Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Hepatol ; 80(3): 454-466, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37952766

RESUMO

BACKGROUND & AIMS: Hereditary tyrosinemia type 1 (HT1) results from the loss of fumarylacetoacetate hydrolase (FAH) activity and can lead to lethal liver injury. Therapeutic options for HT1 remain limited. In this study, we aimed to construct an engineered bacterium capable of reprogramming host metabolism and thereby provide a potential alternative approach for the treatment of HT1. METHODS: Escherichia coli Nissle 1917 (EcN) was engineered to express genes involved in tyrosine metabolism in the anoxic conditions that are characteristic of the intestine (EcN-HT). Bodyweight, survival rate, plasma (tyrosine/liver function), H&E staining and RNA sequencing were used to assess its ability to degrade tyrosine and protect against lethal liver injury in Fah-knockout (KO) mice, a well-accepted model of HT1. RESULTS: EcN-HT consumed tyrosine and produced L-DOPA (levodopa) in an in vitro system. Importantly, in Fah-KO mice, the oral administration of EcN-HT enhanced tyrosine degradation, reduced the accumulation of toxic metabolites, and protected against lethal liver injury. RNA sequencing analysis revealed that EcN-HT rescued the global gene expression pattern in the livers of Fah-KO mice, particularly of genes involved in metabolic signaling and liver homeostasis. Moreover, EcN-HT treatment was found to be safe and well-tolerated in the mouse intestine. CONCLUSIONS: This is the first report of an engineered live bacterium that can degrade tyrosine and alleviate lethal liver injury in mice with HT1. EcN-HT represents a novel engineered probiotic with the potential to treat this condition. IMPACT AND IMPLICATIONS: Patients with hereditary tyrosinemia type 1 (HT1) are characterized by an inability to metabolize tyrosine normally and suffer from liver failure, renal dysfunction, neurological impairments, and cancer. Given the overlap and complementarity between the host and microbial metabolic pathways, the gut microbiome provides a potential chance to regulate host metabolism through degradation of tyrosine and reduction of byproducts that might be toxic. Herein, we demonstrated that an engineered live bacterium, EcN-HT, could enhance tyrosine breakdown, reduce the accumulation of toxic tyrosine byproducts, and protect against lethal liver injury in Fah-knockout mice. These findings suggested that engineered live biotherapeutics that can degrade tyrosine in the gut may represent a viable and safe strategy for the prevention of lethal liver injury in HT1 as well as the mitigation of its associated pathologies.


Assuntos
Tirosinemias , Humanos , Camundongos , Animais , Tirosinemias/complicações , Tirosinemias/genética , Tirosinemias/metabolismo , Fígado/patologia , Modelos Animais de Doenças , Camundongos Knockout , Tirosina/metabolismo , Escherichia coli/genética
2.
Appl Microbiol Biotechnol ; 108(1): 333, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38739270

RESUMO

Currently, there are many different therapies available for inflammatory bowel disease (IBD), including engineered live bacterial therapeutics. However, most of these studies focus on producing a single therapeutic drug using individual bacteria, which may cause inefficacy. The use of dual drugs can enhance therapeutic effects. However, expressing multiple therapeutic drugs in one bacterial chassis increases the burden on the bacterium and hinders good secretion and expression. Therefore, a dual-bacterial, dual-drug expression system allows for the introduction of two probiotic chassis and enhances both therapeutic and probiotic effects. In this study, we constructed a dual bacterial system to simultaneously neutralize pro-inflammatory factors and enhance the anti-inflammatory pathway. These bacteria for therapy consist of Escherichia coli Nissle 1917 that expressed and secreted anti-TNF-α nanobody and IL-10, respectively. The oral administration of genetically engineered bacteria led to a decrease in inflammatory cell infiltration in colon and a reduction in the levels of pro-inflammatory cytokines. Additionally, the administration of engineered bacteria did not markedly aggravate gut fibrosis and had a moderating effect on intestinal microbes. This system proposes a dual-engineered bacterial drug combination treatment therapy for inflammatory bowel disease, which provides a new approach to intervene and treat IBD. KEY POINTS: • The paper discusses the effects of using dual engineered bacteria on IBD • Prospects of engineered bacteria in the clinical treatment of IBD.


Assuntos
Escherichia coli , Doenças Inflamatórias Intestinais , Interleucina-10 , Probióticos , Animais , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/terapia , Doenças Inflamatórias Intestinais/tratamento farmacológico , Camundongos , Escherichia coli/genética , Probióticos/administração & dosagem , Interleucina-10/genética , Fator de Necrose Tumoral alfa/metabolismo , Modelos Animais de Doenças , Engenharia Genética , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , Colo/microbiologia , Colo/patologia , Citocinas/metabolismo , Anti-Inflamatórios/farmacologia
3.
Biotechnol Bioeng ; 120(4): 1081-1096, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36539926

RESUMO

Heparosan is a crucial-polysaccharide precursor for the chemoenzymatic synthesis of heparin, a widely used anticoagulant drug. Presently, heparosan is mainly extracted with the potential risk of contamination from Escherichia coli strain K5, a pathogenic bacterium causing urinary tract infection. Here, a nonpathogenic probiotic, E. coli strain Nissle 1917 (EcN), was metabolically engineered to carry multiple copies of the 19-kb kps locus and produce heparosan to 9.1 g/L in fed-batch fermentation. Chromosome evolution driven by antibiotics was employed to amplify the kps locus, which governed the synthesis and export of heparosan from EcN at 21 mg L-1 OD-1 . The average copy number of kps locus increased from 1 to 24 copies per cell, which produced up to 104 mg L-1 OD-1 of heparosan in the shaking flask cultures of engineered strains. The following in-frame deletion of recA stabilized the recombinant duplicates of chromosomal kps locus and the productivity of heparosan in continuous culture for at least 56 generations. Fed-batch fermentation of the engineered strain EcN8 was carried out to bring the yield of heparosan up to 9.1 g/L. Heparosan from the fermentation culture was further purified at a 75% overall recovery. The structure of purified heparosan was characterized and further modified by N-sulfotransferase with 3'-phosphoadenosine-5'-phosphosulfate as the sulfo-donor. The analysis of element composition showed that heparosan was N-sulfated by over 80%. These results indicated that duplicating large DNA cassettes up to 19-kb, followed by high-cell-density fermentation, was promising in the large-scale preparation of chemicals and could be adapted to engineer other industrial-interest bacteria metabolically.


Assuntos
Escherichia coli , Heparina , Escherichia coli/genética , Dissacarídeos , Cromossomos
4.
Microb Pathog ; 172: 105768, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36096456

RESUMO

The probiotic E. coli Nissle 1917 (EcN) plays an important role in regulating the microbial components of the gut and preventing inflammation of the gastrointestinal tract. Currently, the long-term use of antibiotics for the treatment of lethal white diarrhea in chicks caused by Salmonella has led to increased morbidity and mutation rates. Therefore, we want to use EcN as an antibiotic alternative as an alternative approach to prevent Salmonella-induced white diarrhea in chickens. To date, there are no reports of EcN being used for the prevention and control of Salmonella pullorum (S. pullorum) in chickens. In vitro, pretreatment with EcN significantly decreased the cellular invasion of S. pullorum CVCC533 in a chicken fibroblast (DF-1) cell model. Then, 0-day-old egg-laying chickens were orally inoculated with EcN at a dose of 109 CFU/100 µL at either Day 1 (EcN1) or both Day 1 and Day 4 (EcN2). Then, S. pullorum CVCC533 was used to challenge the cells at a dose of 1.0 × 107 CFU/100 µL on Day 8. Next, the body weights and survival rates were recorded for 14 consecutive days, and the colonization of S. pullorum in the spleen and liver at 7 days post-challenge (dpc) was determined. Chicken feces were also collected at 2, 4, 6 and 8 dpc to evaluate the excretion of pathogenic bacteria in feces. The liver, duodenum and rectum samples were collected and analyzed by pathological histology at 7 dpc to evaluate the protective effect of EcN on the mucosa, villi and crypts of the small intestine. The spleen and bursa were collected, and the immune organ index was calculated. In addition, the contents of the cecum of chicks were collected at 7 dpc for 16S rRNA sequencing to detect the distribution of microbial communities in the intestine. The results showed that EcN was able to protect against CVCC533 challenge, as shown by decreased body weight loss, mortality and shedding of pathogenic bacteria in fecal samples in the EcN1 plus Salmonella challenge group (EcN1S) but not the EcN2 plus Salmonella challenge group (EcN2S). The pathogenic changes in the liver, duodenum and rectum also demonstrated that one dose but not two doses of EcN effectively prolonged the length of the pilus with decreased crypt depth, indicating its protective effects against S. pullorum. In addition, the 16S rRNA sequencing results suggested that EcN could enlarge the diversity of intestinal flora, decrease the abundance of pathogenic bacteria and increase the abundance of beneficial bacteria, such as Lactobacillus. In conclusion, EcN has shown moderate protection against S. pullorum challenge in chickens.


Assuntos
Doenças das Aves Domésticas , Salmonelose Animal , Animais , Antibacterianos , Galinhas , Diarreia/prevenção & controle , Diarreia/veterinária , Escherichia coli , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/microbiologia , RNA Ribossômico 16S , Salmonella/genética , Salmonelose Animal/prevenção & controle , Salmonelose Animal/microbiologia
5.
J Appl Microbiol ; 132(6): 4020-4032, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35332984

RESUMO

AIMS: Bacterial persisters are rare phenotypic variants in clonal bacterial cultures that can endure antimicrobial therapy and potentially contribute to infection relapse. Here, we investigate the potential of leveraging microbial interactions to disrupt persisters as they resuscitate during the post-antibiotic treatment recovery period. METHODS AND RESULTS: We treated stationary-phase E. coli MG1655 with a DNA-damaging fluoroquinolone and co-cultured the cells with probiotic E. coli Nissle following antibiotic removal. We found that E. coli Nissle reduced the survival of fluoroquinolone persisters and their progeny by over three orders of magnitude within 24 h. Using a bespoke H-diffusion cell apparatus that we developed, we showed that E. coli Nissle antagonized the fluoroquinolone-treated cells in a contact-dependent manner. We further demonstrated that the fluoroquinolone-treated cells can still activate the SOS response as they recover from antibiotic treatment in the presence of E. coli Nissle and that the persisters depend on TolC-associated efflux systems to defend themselves against the action of E. coli Nissle. CONCLUSION: Our results demonstrate that probiotic bacteria, such as E. coli Nissle, have the potential to inhibit persisters as they resuscitate following antibiotic treatment. SIGNIFICANCE AND IMPACT OF THE STUDY: Bacterial persisters are thought to underlie chronic infections and they can lead to an increase in antibiotic-resistant mutants in their progenies. Our data suggest that we can leverage the knowledge we gain on the interactions between microbial strains/species that interfere with persister resuscitation, such as those involving probiotic E. coli Nissle and E. coli MG1655 (a K-12 strain), to bolster the activity of our existing antibiotics.


Assuntos
Proteínas de Escherichia coli , Probióticos , Antibacterianos/farmacologia , Escherichia coli , Fluoroquinolonas/farmacologia , Probióticos/farmacologia
6.
Liver Int ; 41(5): 1020-1032, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33548108

RESUMO

Hyperammonemia associated with chronic liver disease (CLD) is implicated in the pathogenesis of hepatic encephalopathy (HE). The gut is a major source of ammonia production that contributes to hyperammonemia in CLD and HE and remains the primary therapeutic target for lowering hyperammonemia. As an ammonia-lowering strategy, Escherichia coli Nissle 1917 bacterium was genetically modified to consume and convert ammonia to arginine (S-ARG). S-ARG was further modified to additionally synthesize butyrate (S-ARG + BUT). Both strains were evaluated in bile-duct ligated (BDL) rats; experimental model of CLD and HE. METHODS: One-week post-surgery, BDLs received non-modified EcN (EcN), S-ARG, S-ARG + BUT (3x1011 CFU/day) or vehicle until sacrifice at 3 or 5 weeks. Plasma (ammonia/pro-inflammatory/liver function), liver fibrosis (hydroxyproline), liver mRNA (pro-inflammatory/fibrogenic/anti-apoptotic) and colon mRNA (pro-inflammatory) biomarkers were measured post-sacrifice. Memory, motor-coordination, muscle-strength and locomotion were assessed at 5 weeks. RESULTS: In BDL-Veh rats, hyperammonemia developed at 3 and further increased at 5 weeks. This rise was prevented by S-ARG and S-ARG + BUT, whereas EcN was ineffective. Memory impairment was prevented only in S-ARG + BUT vs BDL-Veh. Systemic inflammation (IL-10/MCP-1/endotoxin) increased at 3 and 5 weeks in BDL-Veh. S-ARG + BUT attenuated inflammation at both timepoints (except 5-week endotoxin) vs BDL-Veh, whereas S-ARG only attenuated IP-10 and MCP-1 at 3 weeks. Circulating ALT/AST/ALP/GGT/albumin/bilirubin and gene expression of liver function markers (IL-10/IL-6/IL-1ß/TGF-ß/α-SMA/collagen-1α1/Bcl-2) were not normalized by either strain. Colonic mRNA (TNF-α/IL-1ß/occludin) markers were attenuated by synthetic strains at both timepoints vs BDL-Veh. CONCLUSION: S-ARG and S-ARG + BUT attenuated hyperammonemia, with S-ARG + BUT additional memory protection likely due to greater anti-inflammatory effect. These innovative strategies, particularly S-ARG + BUT, have potential to prevent HE.


Assuntos
Hiperamonemia , Animais , Bile , Ductos Biliares , Modelos Animais de Doenças , Escherichia coli , Ligadura , Ratos
7.
Appl Microbiol Biotechnol ; 105(3): 1051-1062, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33481068

RESUMO

Heparosan is a naturally occurring non-sulfated glycosaminoglycan. Heparosan serves as the substrate for chemoenzymatic synthesis of biopharmaceutically important heparan sulfate and heparin. Heparosan is biologically inert molecule, non-toxic, and non-immunogenic and these qualities of heparosan make it an ideal drug delivery vehicle. The critical-to-quality (CTQ) attributes for heparosan applications include composition of heparosan, absence of any unnatural moieties, and heparosan molecular weight size and unimodal distribution. Probiotic bacteria E. coli Nissle 1917 (EcN) is a natural producer of heparosan. The current work explores production of EcN heparosan and process parameters that may impact the heparosan CTQ attributes. Results show that EcN could be grown to high cell densities (OD600 160-180) in a chemically defined media. The fermentation process is successfully scaled from 5-L to 100-L bioreactor. The chemical composition of heparosan from EcN was confirmed using nuclear magnetic resonance. Results demonstrate that heparosan molecular weight distribution may be influenced by fermentation and purification conditions. Size exclusion chromatography analysis shows that the heparosan purified from fermentation broth results in bimodal distribution, and cell-free supernatant results in unimodal distribution (average molecular weight 68,000 Da). The yield of EcN-derived heparosan was 3 g/L of cell free supernatant. We further evaluated the application of Nissle 1917 heparosan for chemical modification to prepare N-sulfo heparosan (NSH), the first intermediate precursor for heparin and heparan sulfate. KEY POINTS: • High cell density fermentation, using a chemically defined fermentation media for the growth of probiotic bacteria EcN (E. coli Nissle 1917, a natural producer of heparosan) is reported. • Process parameters towards the production of monodispersed heparosan using probiotic bacteria EcN (Nissle 1917) has been explored and discussed. • The media composition and the protocol (SOPs and batch records) have been successfully transferred to contract manufacturing facilities and industrial partners.


Assuntos
Escherichia coli , Probióticos , Dissacarídeos , Fermentação
8.
Int J Mol Sci ; 21(8)2020 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-32290466

RESUMO

Long-term space missions affect the gut microbiome of astronauts, especially the viability of some pathogens. Probiotics may be an effective solution for the management of gut microbiomes, but there is a lack of studies regarding the physiology of probiotics in microgravity. Here, we investigated the effects of microgravity on the probiotic Escherichia coli Nissle 1917 (EcN) by comparing transcriptomic data during exponential and stationary growth phases under simulated microgravity and normal gravity. Microgravity conditions affected several physiological features of EcN, including its growth profile, biofilm formation, stress responses, metal ion transport/utilization, and response to carbon starvation. We found that some changes, such as decreased adhesion ability and acid resistance, may be disadvantageous to EcN relative to gut pathogens under microgravity, indicating the need to develop probiotics optimized for space flight.


Assuntos
Escherichia coli/genética , Perfilação da Expressão Gênica , Probióticos , Transcriptoma , Ausência de Peso , Carbono/metabolismo , Biologia Computacional/métodos , Escherichia coli/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Canais Iônicos/metabolismo , Redes e Vias Metabólicas , Metais/metabolismo , Estresse Fisiológico
9.
Eur J Immunol ; 46(10): 2426-2437, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27457183

RESUMO

Lactobacillus rhamnosus GG (LGG), a gram-positive lactic acid bacterium, is one of the most widely used probiotics; while fewer gram-negative probiotics including Escherichia coli Nissle 1917 (EcN) are characterized. A mechanistic understanding of their individual and interactive effects on human rotavirus (HRV) and immunity is lacking. In this study, noncolonized, EcN-, LGG-, and EcN + LGG-colonized neonatal gnotobiotic (Gn) pigs were challenged with HRV. EcN colonization is associated with a greater protection against HRV, and induces the highest frequencies of plasmacytoid dendritic cells (pDCs), significantly increased NK-cell function and decreased frequencies of apoptotic and TLR4+ mononuclear cells (MNCs). Consistent with the highest NK-cell activity, splenic CD172+ MNCs (DC enriched fraction) of EcN-colonized pigs produced the highest levels of IL-12 in vitro. LGG colonization has little effect on the above parameters, which are intermediate in EcN + LGG-colonized pigs, suggesting that probiotics modulate each other's effects. Additionally, in vitro EcN-treated splenic or intestinal MNCs produce higher levels of innate, immunoregulatory and immunostimulatory cytokines, IFN-α, IL-12, and IL-10, compared to MNCs of pigs treated with LGG. These results indicate that the EcN-mediated greater protection against HRV is associated with potent stimulation of the innate immune system and activation of the DC-IL-12-NK immune axis.


Assuntos
Células Dendríticas/imunologia , Infecções por Escherichia coli/imunologia , Escherichia coli/imunologia , Mucosa Intestinal/imunologia , Células Matadoras Naturais/imunologia , Lacticaseibacillus rhamnosus/imunologia , Infecções por Rotavirus/imunologia , Rotavirus/imunologia , Animais , Diferenciação Celular , Células Cultivadas , Citocinas/metabolismo , Citotoxicidade Imunológica , Células Dendríticas/virologia , Vida Livre de Germes , Humanos , Imunidade Inata , Mediadores da Inflamação/metabolismo , Ativação Linfocitária , Probióticos , Suínos
10.
Appl Microbiol Biotechnol ; 101(1): 131-138, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27542382

RESUMO

We used a recombinant, permeabilized E. coli Nissle strain harbouring the plu3263 gene cluster from Photorhabdus luminescens for the synthesis of luminmide type cyclic pentapeptides belonging to the class of nonribosomally biosynthesized peptides (NRP). Cells could be fully permeabilized using 1 % v/v toluene. Synthesis of luminmides was increased fivefold when 0.3 mM EDTA was added to the substrate mixture acting as an inhibitor of metal proteases. Luminmide formation was studied applying different amino acid concentrations. Apparent kinetic parameters for the synthesis of the main product luminmide A from leucine, phenylalanine and valine were calculated from the collected data. K sapp values ranged from 0.17 mM for leucine to 0.57 mM for phenylalanine, and r maxapp was about 3 × 10-8 mmol min-1(g CDW)-1). By removing phenylalanine from the substrate mixture, the formation of luminmide A was reduced tenfold while luminmide B was increased from 50 to 500 µg/l becoming the main product. Two new luminmides were synthesized in this study. Luminmide H incorporates tryptophan replacing phenylalanine in luminmide A. In luminmide I, leucine was replaced with 4,5-dehydro-leucine, a non-proteinogenic amino acid fed to the incubation mixture. Our study shows new opportunities for increasing the spectrum of luminmide variants produced, for improving production selectivity and for kinetic in vitro studies of the megasynthetases.


Assuntos
Escherichia coli/metabolismo , Engenharia Metabólica/métodos , Peptídeos Cíclicos/metabolismo , Escherichia coli/genética , Família Multigênica , Peptídeos Cíclicos/genética , Permeabilidade/efeitos dos fármacos , Photorhabdus/genética , Tolueno
11.
Appl Microbiol Biotechnol ; 101(11): 4713-4723, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28283693

RESUMO

Consumption of fructose leads to metabolic syndrome, but it is also known to increase iron absorption. Present study investigates the effect of genetically modified Escherichia coli Nissle 1917 (EcN) synbiotic along with fructose on non-heme iron absorption. Charles foster rats weighing 150-200 g were fed with iron-deficient diet for 2 months. Probiotic treatment of EcN (pqq) and EcN (pqq-glf-mtlK) was given once per week, 109 cells after 2 months with fructose in drinking water. Iron levels, blood, and liver parameters for oxidative stress, hyperglycemia, and dyslipidemia were estimated. Transferrin-bound iron levels in the blood decreased significantly after 10 weeks of giving iron-deficient diet. Probiotic treatment of EcN (pqq-glf-mtlK) and fructose together led to the restoration of normal transferrin-bound iron levels and blood and hepatic antioxidant levels as compared to iron-deficient control group. The probiotic also led to the restoration of body weight along with levels of serum and hepatic lipid, blood glucose, and antioxidant in the blood and liver as compared to iron-deficient control group. Restoration of liver injury marker enzymes was also seen. Administration of EcN-producing PQQ and mannitol dehydrogenase enzyme together with fructose led to increase in the transferrin-bound iron levels in the blood and amelioration of consequences of metabolic syndrome caused due to fructose consumption.


Assuntos
Escherichia coli/genética , Frutose/administração & dosagem , Deficiências de Ferro , Síndrome Metabólica/terapia , Cofator PQQ/administração & dosagem , Probióticos , Simbióticos , Animais , Peso Corporal , Dieta , Dislipidemias/terapia , Escherichia coli/enzimologia , Frutose/metabolismo , Engenharia Genética , Hiperglicemia/terapia , Ferro/sangue , Fígado/metabolismo , Manitol Desidrogenases/metabolismo , Síndrome Metabólica/fisiopatologia , Estresse Oxidativo , Ratos , Transferrina/metabolismo
12.
Alcohol Clin Exp Res ; 38(7): 2127-37, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24930470

RESUMO

BACKGROUND: Chronic ethanol (EtOH) consumption is associated with oxidative tissue damage, decrease in antioxidant enzyme activities, and increase in hepatic and plasma lipids. This study investigates the effect of modified probiotic Escherichia coli Nissle 1917 (EcN) secreting pyrroloquinoline quinone (PQQ) against EtOH-induced metabolic disorder in rats. METHODS: Male Charles Foster rats were gavaged with EtOH (5 g/kg body weight [acute study] and 3 g/kg body weight per day for 10 weeks [chronic study]). RESULTS: Pretreatment of PQQ, vitamin C, and PQQ-secreting EcN prevented acute EtOH-induced oxidative damage in rats reflected by reduced lipid peroxidation in blood and liver and increased hepatic reduced glutathione. However, PQQ given externally was found to be most effective against acute EtOH toxicity. In the chronic study, rats treated with PQQ-secreting EcN showed remarkable reduction in oxidative tissue damage (liver, colon, blood, and kidney) with significant increase in antioxidant enzyme activities as compared to only EtOH-treated rats. Additionally, these rats had significantly lowered hepatic and plasma lipid levels with concomitant reduction in mRNA expression of fatty acid synthase (0.5-fold) and increase in mRNA expression of acyl coenzyme A oxidase (2.4-fold) in hepatic tissue. Antioxidant and hyperlipidemic effects of PQQ-secreting EcN are correlated with increased colonic short chain fatty acids (SCFAs; i.e., acetate, propionate, and butyrate) levels, and PQQ concentration in fecal samples (2-fold) and liver (4-fold). Extracted PQQ and vitamin C were given once a week, but they did not exhibit any ameliorative effect against chronic EtOH toxicity. CONCLUSIONS: Accumulated PQQ in tissues prevents hepatic and systemic oxidative damage. PQQ along with SCFAs reduced hyperlipidemia, which can be correlated with changes in mRNA expression of hepatic lipid metabolizing genes. Our study suggests that endogenous generation of PQQ by EcN could be an effective strategy in preventing alcoholic liver disease.


Assuntos
Escherichia coli/metabolismo , Etanol/efeitos adversos , Hiperlipidemias/dietoterapia , Estresse Oxidativo/efeitos dos fármacos , Cofator PQQ/metabolismo , Cofator PQQ/uso terapêutico , Probióticos/uso terapêutico , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacocinética , Antioxidantes/uso terapêutico , Ácido Ascórbico/farmacologia , Ácido Ascórbico/uso terapêutico , Esquema de Medicação , Hiperlipidemias/induzido quimicamente , Hiperlipidemias/prevenção & controle , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Cofator PQQ/farmacocinética , Ratos
13.
Antioxidants (Basel) ; 13(3)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38539793

RESUMO

The active metabolite (S)-equol, derived from daidzein by gut microbiota, exhibits superior antioxidative activity compared with its precursor and plays a vital role in human health. As only 25% to 50% of individuals can naturally produce equol when supplied with isoflavone, we engineered probiotic E. coli Nissle 1917 (EcN) to convert dietary isoflavones into (S)-equol, thus offering a strategy to mimic the gut phenotype of natural (S)-equol producers. However, co-fermentation of EcN-eq with fecal bacteria revealed that gut microbial metabolites decreased NADPH levels, hindering (S)-equol production. Transcriptome analysis showed that the quorum-sensing (QS) transcription factor SdiA negatively regulates NADPH levels and (S)-equol biosynthesis in EcN-eq. Screening AHLs showed that SdiA binding to C10-HSL negatively regulates the pentose phosphate pathway, reducing intracellular NADPH levels in EcN-eq. Molecular docking and dynamics simulations investigated the structural disparities in complexes formed by C10-HSL with SdiA from EcN or E. coli K12. Substituting sdiA_EcN in EcN-eq with sdiA_K12 increased the intracellular NADPH/NADP+ ratio, enhancing (S)-equol production by 47%. These findings elucidate the impact of AHL-QS in the gut microbiota on EcN NADPH metabolism, offering insights for developing (S)-equol-producing EcN probiotics tailored to the gut environment.

14.
Synth Syst Biotechnol ; 9(1): 165-175, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38348398

RESUMO

The probiotic bacterium Escherichia coli Nissle 1917 (EcN) holds significant promise for use in clinical and biological industries. However, the reliance on antibiotics to maintain plasmid-borne genes has overshadowed its benefits. In this study, we addressed this issue by engineering the endogenous cryptic plasmids pMUT1 and pMUT2. The non-essential elements were removed to create more stable derivatives pMUT1NR△ and pMUT2HBC△. Synthetic promoters by integrating binding motifs on sigma factors were further constructed and applied for expression of Bacteroides thetaiotaomicron heparinase III and the biosynthesis of ectoine. Compared to traditional antibiotic-dependent expression systems, our newly constructed antibiotic-free expression systems offer considerable advantages for clinical and synthetic biology applications.

15.
Chembiochem ; 14(10): 1194-7, 2013 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-23744512

RESUMO

Releasing the cytopath: We have identified an N-myristoyl-D-asparagine (1) as the free N-terminal prodrug scaffold in cytopathogenic Escherichia coli strains expressing the colibactin gene cluster. Colibactin is released in vivo upon cleavage of precolibactin. We provide for the first time in vivo evidence of the prodrug-like release mechanism of colibactin.


Assuntos
Escherichia coli/metabolismo , Peptídeos/metabolismo , Policetídeos/metabolismo , Pró-Fármacos/farmacocinética , Escherichia coli/química , Escherichia coli/genética , Família Multigênica , Peptídeos/química , Peptídeos/genética , Policetídeos/química
16.
Mater Today Bio ; 18: 100543, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36647536

RESUMO

With the in-depth and comprehensive study of bacteria and their related ecosystems in the human body, bacterial-based drug delivery system has become an emerging biomimetic platform that can retain the innate biological functions. Benefiting from its good biocompatibility and ideal targeting ability as a biological carrier, Escherichia coli Nissle 1917 (ECN) has been focused on the treatment strategies of inflammatory bowel disease and tumor. The advantage of a bacterial carrier is that it can express exogenous protein while also acting as a natural capsule by releasing drug slowly as a result of its own colonization impact. In order to survive in harsh environments such as the digestive tract and tumor microenvironment, ECN can be modified or genetically engineered to enhance its function and host adaptability. The adoption of ECN carries or expresses drugs which are essential for accurate diagnosis and treatment. This review briefly describes the properties of ECN, the relationship between ECN and inflammation and tumor, and the strategy of using surface modification and genetic engineering to modify ECN as a delivery carrier for disease treatment.

17.
ACS Biomater Sci Eng ; 9(9): 5123-5135, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-36399014

RESUMO

The etiology of inflammatory bowel diseases (IBDs) frequently results in the uncontrolled inflammation of intestinal epithelial linings and the local environment. Here, we hypothesized that interferon-driven immunomodulation could promote anti-inflammatory effects. To test this hypothesis, we engineered probiotic Escherichia coli Nissle 1917 (EcN) to produce and secrete a type III interferon, interferon lambda 1 (IFNL1), in response to nitric oxide (NO), a well-known colorectal inflammation marker. We then validated the anti-inflammatory effects of the engineered EcN strains in two in vitro models: a Caco-2/Jurkat T cell coculture model and a scaffold-based 3D coculture IBD model that comprises intestinal epithelial cells, myofibroblasts, and T cells. The IFNL1-expressing EcN strains upregulated Foxp3 expression in T cells and thereafter reduced the production of pro-inflammatory cytokines such as IL-13 and -33, significantly ameliorating inflammation. The engineered strains also rescued the integrity of the inflamed epithelial cell monolayer, protecting epithelial barrier integrity even under inflammation. In the 3D coculture model, IFNL1-expressing EcN treatment enhanced the population of regulatory T cells and increased anti-inflammatory cytokine IL-10. Taken together, our study showed the anti-inflammatory effects of IFNL1-expressing probiotics in two in vitro IBD models, demonstrating their potential as live biotherapeutics for IBD immunotherapy.


Assuntos
Doenças Inflamatórias Intestinais , Probióticos , Humanos , Células CACO-2 , Interferon lambda , Escherichia coli , Doenças Inflamatórias Intestinais/tratamento farmacológico , Citocinas/metabolismo , Citocinas/uso terapêutico , Inflamação , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/uso terapêutico , Probióticos/farmacologia , Probióticos/uso terapêutico
18.
Cell Syst ; 14(6): 512-524.e12, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37348465

RESUMO

To build therapeutic strains, Escherichia coli Nissle (EcN) have been engineered to express antibiotics, toxin-degrading enzymes, immunoregulators, and anti-cancer chemotherapies. For efficacy, the recombinant genes need to be highly expressed, but this imposes a burden on the cell, and plasmids are difficult to maintain in the body. To address these problems, we have developed landing pads in the EcN genome and genetic circuits to control therapeutic gene expression. These tools were applied to EcN SYNB1618, undergoing clinical trials as a phenylketonuria treatment. The pathway for converting phenylalanine to trans-cinnamic acid was moved to a landing pad under the control of a circuit that keeps the pathway off during storage. The resulting strain (EcN SYN8784) achieved higher activity than EcN SYNB1618, reaching levels near when the pathway is carried on a plasmid. This work demonstrates a simple system for engineering EcN that aids quantitative strain design for therapeutics.


Assuntos
Escherichia coli , Fenilcetonúrias , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Antibacterianos/metabolismo , Plasmídeos/genética , Genômica , Fenilcetonúrias/genética , Fenilcetonúrias/terapia
19.
Mol Metab ; 78: 101823, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37839774

RESUMO

OBJECTIVE: Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD), is the most prevalent liver disease globally, yet no therapies are approved. The effects of Escherichia coli Nissle 1917 expressing aldafermin, an engineered analog of the intestinal hormone FGF19, in combination with dietary change were investigated as a potential treatment for MASLD. METHODS: MASLD was induced in C57BL/6J male mice by American lifestyle-induced obesity syndrome diet and then switched to a standard chow diet for seven weeks. In addition to the dietary change, the intervention group received genetically engineered E. coli Nissle expressing aldafermin, while control groups received either E. coli Nissle vehicle or no treatment. MASLD-related plasma biomarkers were measured using an automated clinical chemistry analyzer. The liver steatosis was assessed by histology and bioimaging analysis using Fiji (ImageJ) software. The effects of the intervention in the liver were also evaluated by RNA sequencing and liquid-chromatography-based non-targeted metabolomics analysis. Pathway enrichment studies were conducted by integrating the differentially expressed genes from the transcriptomics findings with the metabolites from the metabolomics results using Ingenuity pathway analysis. RESULTS: After the intervention, E. coli Nissle expressing aldafermin along with dietary changes reduced body weight, liver steatosis, plasma aspartate aminotransferase, and plasma cholesterol levels compared to the two control groups. The integration of transcriptomics with non-targeted metabolomics analysis revealed the downregulation of amino acid metabolism and related receptor signaling pathways potentially implicated in the reduction of hepatic steatosis and insulin resistance. Moreover, the downregulation of pathways linked to lipid metabolism and changes in amino acid-related pathways suggested an overall reduction of oxidative stress in the liver. CONCLUSIONS: These data support the potential for using engineered microbial therapeutics in combination with dietary changes for managing MASLD.


Assuntos
Escherichia coli , Hepatopatia Gordurosa não Alcoólica , Masculino , Camundongos , Animais , Escherichia coli/metabolismo , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Dieta , Redes e Vias Metabólicas , Aminoácidos/metabolismo
20.
Microorganisms ; 11(7)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37512817

RESUMO

Probiotics play an important role against infectious pathogens, such as Escherichia coli (E. coli), mainly through the production of antimicrobial compounds and their immunomodulatory effect. This protection can be detected both on the live probiotic microorganisms and in their inactive forms (paraprobiotics). Probiotics may affect different cells involved in immunity, such as macrophages. Macrophages are activated through contact with microorganisms or their products (lipopolysaccharides, endotoxins or cell walls). The aim of this work was the evaluation of the effect of two probiotic bacteria (Escherichia coli Nissle 1917 and Bifidobacterium animalis subsp. lactis HN019 on macrophage cell line J774A.1 when challenged with two pathogenic strains of E. coli. Macrophage activation was revealed through the detection of reactive oxygen (ROS) and nitrogen (RNS) species by flow cytometry. The effect varied depending on the kind of probiotic preparation (immunobiotic, paraprobiotic or postbiotic) and on the strain of E. coli (enterohemorrhagic or enteropathogenic). A clear immunomodulatory effect was observed in all cases. A higher production of ROS compared with RNS was also observed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA