DGAT1, leading to decreased lipid droplet formation and tumorigenesis. The pharmacological inhibition (or depletion) of DGAT1 inhibited lipid droplet formation in vitro and ccRCC tumorigenesis in vivo. Thus, the JMJD6-DGAT1 axis represents a potential new therapeutic target for ccRCC.


Assuntos
Carcinoma de Células Renais , Diacilglicerol O-Aciltransferase , Histona Desmetilases com o Domínio Jumonji , Neoplasias Renais , Carcinogênese/genética , Carcinoma de Células Renais/genética , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Epigênese Genética , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Neoplasias Renais/genética , Gotículas Lipídicas/metabolismo
8.
Mol Cell ; 82(8): 1528-1542.e10, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35245436

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is a global health concern with no approved drugs. High-protein dietary intervention is currently the most effective treatment. However, its underlying mechanism is unknown. Here, using Drosophila oenocytes, the specialized hepatocyte-like cells, we find that dietary essential amino acids ameliorate hepatic steatosis by inducing polyubiquitination of Plin2, a lipid droplet-stabilizing protein. Leucine and isoleucine, two branched-chain essential amino acids, strongly bind to and activate the E3 ubiquitin ligase Ubr1, targeting Plin2 for degradation. We further show that the amino acid-induced Ubr1 activity is necessary to prevent steatosis in mouse livers and cultured human hepatocytes, providing molecular insight into the anti-NAFLD effects of dietary protein/amino acids. Importantly, split-intein-mediated trans-splicing expression of constitutively active UBR2, an Ubr1 family member, significantly ameliorates obesity-induced and high fat diet-induced hepatic steatosis in mice. Together, our results highlight activation of Ubr1 family proteins as a promising strategy in NAFLD treatment.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Aminoácidos Essenciais/metabolismo , Aminoácidos Essenciais/farmacologia , Aminoácidos Essenciais/uso terapêutico , Animais , Dieta Hiperlipídica/efeitos adversos , Hepatócitos/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Ubiquitinação
9.
Mol Cell ; 81(13): 2722-2735.e9, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34077757

RESUMO

Lipid droplets are important for cancer cell growth and survival. However, the mechanism underlying the initiation of lipid droplet lipolysis is not well understood. We demonstrate here that glucose deprivation induces the binding of choline kinase (CHK) α2 to lipid droplets, which is sequentially mediated by AMPK-dependent CHKα2 S279 phosphorylation and KAT5-dependent CHKα2 K247 acetylation. Importantly, CHKα2 with altered catalytic domain conformation functions as a protein kinase and phosphorylates PLIN2 at Y232 and PLIN3 at Y251. The phosphorylated PLIN2/3 dissociate from lipid droplets and are degraded by Hsc70-mediated autophagy, thereby promoting lipid droplet lipolysis, fatty acid oxidation, and brain tumor growth. In addition, levels of CHKα2 S279 phosphorylation, CHKα2 K247 acetylation, and PLIN2/3 phosphorylation are positively correlated with one another in human glioblastoma specimens and are associated with poor prognosis in glioblastoma patients. These findings underscore the role of CHKα2 as a protein kinase in lipolysis and glioblastoma development.


Assuntos
Colina Quinase/metabolismo , Glioblastoma/enzimologia , Gotículas Lipídicas/enzimologia , Lipólise , Proteínas de Neoplasias/metabolismo , Proteínas Quinases/metabolismo , Acetilação , Linhagem Celular Tumoral , Colina Quinase/genética , Glioblastoma/genética , Humanos , Proteínas de Neoplasias/genética , Proteínas Quinases/genética
10.
Trends Biochem Sci ; 48(5): 428-436, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36759237

RESUMO

The probability of a given receptor tyrosine kinase (RTK) triggering a defined cellular outcome is low because of the promiscuous nature of signalling, the randomness of molecular diffusion through the cell, and the ongoing nonfunctional submembrane signalling activity or noise. Signal transduction is therefore a 'numbers game', where enough cell surface receptors and effector proteins must initially be engaged to guarantee formation of a functional signalling complex against a background of redundant events. The presence of intracellular liquid-liquid phase separation (LLPS) at the plasma membrane provides a mechanism through which the probabilistic nature of signalling can be weighted in favour of the required, discrete cellular outcome and mutual exclusivity in signal initiation.


Assuntos
Receptores Proteína Tirosina Quinases , Transdução de Sinais , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais/fisiologia , Probabilidade , Sistemas de Liberação de Medicamentos
11.
Mol Cell ; 76(5): 811-825.e14, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31628041

RESUMO

Physical contact between organelles is vital to the function of eukaryotic cells. Lipid droplets (LDs) are dynamic organelles specialized in lipid storage that interact physically with mitochondria in several cell types. The mechanisms coupling these organelles are, however, poorly understood, and the cell-biological function of their interaction remains largely unknown. Here, we discover in adipocytes that the outer mitochondrial membrane protein MIGA2 links mitochondria to LDs. We identify an amphipathic LD-targeting motif and reveal that MIGA2 binds to the membrane proteins VAP-A or VAP-B in the endoplasmic reticulum (ER). We find that in adipocytes MIGA2 is involved in promoting triglyceride (TAG) synthesis from non-lipid precursors. Our data indicate that MIGA2 links reactions of de novo lipogenesis in mitochondria to TAG production in the ER, thereby facilitating efficient lipid storage in LDs. Based on its presence in many tissues, MIGA2 is likely critical for lipid and energy homeostasis in a wide spectrum of cell types.


Assuntos
Adipócitos/metabolismo , Lipogênese/fisiologia , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Células 3T3 , Adipócitos/fisiologia , Animais , Células COS , Diferenciação Celular/fisiologia , Chlorocebus aethiops , Retículo Endoplasmático/metabolismo , Células HEK293 , Humanos , Gotículas Lipídicas/metabolismo , Lipogênese/genética , Proteínas de Membrana/fisiologia , Camundongos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/fisiologia , Triglicerídeos/biossíntese , Proteínas de Transporte Vesicular/metabolismo
12.
Mol Cell ; 73(1): 130-142.e5, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30472192

RESUMO

Since its establishment in 2009, single-cell RNA sequencing (RNA-seq) has been a major driver behind progress in biomedical research. In developmental biology and stem cell studies, the ability to profile single cells confers particular benefits. Although most studies still focus on individual tissues or organs, the recent development of ultra-high-throughput single-cell RNA-seq has demonstrated potential power in characterizing more complex systems or even the entire body. However, although multiple ultra-high-throughput single-cell RNA-seq systems have attracted attention, no systematic comparison of these systems has been performed. Here, with the same cell line and bioinformatics pipeline, we developed directly comparable datasets for each of three widely used droplet-based ultra-high-throughput single-cell RNA-seq systems, inDrop, Drop-seq, and 10X Genomics Chromium. Although each system is capable of profiling single-cell transcriptomes, their detailed comparison revealed the distinguishing features and suitable applications for each system.


Assuntos
Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Técnicas Analíticas Microfluídicas , RNA/genética , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Transcriptoma , Automação Laboratorial , Sequência de Bases , Linhagem Celular , Biologia Computacional , Análise Custo-Benefício , Código de Barras de DNA Taxonômico , Perfilação da Expressão Gênica/economia , Sequenciamento de Nucleotídeos em Larga Escala/economia , Humanos , Técnicas Analíticas Microfluídicas/economia , Reprodutibilidade dos Testes , Análise de Sequência de RNA/economia , Análise de Célula Única/economia , Fluxo de Trabalho
13.
Proc Natl Acad Sci U S A ; 121(2): e2311930121, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38175861

RESUMO

When making contact with an undercooled target, a drop freezes. The colder the target is, the more rapid the freezing is supposed to be. In this research, we explore the impact of droplets on cold granular material. As the undercooling degree increases, the bulk freezing of the droplet is delayed by at least an order of magnitude. The postponement of the overall solidification is accompanied by substantial changes in dynamics, including the spreading-retraction process, satellite drop generation, and cratering in the target. The solidification of the wetted pores in the granular target primarily causes these effects. The freezing process over the pore dimension occurs rapidly enough to match the characteristic timescales of impact dynamics at moderate undercooling degrees. As a result, the hydrophilic impact appears "hydrophobic," and the dimension of the solidified droplet shrinks. A monolayer of cold grains on a surface can reproduce these consequences. Our research presents a potential approach to regulate solidified morphology for subfreezing drop impacts. It additionally sheds light on the impact scenario of strong coupling between the dynamics and solidification.

14.
Proc Natl Acad Sci U S A ; 121(3): e2314093121, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38190532

RESUMO

Lipid droplets (LDs) are organelles critical for energy storage and membrane lipid homeostasis, whose number and size are carefully regulated in response to cellular conditions. The molecular mechanisms underlying lipid droplet biogenesis and degradation, however, are not well understood. The Troyer syndrome protein spartin (SPG20) supports LD delivery to autophagosomes for turnover via lipophagy. Here, we characterize spartin as a lipid transfer protein whose transfer ability is required for LD degradation. Spartin copurifies with phospholipids and neutral lipids from cells and transfers phospholipids in vitro via its senescence domain. A senescence domain truncation that impairs lipid transfer in vitro also impairs LD turnover in cells while not affecting spartin association with either LDs or autophagosomes, supporting that spartin's lipid transfer ability is physiologically relevant. Our data indicate a role for spartin-mediated lipid transfer in LD turnover.


Assuntos
Autofagossomos , Gotículas Lipídicas , Autofagia , Lipídeos de Membrana
15.
Proc Natl Acad Sci U S A ; 121(32): e2405095121, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39088393

RESUMO

Magnetic miniature robotic systems have attracted broad research interest because of their precise maneuverability in confined spaces and adaptability to diverse environments, holding significant promise for applications in both industrial infrastructures and biomedical fields. However, the predominant construction methodology involves the preprogramming of magnetic components into the system's structure. While this approach allows for intricate shape transformations, it exhibits limited flexibility in terms of reconfiguration and presents challenges when adapting to diverse materials, combining, and decoupling multiple functionalities. Here, we propose a construction strategy that facilitates the on-demand assembly of magnetic components, integrating ferrofluid droplets with the system's structural body. This approach enables the creation of complex solid-droplet robotic systems across a spectrum of length scales, ranging from 0.8 mm to 1.5 cm. It offers a diverse selection of materials and structural configurations, akin to assembling components like building blocks, thus allowing for the seamless integration of various functionalities. Moreover, it incorporates decoupling mechanisms to enable selective control over multiple functions, leveraging the fluidity, fission/fusion, and magneto-responsiveness properties inherent in the ferrofluid. Various solid-droplet systems have validated the feasibility of this strategy. This study advances the complexity and functionality achievable in small-scale magnetic robots, augmenting their potential for future biomedical and other applications.

16.
Proc Natl Acad Sci U S A ; 121(18): e2318619121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38657050

RESUMO

Nonalcoholic fatty liver disease, recently renamed metabolic dysfunction-associated steatotic liver disease (MASLD), is a progressive metabolic disorder that begins with aberrant triglyceride accumulation in the liver and can lead to cirrhosis and cancer. A common variant in the gene PNPLA3, encoding the protein PNPLA3-I148M, is the strongest known genetic risk factor for MASLD. Despite its discovery 20 y ago, the function of PNPLA3, and now the role of PNPLA3-I148M, remain unclear. In this study, we sought to dissect the biogenesis of PNPLA3 and PNPLA3-I148M and characterize changes induced by endogenous expression of the disease-causing variant. Contrary to bioinformatic predictions and prior studies with overexpressed proteins, we demonstrate here that PNPLA3 and PNPLA3-I148M are not endoplasmic reticulum-resident transmembrane proteins. To identify their intracellular associations, we generated a paired set of isogenic human hepatoma cells expressing PNPLA3 and PNPLA3-I148M at endogenous levels. Both proteins were enriched in lipid droplet, Golgi, and endosomal fractions. Purified PNPLA3 and PNPLA3-I148M proteins associated with phosphoinositides commonly found in these compartments. Despite a similar fractionation pattern as the wild-type variant, PNPLA3-I148M induced morphological changes in the Golgi apparatus, including increased lipid droplet-Golgi contact sites, which were also observed in I148M-expressing primary human patient hepatocytes. In addition to lipid droplet accumulation, PNPLA3-I148M expression caused significant proteomic and transcriptomic changes that resembled all stages of liver disease. Cumulatively, we validate an endogenous human cellular system for investigating PNPLA3-I148M biology and identify the Golgi apparatus as a central hub of PNPLA3-I148M-driven cellular change.


Assuntos
Aciltransferases , Complexo de Golgi , Gotículas Lipídicas , Fosfolipases A2 Independentes de Cálcio , Humanos , Aciltransferases/metabolismo , Complexo de Golgi/metabolismo , Lipase/metabolismo , Lipase/genética , Gotículas Lipídicas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Fosfolipases A2 Independentes de Cálcio/metabolismo
17.
Proc Natl Acad Sci U S A ; 121(31): e2404727121, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39052829

RESUMO

Characterizing unknown viruses is essential for understanding viral ecology and preparing against viral outbreaks. Recovering complete genome sequences from environmental samples remains computationally challenging using metagenomics, especially for low-abundance species with uneven coverage. We present an experimental method for reliably recovering complete viral genomes from complex environmental samples. Individual genomes are encapsulated into droplets and amplified using multiple displacement amplification. A unique gene detection assay, which employs an RNA-based probe and an exonuclease, selectively identifies droplets containing the target viral genome. Labeled droplets are sorted using a microfluidic sorter, and genomes are extracted for sequencing. We demonstrate this method's efficacy by spiking two known viral genomes, Simian virus 40 (SV40, 5,243 bp) and Human Adenovirus 5 (HAd5, 35,938 bp), into a sewage sample with a final abundance in the droplets of around 0.1% and 0.015%, respectively. We achieve 100% recovery of the complete sequence of the spiked-in SV40 genome with uniform coverage distribution. For the larger HAd5 genome, we cover approximately 99.4% of its sequence. Notably, genome recovery is achieved with as few as one sorted droplet, which enables the recovery of any desired genomes in complex environmental samples, regardless of their abundance. This method enables single-genome whole-genome amplification and targeting characterizations of rare viral species and will facilitate our ability to access the mutational profile in single-virus genomes and contribute to an improved understanding of viral ecology.


Assuntos
Genoma Viral , Vírus 40 dos Símios , Genoma Viral/genética , Vírus 40 dos Símios/genética , Vírus 40 dos Símios/isolamento & purificação , Metagenômica/métodos , Humanos , Adenovírus Humanos/genética , Adenovírus Humanos/isolamento & purificação , Esgotos/virologia
18.
EMBO J ; 41(10): e109390, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35411952

RESUMO

Mitophagy removes defective mitochondria via lysosomal elimination. Increased mitophagy coincides with metabolic reprogramming, yet it remains unknown whether mitophagy is a cause or consequence of such state changes. The signalling pathways that integrate with mitophagy to sustain cell and tissue integrity also remain poorly defined. We performed temporal metabolomics on mammalian cells treated with deferiprone, a therapeutic iron chelator that stimulates PINK1/PARKIN-independent mitophagy. Iron depletion profoundly rewired the metabolome, hallmarked by remodelling of lipid metabolism within minutes of treatment. DGAT1-dependent lipid droplet biosynthesis occurred several hours before mitochondrial clearance, with lipid droplets bordering mitochondria upon iron chelation. We demonstrate that DGAT1 inhibition restricts mitophagy in vitro, with impaired lysosomal homeostasis and cell viability. Importantly, genetic depletion of DGAT1 in vivo significantly impaired neuronal mitophagy and locomotor function in Drosophila. Our data define iron depletion as a potent signal that rapidly reshapes metabolism and establishes an unexpected synergy between lipid homeostasis and mitophagy that safeguards cell and tissue integrity.


Assuntos
Ferro , Mitofagia , Animais , Ferro/metabolismo , Lisossomos/metabolismo , Mamíferos , Mitocôndrias/metabolismo , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
19.
J Cell Sci ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38962997

RESUMO

Lipid droplets (LDs) are organelles central to lipid and energy homeostasis across all eukaryotes. In the malaria-causing parasite Plasmodium falciparum the roles of LDs in lipid acquisition from its host cells and their metabolism are poorly understood, despite the high demand for lipids in parasite membrane synthesis. We systematically characterised LD size, composition and dynamics across the disease-causing blood infection. Applying split fluorescence emission analysis and 3D Focused Ion Beam-Scanning Electron Microscopy, we observed a decrease in LD size in late schizont stages. LD contraction likely signifies a switch from lipid accumulation to lipid utilisation in preparation for parasite egress from host red blood cells. We demonstrate connections between LDs and several parasite organelles, pointing to potential functional interactions. Chemical inhibition of triacylglyerol (TAG) synthesis or break-down revealed essential LD functions for schizogony and in counteracting lipid toxicity. The dynamics of lipid synthesis, storage and utilisation in P. falciparum LDs might provide a target for new anti-malarial intervention strategies.

20.
EMBO Rep ; 25(6): 2786-2811, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38654122

RESUMO

Ribosome biogenesis is initiated in the nucleolus, a multiphase biomolecular condensate formed by liquid-liquid phase separation. The nucleolus is a powerful disease biomarker and stress biosensor whose morphology reflects function. Here we have used digital holographic microscopy (DHM), a label-free quantitative phase contrast microscopy technique, to detect nucleoli in adherent and suspension human cells. We trained convolutional neural networks to detect and quantify nucleoli automatically on DHM images. Holograms containing cell optical thickness information allowed us to define a novel index which we used to distinguish nucleoli whose material state had been modulated optogenetically by blue-light-induced protein aggregation. Nucleoli whose function had been impacted by drug treatment or depletion of ribosomal proteins could also be distinguished. We explored the potential of the technology to detect other natural and pathological condensates, such as those formed upon overexpression of a mutant form of huntingtin, ataxin-3, or TDP-43, and also other cell assemblies (lipid droplets). We conclude that DHM is a powerful tool for quantitatively characterizing nucleoli and other cell assemblies, including their material state, without any staining.


Assuntos
Nucléolo Celular , Holografia , Humanos , Nucléolo Celular/metabolismo , Holografia/métodos , Redes Neurais de Computação , Microscopia/métodos , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/genética , Ataxina-3/metabolismo , Ataxina-3/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Microscopia de Contraste de Fase/métodos , Imageamento Quantitativo de Fase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA