Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Eur Biophys J ; 51(2): 119-133, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35171346

RESUMO

Mechanobiology is an emerging field at the interface of biology and mechanics, investigating the roles of mechanical forces within biomolecules, organelles, cells, and tissues. As a highlight, the recent advances of micropipette-based aspiration assays and dynamic force spectroscopies such as biomembrane force probe (BFP) provide unprecedented mechanobiological insights with excellent live-cell compatibility. In their classic applications, these assays measure force-dependent ligand-receptor-binding kinetics, protein conformational changes, and cellular mechanical properties such as cortical tension and stiffness. In recent years, when combined with advanced microscopies in high spatial and temporal resolutions, these biomechanical nanotools enable characterization of receptor-mediated cell mechanosensing and subsequent organelle behaviors at single-cellular and molecular level. In this review, we summarize the latest developments of these assays for live-cell mechanobiology studies. We also provide perspectives on their future upgrades with multimodal integration and high-throughput capability.


Assuntos
Fenômenos Mecânicos , Proteínas , Fenômenos Biomecânicos , Biofísica , Cinética , Ligantes , Proteínas/química
2.
Proc Natl Acad Sci U S A ; 116(16): 7873-7878, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30936303

RESUMO

Magnetic tape heads are ubiquitously used to read and record on magnetic tapes in technologies as diverse as old VHS tapes, modern hard-drive disks, or magnetic bands on credit cards. Their design highlights the ability to convert electric signals into fluctuations of the magnetic field at very high frequencies, which is essential for the high-density storage demanded nowadays. Here, we twist this conventional use of tape heads to implement one in a magnetic tweezers design, which offers the unique capability of changing the force with a bandwidth of ∼10 kHz. We calibrate our instrument by developing an analytical expression that predicts the magnetic force acting on a superparamagnetic bead based on the Karlqvist approximation of the magnetic field created by a tape head. This theory is validated by measuring the force dependence of protein L unfolding/folding step sizes and the folding properties of the R3 talin domain. We demonstrate the potential of our instrument by carrying out millisecond-long quenches to capture the formation of the ephemeral molten globule state in protein L, which has never been observed before. Our instrument provides the capability of interrogating individual molecules under fast-changing forces with a control and resolution below a fraction of a piconewton, opening a range of force spectroscopy protocols to study protein dynamics under force.


Assuntos
Campos Magnéticos , Proteínas/química , Análise Espectral , Desenho de Equipamento , Fenômenos Mecânicos , Microscopia de Força Atômica , Dobramento de Proteína , Análise Espectral/instrumentação , Análise Espectral/métodos
3.
Anal Bioanal Chem ; 413(29): 7157-7178, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34490501

RESUMO

The objective of this critical review is to provide an overview of how emerging bioanalytical techniques are expanding our understanding of the complex physicochemical nature of virus interactions with host cell surfaces. Herein, selected model viruses representing both non-enveloped (simian virus 40 and human norovirus) and enveloped (influenza A virus, human herpes simplex virus, and human immunodeficiency virus type 1) viruses are highlighted. The technologies covered utilize a wide range of cell membrane mimics, from supported lipid bilayers (SLBs) containing a single purified host membrane component to SLBs derived from the plasma membrane of a target cell, which can be compared with live-cell experiments to better understand the role of individual interaction pairs in virus attachment and entry. These platforms are used to quantify binding strengths, residence times, diffusion characteristics, and binding kinetics down to the single virus particle and single receptor, and even to provide assessments of multivalent interactions. The technologies covered herein are surface plasmon resonance (SPR), quartz crystal microbalance with dissipation (QCM-D), dynamic force spectroscopy (DFS), total internal reflection fluorescence (TIRF) microscopy combined with equilibrium fluctuation analysis (EFA) and single particle tracking (SPT), and finally confocal microscopy using multi-labeling techniques to visualize entry of individual virus particles in live cells. Considering the growing scientific and societal needs for untangling, and interfering with, the complex mechanisms of virus binding and entry, we hope that this review will stimulate the community to implement these emerging tools and strategies in conjunction with more traditional methods. The gained knowledge will not only contribute to a better understanding of the virus biology, but may also facilitate the design of effective inhibitors to block virus entry.


Assuntos
Membrana Celular/virologia , Interações Hospedeiro-Patógeno/fisiologia , Biologia Molecular/métodos , Membrana Celular/química , Membrana Celular/metabolismo , Glicosaminoglicanos/metabolismo , HIV-1/patogenicidade , HIV-1/fisiologia , Herpesvirus Humano 1/patogenicidade , Herpesvirus Humano 1/fisiologia , Humanos , Vírus da Influenza A/patogenicidade , Vírus da Influenza A/fisiologia , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Norovirus/patogenicidade , Norovirus/fisiologia , Polissacarídeos/metabolismo , Vírus 40 dos Símios/patogenicidade , Vírus 40 dos Símios/fisiologia , Internalização do Vírus
4.
J Mol Recognit ; 33(5): e2829, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31816660

RESUMO

Understanding the binding of split aptamer/its target could become a breakthrough in the application of split aptamer. Herein, vascular endothelial growth factor (VEGF), a major biomarker of human diseases, was used as a model, and its interaction with split aptamer was explored with single molecule force spectroscopy (SMFS). SMFS demonstrated that the interaction force of split aptamer/VEGF165 was 169.44 ± 6.59 pN at the loading rate of 35.2 nN/s, and the binding probability of split aptamer/VEGF165 was dependent on the concentration of VEGF165 . On the basis of dynamic force spectroscopy results, one activation barrier in the dissociation process of split aptamer/VEGF165 complexes was revealed, which was similar to that of the intact aptamer/VEGF165 . Besides, the dissociation rate constant (koff ) of split aptamer/VEGF165 was close to that of intact aptamer/VEGF165 , and the interaction force of split aptamer/VEGF165 was higher than the force of intact aptamer/VEGF165 . It indicated that split aptamer also possessed high affinity with VEGF165 . The work can provide a new method for exploring the interaction of split aptamer/its targets at single-molecule level.


Assuntos
Microscopia de Força Atômica/métodos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/metabolismo , Humanos , Imagem Individual de Molécula
5.
Proc Natl Acad Sci U S A ; 114(29): 7537-7542, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28679632

RESUMO

Oriented attachment of nanocrystalline subunits is recognized as a common crystallization pathway that is closely related to formation of nanoparticle superlattices, mesocrystals, and other kinetically stabilized structures. Approaching particles have been observed to rotate to achieve coalignment while separated by nanometer-scale solvent layers. Little is known about the forces that drive coalignment, particularly in this "solvent-separated" regime. To obtain a mechanistic understanding of this process, we used atomic-force-microscopy-based dynamic force spectroscopy with tips fabricated from oriented mica to measure the adhesion forces between mica (001) surfaces in electrolyte solutions as a function of orientation, temperature, electrolyte type, and electrolyte concentration. The results reveal an ∼60° periodicity as well as a complex dependence on electrolyte concentration and temperature. A continuum model that considers the competition between electrostatic repulsion and van der Waals attraction, augmented by microscopic details that include surface separation, water structure, ion hydration, and charge regulation at the interface, qualitatively reproduces the observed trends and implies that dispersion forces are responsible for establishing coalignment in the solvent-separated state.

6.
Anal Bioanal Chem ; 411(25): 6549-6559, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31410537

RESUMO

Cell surface receptors, often called transmembrane receptors, are key cellular components as they control and mediate cell communication and signalling, converting extracellular signals into intracellular signals. Elucidating the molecular details of ligand binding (cytokine, growth factors, hormones, pathogens,...) to cell surface receptors and how this binding triggers conformational changes that initiate intracellular signalling is needed to improve our understanding of cellular processes and for rational drug design. Unfortunately, the molecular complexity and high hydrophobicity of membrane proteins significantly hamper their structural and functional characterization in conditions mimicking their native environment. With its piconewton force sensitivity and (sub)nanometer spatial resolution, together with the capability of operating in liquid environment and at physiological temperature, atomic force microscopy (AFM) has proven to be one of the most powerful tools to image and quantify receptor-ligand bonds in situ under physiologically relevant conditions. In this article, a brief overview of the rapid evolution of AFM towards quantitative biological mapping will be given, followed by selected examples highlighting the main advances that AFM-based ligand-receptor studies have brought to the fields of cell biology, immunology, microbiology, and virology, along with future prospects and challenges. Graphical abstract.


Assuntos
Microscopia de Força Atômica/métodos , Receptores de Superfície Celular/metabolismo , Animais , Membrana Celular/metabolismo , Desenho de Equipamento , Humanos , Ligantes , Microscopia de Força Atômica/instrumentação , Ligação Proteica
7.
Biochem J ; 475(16): 2611-2620, 2018 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-29967066

RESUMO

Mechanical cues often influence the factors affecting the transition states of catalytic reactions and alter the activation pathway. However, tracking the real-time dynamics of such activation pathways is limited. Using single-molecule trapping of reaction intermediates, we developed a method that enabled us to perform one reaction at one site and simultaneously study the real-time dynamics of the catalytic pathway. Using this, we showed single-molecule calligraphy at nanometer resolution and deciphered the mechanism of the sortase A enzymatic reaction that, counter-intuitively, accelerates bacterial adhesion under shear tension. Our method captured a force-induced dissociation of the enzyme-substrate bond that accelerates the forward reaction 100×, proposing a new mechano-activated catalytic pathway. In corroboration, our molecular dynamics simulations in the presence of force identified a force-induced conformational switch in the enzyme that accelerates proton transfer between CYS184 (acceptor) and HIS120 (donor) catalytic dyads by reducing the inter-residue distances. Overall, the present study opens up the possibility of studying the influence of factors affecting transition states in real time and paves the way for the rational design of enzymes with enhanced efficiency.


Assuntos
Aderência Bacteriana/fisiologia , Escherichia coli/enzimologia , Catálise , Escherichia coli/genética
8.
Proc Natl Acad Sci U S A ; 113(50): 14213-14218, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27911778

RESUMO

Free-energy landscapes govern the behavior of all interactions in the presence of thermal fluctuations in the fields of physical chemistry, materials sciences, and the biological sciences. From the energy landscape, critical information about an interaction, such as the reaction kinetic rates, bond lifetimes, and the presence of intermediate states, can be determined. Despite the importance of energy landscapes to understanding reaction mechanisms, most experiments do not directly measure energy landscapes, particularly for interactions with steep force gradients that lead to premature jump to contact of the probe and insufficient sampling of transition regions. Here we present an atomic force microscopy (AFM) approach for measuring energy landscapes that increases sampling of strongly adhesive interactions by using white-noise excitation to enhance the cantilever's thermal fluctuations. The enhanced fluctuations enable the recording of subtle deviations from a harmonic potential to accurately reconstruct interfacial energy landscapes with steep gradients. Comparing the measured energy landscape with adhesive force measurements reveals the existence of an optimal excitation voltage that enables the cantilever fluctuations to fully sample the shape and depth of the energy surface.

9.
Proc Natl Acad Sci U S A ; 112(51): 15619-23, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26644571

RESUMO

Viscoelastic fluids exhibit rheological nonlinearity at a high shear rate. Although typical nonlinear effects, shear thinning and shear thickening, have been usually understood by variation of intrinsic quantities such as viscosity, one still requires a better understanding of the microscopic origins, currently under debate, especially on the shear-thickening mechanism. We present accurate measurements of shear stress in the bound hydration water layer using noncontact dynamic force microscopy. We find shear thickening occurs above ∼ 10(6) s(-1) shear rate beyond 0.3-nm layer thickness, which is attributed to the nonviscous, elasticity-associated fluidic instability via fluctuation correlation. Such a nonlinear fluidic transition is observed due to the long relaxation time (∼ 10(-6) s) of water available in the nanoconfined hydration layer, which indicates the onset of elastic turbulence at nanoscale, elucidating the interplay between relaxation and shear motion, which also indicates the onset of elastic turbulence at nanoscale above a universal shear velocity of ∼ 1 mm/s. This extensive layer-by-layer control paves the way for fundamental studies of nonlinear nanorheology and nanoscale hydrodynamics, as well as provides novel insights on viscoelastic dynamics of interfacial water.

10.
Proc Natl Acad Sci U S A ; 112(2): 326-31, 2015 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-25540415

RESUMO

The remarkable properties of bone derive from a highly organized arrangement of coaligned nanometer-scale apatite platelets within a fibrillar collagen matrix. The origin of this arrangement is poorly understood and the crystal structures of hydroxyapatite (HAP) and the nonmineralized collagen fibrils alone do not provide an explanation. Moreover, little is known about collagen-apatite interaction energies, which should strongly influence both the molecular-scale organization and the resulting mechanical properties of the composite. We investigated collagen-mineral interactions by combining dynamic force spectroscopy (DFS) measurements of binding energies with molecular dynamics (MD) simulations of binding and atomic force microscopy (AFM) observations of collagen adsorption on single crystals of calcium phosphate for four mineral phases of potential importance in bone formation. In all cases, we observe a strong preferential orientation of collagen binding, but comparison between the observed orientations and transmission electron microscopy (TEM) analyses of native tissues shows that only calcium-deficient apatite (CDAP) provides an interface with collagen that is consistent with both. MD simulations predict preferred collagen orientations that agree with observations, and results from both MD and DFS reveal large values for the binding energy due to multiple binding sites. These findings reconcile apparent contradictions inherent in a hydroxyapatite or carbonated apatite (CAP) model of bone mineral and provide an energetic rationale for the molecular-scale organization of bone.


Assuntos
Osso e Ossos/química , Osso e Ossos/metabolismo , Animais , Sítios de Ligação , Osso e Ossos/ultraestrutura , Bovinos , Dentina/química , Dentina/metabolismo , Dentina/ultraestrutura , Durapatita/química , Durapatita/metabolismo , Metabolismo Energético , Colágenos Fibrilares/química , Colágenos Fibrilares/metabolismo , Colágenos Fibrilares/ultraestrutura , Humanos , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Simulação de Dinâmica Molecular , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Ratos
11.
Glycobiology ; 26(12): 1338-1350, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27282157

RESUMO

The molecular mechanism(s) underlying the enhanced self-interactions of mucins possessing the Tn (GalNAcα1-Ser/Thr) or STn (NeuNAcα2-6GalNAcα1-Ser/Thr) cancer markers were investigated using optical tweezers (OT). The mucins examined included modified porcine submaxillary mucin containing the Tn epitope (Tn-PSM), ovine submaxillary mucin with the STn epitope (STn-OSM), and recombinant MUC1 analogs with either the Tn and STn epitope. OT experiments in which the mucins were immobilized onto polystyrene beads revealed identical self-interaction characteristics for all mucins. Identical binding strength and energy landscape characteristics were also observed for synthetic polymers displaying multiple GalNAc decorations. Polystyrene beads without immobilized mucins showed no self-interactions and also no interactions with mucin-decorated polystyrene beads. Taken together, the experimental data suggest that in these molecules, the GalNAc residue mediates interactions independent of the anchoring polymer backbone. Furthermore, GalNAc-GalNAc interactions appear to be responsible for self-interactions of mucins decorated with the STn epitope. Hence, Tn-MUC1 and STn-MUC1 undergo self-interactions mediated by the GalNAc residue in both epitopes, suggesting a possible molecular role in cancer. MUC1 possessing the T (Galß1-3GalNAcα1-Ser/Thr) or ST antigen (NeuNAcα2-3Galß1-3GalNAcα1-Ser/Thr) failed to show self-interactions. However, in the case of ST-MUC1, self-interactions were observed after subsequent treatment with neuraminidase and ß-galactosidase. This enzymatic treatment is expected to introduce Tn-epitopes and these observations thus further strengthen the conclusion that the observed interactions are mediated by the GalNAc groups.


Assuntos
Acetilgalactosamina/metabolismo , Antígenos Glicosídicos Associados a Tumores/metabolismo , Mucina-1/metabolismo , Mucinas/metabolismo , Animais , Bovinos , Humanos , Suínos
12.
Nano Lett ; 15(4): 2257-62, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25756297

RESUMO

Submolecular imaging by atomic force microscopy (AFM) has recently been established as a stunning technique to reveal the chemical structure of unknown molecules, to characterize intramolecular charge distributions and bond ordering, as well as to study chemical transformations and intermolecular interactions. So far, most of these feats were achieved on planar molecular systems because high-resolution imaging of three-dimensional (3D) surface structures with AFM remains challenging. Here we present a method for high-resolution imaging of nonplanar molecules and 3D surface systems using AFM with silicon cantilevers as force sensors. We demonstrate this method by resolving the step-edges of the (101) anatase surface at the atomic scale by simultaneously visualizing the structure of a pentacene molecule together with the atomic positions of the substrate and by resolving the contour and probe-surface force field on a C60 molecule with intramolecular resolution. The method reported here holds substantial promise for the study of 3D surface systems such as nanotubes, clusters, nanoparticles, polymers, and biomolecules using AFM with high resolution.


Assuntos
Cristalografia/métodos , Aumento da Imagem/instrumentação , Imageamento Tridimensional/instrumentação , Microscopia de Força Atômica/instrumentação , Imagem Molecular/instrumentação , Técnicas de Sonda Molecular/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Fulerenos/química , Conformação Molecular , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
13.
Glycobiology ; 25(5): 524-34, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25527429

RESUMO

Mucins are linear, heavily O-glycosylated proteins with physiological roles that include cell signaling, cell adhesion, inflammation, immune response and tumorgenesis. Cancer-associated mucins often differ from normal mucins by presenting truncated carbohydrate chains. Characterization of the binding properties of mucins with truncated carbohydrate side chains could thus prove relevant for understanding their role in cancer mechanisms such as metastasis and recognition by the immune system. In this work, heterotypic interactions of model mucins that possess the Tn (GalNAcαThr/Ser) and T (Galß1-3GalNAcαThr/Ser) cancer antigens derived from porcine submaxillary mucin (PSM) were studied using atomic force microscopy. PSM possessing only the Tn antigen (Tn-PSM) was found to bind to PSM analogs possessing a combination of T, Tn and STn antigens as well as biosynthetic analogs of the core 1 blood group A tetrasaccharide (GalNAcα1-3[Fucα1-2] Galß1-3GalNAcαSer/Thr). The rupture forces for the heterotypic interactions ranged from 18- to 31 pN at a force-loading rate of ∼0.5 nN/s. The thermally averaged distance from the bound complex to the transition state (xß) was estimated to be in the range 0.37-0.87 nm for the first barrier of the Bell Evans analysis and within 0.34-0.64 nm based on a lifetime analysis. These findings reveal that the binding strength and energy landscape for heterotypic interactions of Tn-PSM with the above mucins, resemble homotypic interactions of Tn-PSM. This suggests common carbohydrate epitope interactions for the Tn cancer antigen with the above mucin analogs, a finding that may be important to the role of the Tn antigen in cancer cells.


Assuntos
Antígenos Glicosídicos Associados a Tumores/metabolismo , Mucinas/metabolismo , Animais , Antígenos Glicosídicos Associados a Tumores/química , Mucinas/química , Ligação Proteica , Suínos
14.
J Mol Recognit ; 27(12): 727-38, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25319621

RESUMO

The specific interactions of the pairs laminin binding protein (LBP)-purified tick-borne encephalitis viral surface protein E and certain recombinant fragments of this protein, as well as West Nile viral surface protein E and certain recombinant fragments of that protein, are studied by combined methods of single-molecule dynamic force spectroscopy (SMDFS), enzyme immunoassay and optical surface waves-based biosensor measurements. The experiments were performed at neutral pH (7.4) and acid pH (5.3) conditions. The data obtained confirm the role of LBP as a cell receptor for two typical viral species of the Flavivirus genus. A comparison of these data with similar data obtained for another cell receptor of this family, namely human αVß3 integrin, reveals that both these receptors are very important. Studying the specific interaction between the cell receptors in question and specially prepared monoclonal antibodies against them, we could show that both interaction sites involved in the process of virus-cell interaction remain intact at pH 5.3. At the same time, for these acid conditions characteristic for an endosome during flavivirus-cell membrane fusion, SMDFS data reveal the existence of a force-induced (effective already for forces as small as 30-70 pN) sharp globule-coil transition for LBP and LBP-fragments of protein E complexes. We argue that this conformational transformation, being an analog of abrupt first-order phase transition and having similarity with the famous Rayleigh hydrodynamic instability, might be indispensable for the flavivirus-cell membrane fusion process.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos/fisiologia , Laminina/metabolismo , Fusão de Membrana , Estresse Mecânico , Internalização do Vírus , Humanos , Concentração de Íons de Hidrogênio , Integrina alfaVbeta3/metabolismo , Cinética , Ligantes , Ligação Proteica , Receptores de Superfície Celular/metabolismo , Proteínas Recombinantes/metabolismo , Análise Espectral , Termodinâmica , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo
15.
Biopolymers ; 101(12): 1193-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25091120

RESUMO

The characterization of elastic properties of biopolymers is crucial to understand many molecular reactions determined by conformational bending fluctuations of the polymer. Direct measurement of such elastic properties using single-molecule methods is usually hindered by the intrinsic tendency of such biopolymers to form high-order molecular structures. For example, single-stranded deoxyribonucleic acids (ssDNA) tend to form secondary structures such as local double helices that prevent the direct measurement of the ideal elastic response of the ssDNA. In this work, we show how to extract the ideal elastic response in the entropic regime of short ssDNA molecules by mechanically pulling two-state DNA hairpins of different contour lengths. This is achieved by measuring the force dependence of the molecular extension and stiffness on mechanically folding and unfolding the DNA hairpin. Both quantities are fit to the worm-like chain elastic model giving values for the persistence length and the interphosphate distance. This method can be used to unravel the elastic properties of short ssDNA and RNA sequences and, more generally, any biopolymer that can exhibit a cooperative two-state transition between mechanically folded and unfolded states (such as proteins).


Assuntos
DNA de Cadeia Simples/química , Elasticidade , Conformação de Ácido Nucleico , Fenômenos Biomecânicos , Análise Espectral
16.
Exploration (Beijing) ; 3(4): 20230004, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37933233

RESUMO

Mechanical forces play a vital role in biological processes at molecular and cellular levels, significantly impacting various diseases such as cancer, cardiovascular disease, and COVID-19. Recent advancements in dynamic force spectroscopy (DFS) techniques have enabled the application and measurement of forces and displacements with high resolutions, providing crucial insights into the mechanical pathways underlying these diseases. Among DFS techniques, the biomembrane force probe (BFP) stands out for its ability to measure bond kinetics and cellular mechanosensing with pico-newton and nano-meter resolutions. Here, a comprehensive overview of the classical BFP-DFS setup is presented and key advancements are emphasized, including the development of dual biomembrane force probe (dBFP) and fluorescence biomembrane force probe (fBFP). BFP-DFS allows us to investigate dynamic bond behaviors on living cells and significantly enhances the understanding of specific ligand-receptor axes mediated cell mechanosensing. The contributions of BFP-DFS to the fields of cancer biology, thrombosis, and inflammation are delved into, exploring its potential to elucidate novel therapeutic discoveries. Furthermore, future BFP upgrades aimed at improving output and feasibility are anticipated, emphasizing its growing importance in the field of cell mechanobiology. Although BFP-DFS remains a niche research modality, its impact on the expanding field of cell mechanobiology is immense.

17.
Int J Mol Sci ; 13(1): 453-65, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22312263

RESUMO

Dynamic force spectroscopy (DFS) makes it possible to investigate specific interactions between two molecules such as ligand-receptor pairs at the single-molecule level. In the DFS method based on the Bell-Evans model, the unbinding force applied to a molecular bond is increased at a constant rate, and the force required to rupture the molecular bond is measured. By analyzing the relationship between the modal rupture force and the logarithm of the loading rate, microscopic potential barrier landscapes and the lifetimes of bonds can be obtained. However, the results obtained, for example, in the case of streptavidin/biotin complexes, have differed among previous studies and some results have been inconsistent with theoretical predictions. In this study, using an atomic force microscopy technique that enables the precise analysis of molecular interactions on the basis of DFS, we investigated the effect of the sampling rate on DFS analysis. The shape of rupture force histograms, for example, was significantly deformed at a sampling rate of 1 kHz in comparison with that of histograms obtained at 100 kHz, indicating the fundamental importance of ensuring suitable experimental conditions for further advances in the DFS method.


Assuntos
Biotina/análise , Microscopia de Força Atômica , Estreptavidina/análise , Biotina/metabolismo , Ouro/química , Ligação Proteica , Estreptavidina/metabolismo
18.
ACS Appl Mater Interfaces ; 14(6): 7671-7679, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35113515

RESUMO

Integrin-targeting arginine-glycine-aspartic acid (RGD)-based nanocarriers have been widely used for tumor imaging, monitoring of tumor development, and delivery of anticancer drugs. However, the thermodynamics of an RGD-integrin formation and dissociation associated with binding dynamics, affinity, and stability remains unclear. Here, we probed the binding strength of the binary complex to live pancreatic cancer cells using single-molecule binding force spectroscopy methods, in which RGD peptides were functionalized on a force probe tip through poly(ethylene glycol) (PEG)-based bifunctional linker molecules. While the density of integrin αV receptors on the cell surface varies more than twofold from cell line to cell line, the individual RGD-integrin complexes exhibited a cell type-independent, monovalent bond strength. The load-dependent bond strength of multivalent RGD-integrin interactions scaled sublinearly with increasing bond number, consistent with the noncooperative, parallel bond model. Furthermore, the multivalent bonds ruptured sequentially either by one or in multiples, and the force strength was comparable to the synchronous rupture force. Comparison of energy landscapes of the bond number revealed a substantial decrease of kinetic off-rates for multivalent bonds, along with the increased width of the potential well and the increased potential barrier height between bound and unbound states, enhancing the stability of the multivalent bonds between them.


Assuntos
Integrinas , Neoplasias Pancreáticas , Membrana Celular/metabolismo , Humanos , Integrinas/metabolismo , Oligopeptídeos/química , Polietilenoglicóis/química
19.
Antioxidants (Basel) ; 11(3)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35326186

RESUMO

Plastidic ferredoxin-NADP+ reductase (FNR) transfers two electrons from two ferredoxin or flavodoxin molecules to NADP+, generating NADPH. The forces holding the Anabaena FNR:NADP+ complex were analyzed by dynamic force spectroscopy, using WT FNR and three C-terminal Y303 variants, Y303S, Y303F, and Y303W. FNR was covalently immobilized on mica and NADP+ attached to AFM tips. Force-distance curves were collected for different loading rates and specific unbinding forces were analyzed under the Bell-Evans model to obtain the mechanostability parameters associated with the dissociation processes. The WT FNR:NADP+ complex presented a higher mechanical stability than that reported for the complexes with protein partners, corroborating the stronger affinity of FNR for NADP+. The Y303 mutation induced changes in the FNR:NADP+ interaction mechanical stability. NADP+ dissociated from WT and Y303W in a single event related to the release of the adenine moiety of the coenzyme. However, two events described the Y303S:NADP+ dissociation that was also a more durable complex due to the strong binding of the nicotinamide moiety of NADP+ to the catalytic site. Finally, Y303F shows intermediate behavior. Therefore, Y303, reported as crucial for achieving catalytically competent active site geometry, also regulates the concerted dissociation of the bipartite nucleotide moieties of the coenzyme.

20.
Structure ; 30(3): 350-359.e3, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-34875215

RESUMO

The ß-barrel assembly machinery (BAM) complex is an essential component of Escherichia coli that inserts and folds outer membrane proteins (OMPs). The natural antibiotic compound darobactin inhibits BamA, the central unit of BAM. Here, we employ dynamic single-molecule force spectroscopy (SMFS) to better understand the structure-function relationship of BamA and its inhibition by darobactin. The five N-terminal polypeptide transport (POTRA) domains show low mechanical, kinetic, and energetic stabilities. In contrast, the structural region linking the POTRA domains to the transmembrane ß-barrel exposes the highest mechanical stiffness and lowest kinetic stability within BamA, thus indicating a mechano-functional role. Within the ß-barrel, the four N-terminal ß-hairpins H1-H4 expose the highest mechanical stabilities and stiffnesses, while the four C-terminal ß-hairpins H5-H6 show lower stabilities and higher flexibilities. This asymmetry within the ß-barrel suggests that substrates funneling into the lateral gate formed by ß-hairpins H1 and H8 can force the flexible C-terminal ß-hairpins to change conformations.


Assuntos
Proteínas de Escherichia coli , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Proteínas da Membrana Bacteriana Externa/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Fenilpropionatos , Dobramento de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA