Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 235
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(3): 643-654.e13, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33482082

RESUMO

Epstein-Barr virus (EBV) is an oncogenic human herpesvirus that persists as a multicopy episome in proliferating host cells. Episome maintenance is strictly dependent on EBNA1, a sequence-specific DNA-binding protein with no known enzymatic activities. Here, we show that EBNA1 forms a cell cycle-dependent DNA crosslink with the EBV origin of plasmid replication oriP. EBNA1 tyrosine 518 (Y518) is essential for crosslinking to oriP and functionally required for episome maintenance and generation of EBV-transformed lymphoblastoid cell lines (LCLs). Mechanistically, Y518 is required for replication fork termination at oriP in vivo and for formation of SDS-resistant complexes in vitro. EBNA1-DNA crosslinking corresponds to single-strand endonuclease activity specific to DNA structures enriched at replication-termination sites, such as 4-way junctions. These findings reveal that EBNA1 forms tyrosine-dependent DNA-protein crosslinks and single-strand cleavage at oriP required for replication termination and viral episome maintenance.


Assuntos
Ciclo Celular , Reagentes de Ligações Cruzadas/química , DNA Viral/metabolismo , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Plasmídeos/metabolismo , Origem de Replicação , Replicação Viral/fisiologia , Sequência de Aminoácidos , Linfócitos B/metabolismo , Linhagem Celular , Adutos de DNA/metabolismo , Replicação do DNA , Endonucleases/metabolismo , Antígenos Nucleares do Vírus Epstein-Barr/química , Antígenos Nucleares do Vírus Epstein-Barr/genética , Humanos , Mutação/genética , Ligação Proteica , Recombinação Genética/genética , Tirosina/metabolismo
2.
J Virol ; : e0054824, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864622

RESUMO

Most mature B-cell malignancies originate from the malignant transformation of germinal center (GC) B cells. The GC reaction appears to have a role in malignant transformation, in which a major player of the GC reaction is BCL6, a key regulator of this process. We now demonstrate that BCL6 protein levels were dramatically decreased in Epstein-Barr virus (EBV)-positive lymphoblastoid cell lines and Burkitt's lymphoma cell lines. Notably, BCL6 degradation was significantly enhanced in the presence of both EBNA3C and FBXO11. Furthermore, the amino-terminal domain of EBNA3C, which contains residues 50-100, interacts directly with FBXO11. The expression of EBNA3C and FBXO11 resulted in a significant induction of cell proliferation. Furthermore, BCL6 protein expression levels were regulated by EBNA3C via the Skp Cullin Fbox (SCF)FBXO11 complex, which mediated its ubiquitylation, and knockdown of FBXO11 suppressed the transformation of lymphoblastoid cell lines. These data provide new insights into the function of EBNA3C in B-cell transformation during GC reaction and raise the possibility of developing new targeted therapies against EBV-associated cancers. IMPORTANCE: The novel revelation in our study involves the suppression of BCL6 expression by the essential Epstein-Barr virus (EBV) antigen EBNA3C, shedding new light on our current comprehension of how EBV contributes to lymphomagenesis by impeding the germinal center reaction. It is crucial to note that while several EBV latent proteins are expressed in infected cells, the collaborative mechanisms among these proteins in regulating B-cell development or inducing B-cell lymphoma require additional investigation. Nonetheless, our findings carry significance for the development of emerging strategies aimed at addressing EBV-associated cancers.

3.
Brain ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630618

RESUMO

Epstein-Barr virus (EBV) infection has been advocated as a prerequisite for developing multiple sclerosis (MS) and possibly the propagation of the disease. However, the precise mechanisms for such influences are still unclear. A large-scale study investigating the host genetics of EBV serology and related clinical manifestations, such as infectious mononucleosis (IM), may help us better understand the role of EBV in MS pathogenesis. This study evaluates the host genetic factors that influence serological response against EBV and history of IM and cross-evaluates them with MS risk and genetic susceptibility in the Swedish population. Plasma IgG antibody levels against EBV nuclear antigen-1 (EBNA-1, truncated=aa[325-641], peptide=aa[385-420]) and viral capsid antigen p18 (VCAp18) were measured using bead-based multiplex serology for 8744 MS cases and 7229 population-matched controls. The MS risk association for high/low EBV antibody levels and history of IM was compared to relevant clinical measures along with sex, age at sampling, and associated HLA allele variants. Genome-wide and HLA allele association analyses were also performed to identify genetic risk factors for EBV antibody response and IM history. Higher antibody levels against VCAp18 (OR=1.74, 95% CI=1.60-1.88) and EBNA-1, particularly the peptide (OR=3.13, 95% CI=2.93-3.35), were associated with an increased risk for MS. The risk increased with higher anti-EBNA-1 IgG levels up to twelve times the reference risk. We also identified several independent HLA haplotypes associated with EBV serology overlapping with known MS risk alleles (e.g., DRB1*15:01). Although there were several candidates, no variants outside the HLA region reached genome-wide significance. Cumulative HLA risk for anti-EBNA-1 IgG levels, particularly the peptide fragment, was strongly associated with MS. In contrast, the genetic risk for high anti-VCAp18 IgG levels was not as strongly associated with MS risk. IM history was not associated with class II HLA genes but negatively associated with A*02:01, which is protective against MS. Our findings emphasize that the risk association between anti-EBNA-1 IgG levels and MS may be partly due to overlapping HLA associations. Additionally, the increasing MS risk with increasing anti-EBNA-1 levels would be consistent with a pathogenic role of the EBNA-1 immune response, perhaps through molecular mimicry. Given that high anti-EBNA-1 antibodies may reflect a poorly controlled T-cell defense against the virus, our findings would be consistent with DRB1*15:01 being a poor class II antigen in the immune defense against EBV. Lastly, the difference in genetic control of IM supports the independent roles of EBNA-1 and IM in MS susceptibility.

4.
BMC Genomics ; 25(1): 273, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475709

RESUMO

BACKGROUND: There are two major genetic types of Epstein-Barr Virus (EBV): type 1 (EBV-1) and type 2 (EBV-2). EBV functions by manipulating gene expression in host B cells, using virus-encoded gene regulatory proteins including Epstein-Barr Nuclear Antigen 2 (EBNA2). While type 1 EBNA2 is known to interact with human transcription factors (hTFs) such as RBPJ, EBF1, and SPI1 (PU.1), type 2 EBNA2 shares only ~ 50% amino acid identity with type 1 and thus may have distinct binding partners, human genome binding locations, and functions. RESULTS: In this study, we examined genome-wide EBNA2 binding in EBV-1 and EBV-2 transformed human B cells to identify shared and unique EBNA2 interactions with the human genome, revealing thousands of type-specific EBNA2 ChIP-seq peaks. Computational predictions based on hTF motifs and subsequent ChIP-seq experiments revealed that both type 1 and 2 EBNA2 co-occupy the genome with SPI1 and AP-1 (BATF and JUNB) hTFs. However, type 1 EBNA2 showed preferential co-occupancy with EBF1, and type 2 EBNA2 preferred RBPJ. These differences in hTF co-occupancy revealed possible mechanisms underlying type-specific gene expression of known EBNA2 human target genes: MYC (shared), CXCR7 (type 1 specific), and CD21 (type 2 specific). Both type 1 and 2 EBNA2 binding events were enriched at systemic lupus erythematosus (SLE) and multiple sclerosis (MS) risk loci, while primary biliary cholangitis (PBC) risk loci were specifically enriched for type 2 peaks. CONCLUSIONS: This study reveals extensive type-specific EBNA2 interactions with the human genome, possible differences in EBNA2 interaction partners, and a possible new role for type 2 EBNA2 in autoimmune disorders. Our results highlight the importance of considering EBV type in the control of human gene expression and disease-related investigations.


Assuntos
Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Humanos , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/metabolismo , Genoma Humano , Antígenos Nucleares do Vírus Epstein-Barr/genética , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Proteínas Virais/genética , Fatores de Transcrição/metabolismo
5.
Neurogenetics ; 25(3): 263-275, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38809364

RESUMO

Multiple sclerosis (MS), an intricate neurological disorder, continues to challenge our understanding of the pivotal interplay between the immune system and the central nervous system (CNS). This condition arises from the immune system's misdirected attack on nerve fiber protection, known as myelin sheath, alongside nerve fibers themselves. This enigmatic condition, characterized by demyelination and varied clinical manifestations, prompts exploration into its multifaceted etiology and potential therapeutic avenues. Research has revealed a potential connection between Epstein Barr virus (EBV), specifically Epstein Barr Nuclear Antigen 1 (EBNA-1), and MS. The immune response to EBNA-1 antigen triggers the production of anti-EBNA-1 molecules, including IgG that identify a similar amino acid sequence to EBNA-1 in myelin, inadvertently targeting myelin sheath and contributing to MS progression. Currently, no treatment exists for EBNA-1-induced MS apart from symptom management. Addressing this, a novel potential therapeutic avenue utilizing small interference RNAs (siRNA) has been designed. By targeting the conserved EBNA-1 gene sequences in EBV types 1 and 2, five potential siRNAs were identified in our analysis. Thorough evaluations encompassing off-target binding, thermodynamics and secondary structure elucidation, efficacy prediction, siRNA-mRNA sequence binding affinity exploration, melting temperature, and docking of siRNAs with human argonaute protein 2 (AGO2) were conducted to elucidate the siRNAs efficiency. These designed siRNA molecules harnessed promising silencing activity in the EBNA-1 gene encoding the EBNA-1 antigen protein and thus have the potential to mitigate the severity of this dangerous virus.


Assuntos
Infecções por Vírus Epstein-Barr , Antígenos Nucleares do Vírus Epstein-Barr , Herpesvirus Humano 4 , Esclerose Múltipla , RNA Interferente Pequeno , Esclerose Múltipla/terapia , Esclerose Múltipla/genética , Humanos , Herpesvirus Humano 4/genética , Antígenos Nucleares do Vírus Epstein-Barr/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/uso terapêutico , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/terapia
6.
Ann Diagn Pathol ; 70: 152286, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38447253

RESUMO

Epstein-Barr virus (EBV) is responsible for many B cell lymphoproliferative disorders (LPD) spanning subclinical infection to immunodeficiency-related neoplasms. EBV establishes a latent infection in the host B cell as defined histologically by the expression of EBV latent membrane proteins and nuclear antigens. Herein, we characterize the latency patterns of immunodeficiency-related neoplasms including post-transplant lymphoproliferative disorders (PTLD) and therapy-related LPD (formerly iatrogenic) with latent membrane protein-1 (LMP-1) and EBV nuclear antigen-2 (EBNA-2) immunohistochemistry. The latency pattern was correlated with immunodeficiency and dysregulation (IDD) status and time from transplant procedure. 38 cases of EBV+ PTLD in comparison to 27 cases of classic Hodgkin lymphoma (CHL) and diffuse large B cell lymphoma (DLBCL) arising in either the therapy-related immunodeficiency setting (n = 12) or without an identified immunodeficiency (n = 15) were evaluated for EBV-encoded small RNAs by in situ hybridization (EBER-ISH) and for LMP-1 and EBNA-2 by immunohistochemistry. A full spectrum of EBV latency patterns was observed across PTLD in contrast to CHL and DLBCL arising in the therapy-related immunodeficiency setting. Polymorphic-PTLD (12 of 16 cases, 75 %) and DLBCL-PTLD (9 of 11 cases, 82 %) showed the greatest proportion of cases with latency III pattern. Whereas, EBV+ CHL in an immunocompetent patient showed exclusively latency II pattern (13 of 13 cases, 100 %). The majority of EBV+ PTLD occurred by three years of transplant procedure date and were enriched for latency III pattern (21 of 22 cases, 95 %). Immunohistochemical identification of EBV latency by LMP-1 and EBNA-2 can help classify PTLD in comparison to other EBV+ B cell LPD and lymphomas arising in therapy-related immunodeficiency and non-immunodeficiency settings.


Assuntos
Infecções por Vírus Epstein-Barr , Antígenos Nucleares do Vírus Epstein-Barr , Herpesvirus Humano 4 , Doença de Hodgkin , Linfoma Difuso de Grandes Células B , Transtornos Linfoproliferativos , Proteínas da Matriz Viral , Proteínas Virais , Latência Viral , Humanos , Transtornos Linfoproliferativos/virologia , Transtornos Linfoproliferativos/patologia , Transtornos Linfoproliferativos/diagnóstico , Herpesvirus Humano 4/isolamento & purificação , Infecções por Vírus Epstein-Barr/virologia , Infecções por Vírus Epstein-Barr/complicações , Masculino , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Feminino , Adulto , Pessoa de Meia-Idade , Proteínas da Matriz Viral/metabolismo , Doença de Hodgkin/virologia , Doença de Hodgkin/patologia , Linfoma Difuso de Grandes Células B/virologia , Linfoma Difuso de Grandes Células B/patologia , Idoso , Adulto Jovem , Adolescente , Imuno-Histoquímica , Criança , Linfoma/virologia , Linfoma/patologia , Hibridização In Situ
7.
Dokl Biochem Biophys ; 515(1): 48-51, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38472667

RESUMO

Multiple sclerosis (MS) is an autoimmune neurodegenerative disease leading to inevitable disability and primarily affecting the young and middle-aged population. Recent studies have shown a direct correlation between the risk of MS development and Epstein-Barr virus (EBV) infection. Analysis of the titer of EBV-specific antibodies among patients with MS and healthy donors among Russian population confirmed that MS is characterized by an increased level of serum IgG binding EBNA-1 (EBV nuclear antigen 1). The number of patients with elevated levels of EBNA-1-specific antibodies does not differ statistically significantly between two groups with diametrically opposite courses of MS: benign MS or highly active MS. It can be assumed that the primary link between EBV and the development of MS is restricted to the initiation of the disease and does not impact its severity.


Assuntos
Infecções por Vírus Epstein-Barr , Esclerose Múltipla , Doenças Neurodegenerativas , Pessoa de Meia-Idade , Humanos , Antígenos Nucleares do Vírus Epstein-Barr , Infecções por Vírus Epstein-Barr/epidemiologia , Herpesvirus Humano 4 , Anticorpos Antivirais , Antivirais
8.
BMC Biotechnol ; 23(1): 7, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36882740

RESUMO

BACKGROUND: Mammalian cell lines are frequently used as protein expression hosts because of their ability to correctly fold and assemble complex proteins, produce them at high titers, and confer post-translational modifications (PTMs) critical to proper function. Increasing demand for proteins with human-like PTMs, particularly viral proteins and vectors, have made human embryonic kidney 293 (HEK293) cells an increasingly popular host. The need to engineer more productive HEK293 platforms and the ongoing nature of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic presented an opportunity to study strategies to improve viral protein expression in transient and stable HEK293 platforms. RESULTS: Initial process development was done at 24 deep well plate (DWP) -scale to screen transient processes and stable clonal cell lines for recombinant SARS-CoV-2 receptor binding domain (rRBD) titer. Nine DNA vectors that drove rRBD production under different promoters and optionally contained Epstein-Barr virus (EBV) elements to promote episomal expression were screened for transient rRBD production at 37 °C or 32 °C. Use of the cytomegalovirus (CMV) promoter to drive expression at 32 °C led to the highest transient protein titers, but inclusion of episomal expression elements did not augment titer. In parallel, four clonal cell lines with titers higher than that of the selected stable pool were identified in a batch screen. Flask-scale transient transfection and stable fed-batch processes were then established that produced rRBD up to 100 mg/L and 140 mg/L, respectively. While a bio-layer interferometry (BLI) assay was crucial for efficiently screening DWP batch titers, an enzyme-linked immunosorbent assay (ELISA) was used to compare titers from the flask-scale batches due to varying matrix effects from different cell culture media compositions. CONCLUSION: Comparing yields from the flask-scale batches revealed that stable fed-batch cultures produced up to 2.1x more rRBD than transient processes. The stable cell lines developed in this work are the first reported clonal, HEK293-derived rRBD producers and have titers up to 140 mg/L. As stable production platforms are more economically favorable for long-term protein production at large scales, investigation of strategies to increase the efficiency of high-titer stable cell line generation in Expi293F or other HEK293 hosts is warranted.


Assuntos
COVID-19 , Infecções por Vírus Epstein-Barr , Animais , Humanos , SARS-CoV-2/genética , Células HEK293 , Herpesvirus Humano 4 , Rim , Mamíferos
9.
J Virol ; 96(17): e0094922, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36037477

RESUMO

Epstein-Barr nuclear antigen 1 (EBNA1) is a multifunctional viral-encoded DNA-binding protein essential for Epstein-Barr virus (EBV) DNA replication and episome maintenance. EBNA1 binds to two functionally distinct elements at the viral origin of plasmid replication (oriP), termed the dyad symmetry (DS) element, required for replication initiation and the family of repeats (FR) required for episome maintenance. Here, we determined the cryo-electron microscopy (cryo-EM) structure of the EBNA1 DNA binding domain (DBD) from amino acids (aa) 459 to 614 and its interaction with two tandem sites at the DS and FR. We found that EBNA1 induces a strong DNA bending angle in the DS, while the FR is more linear. The N-terminal arm of the DBD (aa 444 to 468) makes extensive contact with DNA as it wraps around the minor groove, with some conformational variation among EBNA1 monomers. Mutation of variable-contact residues K460 and K461 had only minor effects on DNA binding but had abrogated oriP-dependent DNA replication. We also observed that the AT-rich intervening DNA between EBNA1 binding sites in the FR can be occupied by the EBNA1 AT hook, N-terminal domain (NTD) aa 1 to 90 to form a Zn-dependent stable complex with EBNA1 DBD on a 2×FR DNA template. We propose a model showing EBNA1 DBD and NTD cobinding at the FR and suggest that this may contribute to the oligomerization of viral episomes important for maintenance during latent infection. IMPORTANCE EBV latent infection is causally linked to diverse cancers and autoimmune disorders. EBNA1 is the viral-encoded DNA binding protein required for episomal maintenance during latent infection and is consistently expressed in all EBV tumors. The interaction of EBNA1 with different genetic elements confers different viral functions, such as replication initiation at DS and chromosome tethering at FR. Here, we used cryo-EM to determine the structure of the EBNA1 DNA-binding domain (DBD) bound to two tandem sites at the DS and at the FR. We also show that the NTD of EBNA1 can interact with the AT-rich DNA sequence between tandem EBNA1 DBD binding sites in the FR. These results provide new information on the mechanism of EBNA1 DNA binding at DS and FR and suggest a higher-order oligomeric structure of EBNA1 bound to FR. Our findings have implications for targeting EBNA1 in EBV-associated disease.


Assuntos
Antígenos Nucleares do Vírus Epstein-Barr/química , Herpesvirus Humano 4/química , Origem de Replicação , Sítios de Ligação , Microscopia Crioeletrônica , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Infecções por Vírus Epstein-Barr , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Antígenos Nucleares do Vírus Epstein-Barr/ultraestrutura , Herpesvirus Humano 4/metabolismo , Humanos , Infecção Latente , Plasmídeos , Replicação Viral
10.
J Transl Med ; 21(1): 633, 2023 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-37718435

RESUMO

Both myalgic encephalomyelitis or chronic fatigue syndrome (ME/CFS) and long COVID (LC) are characterized by similar immunological alterations, persistence of chronic viral infection, autoimmunity, chronic inflammatory state, viral reactivation, hypocortisolism, and microclot formation. They also present with similar symptoms such as asthenia, exercise intolerance, sleep disorders, cognitive dysfunction, and neurological and gastrointestinal complaints. In addition, both pathologies present Epstein-Barr virus (EBV) reactivation, indicating the possibility of this virus being the link between both pathologies. Therefore, we propose that latency and recurrent EBV reactivation could generate an acquired immunodeficiency syndrome in three steps: first, an acquired EBV immunodeficiency develops in individuals with "weak" EBV HLA-II haplotypes, which prevents the control of latency I cells. Second, ectopic lymphoid structures with EBV latency form in different tissues (including the CNS), promoting inflammatory responses and further impairment of cell-mediated immunity. Finally, immune exhaustion occurs due to chronic exposure to viral antigens, with consolidation of the disease. In the case of LC, prior to the first step, there is the possibility of previous SARS-CoV-2 infection in individuals with "weak" HLA-II haplotypes against this virus and/or EBV.


Assuntos
COVID-19 , Infecções por Vírus Epstein-Barr , Síndrome de Fadiga Crônica , Humanos , Herpesvirus Humano 4 , Síndrome de COVID-19 Pós-Aguda , Infecções por Vírus Epstein-Barr/complicações , COVID-19/complicações , SARS-CoV-2
11.
BMC Cancer ; 23(1): 521, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291490

RESUMO

BACKGROUND: We aim to clarify the controversial associations between EBV-related antibodies and gastric cancer risk. METHODS: We analysed the associations between serological Epstein-Barr nuclear antigen 1 immunoglobulin A (EBNA1-IgA) and viral capsid antigen immunoglobulin A (VCA-IgA) by enzyme-linked immunosorbent assay and the risk of gastric cancer in a nested case-control study originated from a population-based nasopharyngeal carcinoma (NPC) screening cohort in Zhongshan, a city of southern China, including 18 gastric cancer cases and 444 controls. Conditional logistic regression was used to calculate the odds ratios (ORs) and corresponding 95% confidence intervals (CIs). RESULTS: All the sera of cases were sampled before diagnosis and the median time interval was 3.04 (range: 0.04, 7.59) years. Both increased relative optical density (rOD) values of EBNA1-IgA and VCA-IgA were associated with higher risks of gastric cancer with age adjusted ORs of 1.99 (95%CI: 1.07, 3.70) and 2.64 (95%CI: 1.33, 5.23), respectively. Each participant was further classified as high or medium/low risk based on a combination of two anti-EBV antibody levels. Participants in the high-risk group had substantially higher odds of developing gastric cancer than that in the medium/low risk group with an age adjusted OR of 6.53 (95%CI: 1.69, 25.26). CONCLUSIONS: Our research reveals positive associations between EBNA1-IgA and VCA-IgA and gastric cancer risk in southern China. We thus postulate that EBNA1-IgA and VCA-IgA might appear to be potential biomarkers for gastric cancer. More research to further validate the results among diverse populations and investigate its underlying biological mechanism is needed.


Assuntos
Infecções por Vírus Epstein-Barr , Neoplasias Nasofaríngeas , Neoplasias Gástricas , Humanos , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/epidemiologia , Infecções por Vírus Epstein-Barr/diagnóstico , Herpesvirus Humano 4 , Estudos de Casos e Controles , Neoplasias Nasofaríngeas/diagnóstico , Neoplasias Gástricas/epidemiologia , Neoplasias Gástricas/complicações , Antígenos Virais , Proteínas do Capsídeo , China/epidemiologia , Anticorpos Antivirais , Imunoglobulina A
12.
EMBO Rep ; 22(12): e53007, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34605140

RESUMO

While Epstein-Barr virus (EBV) establishes a life-long latent infection in apparently healthy human immunocompetent hosts, immunodeficient individuals are at particular risk to develop lymphoproliferative B-cell malignancies caused by EBV. A key EBV protein is the transcription factor EBV nuclear antigen 2 (EBNA2), which initiates B-cell proliferation. Here, we combine biochemical, cellular, and in vivo experiments demonstrating that the mitotic polo-like kinase 1 (PLK1) binds to EBNA2, phosphorylates its transactivation domain, and thereby inhibits its biological activity. EBNA2 mutants that impair PLK1 binding or prevent EBNA2 phosphorylation are gain-of-function mutants. They exhibit enhanced transactivation capacities, accelerate the proliferation of infected B cells, and promote the development of monoclonal B-cell lymphomas in infected mice. Thus, PLK1 coordinates the activity of EBNA2 to attenuate the risk of tumor incidences in favor of the establishment of latency in the infected but healthy host.


Assuntos
Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Animais , Proteínas de Ciclo Celular , Infecções por Vírus Epstein-Barr/complicações , Antígenos Nucleares do Vírus Epstein-Barr/genética , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4/metabolismo , Camundongos , Fosforilação , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas , Latência Viral , Quinase 1 Polo-Like
13.
Virus Genes ; 59(2): 204-214, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36738378

RESUMO

This study aimed to investigate the association of Epstein-Barr virus (EBV) with nuclear respiratory factor 1 (NRF1) and the biological function of NRF1 in EBV-associated gastric cancer (EBVaGC). Western blot and qRT-PCR were used to assess the effect of latent membrane protein 2A (LMP2A) on NRF1 expression after transfection with LMP2A plasmid or siLMP2A. The effects of NRF1 on the migration and apoptosis ability of GC cells were investigated by transwell assay and flow cytometry apoptosis analysis in vitro, respectively. In addition, we determined the regulatory role of NRF1 in EBV latent infection by western blot and droplet digital PCR (ddPCR). LMP2A upregulated NRF1 expression by activating the NF-κB pathway. Moreover, NRF1 upregulated the expression of N-Cadherin and ZEB1 to promote cell migration. NRF1 promoted the expression of Bcl-2 to increase the anti-apoptotic ability of cells. In addition, NRF1 maintained latent infection of EBV by promoting the expression of the latent protein Epstein-Barr nuclear antigen 1 (EBNA1) and inhibiting the expression of the lytic proteins. Our data indicated the role of NRF1 in EBVaGC progression and the maintenance of EBV latent infection. This provided a new theoretical basis for further NRF1-based anti-cancer therapy.


Assuntos
Infecções por Vírus Epstein-Barr , Neoplasias Gástricas , Humanos , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/genética , Herpesvirus Humano 4/genética , Fator 1 Nuclear Respiratório/metabolismo , NF-kappa B/metabolismo , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/metabolismo
14.
Proc Natl Acad Sci U S A ; 117(25): 14421-14432, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32522871

RESUMO

Epstein-Barr virus (EBV) is a B cell transforming virus that causes B cell malignancies under conditions of immune suppression. EBV orchestrates B cell transformation through its latent membrane proteins (LMPs) and Epstein-Barr nuclear antigens (EBNAs). We here identify secondary mutations in mouse B cell lymphomas induced by LMP1, to predict and identify key functions of other EBV genes during transformation. We find aberrant activation of early B cell factor 1 (EBF1) to promote transformation of LMP1-expressing B cells by inhibiting their differentiation to plasma cells. EBV EBNA3A phenocopies EBF1 activities in LMP1-expressing B cells, promoting transformation while inhibiting differentiation. In cells expressing LMP1 together with LMP2A, EBNA3A only promotes lymphomagenesis when the EBNA2 target Myc is also overexpressed. Collectively, our data support a model where proproliferative activities of LMP1, LMP2A, and EBNA2 in combination with EBNA3A-mediated inhibition of terminal plasma cell differentiation critically control EBV-mediated B cell lymphomagenesis.


Assuntos
Transformação Celular Viral , Infecções por Vírus Epstein-Barr/patologia , Herpesvirus Humano 4/patogenicidade , Linfoma de Células B/patologia , Plasmócitos/patologia , Animais , Diferenciação Celular , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Infecções por Vírus Epstein-Barr/virologia , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Fibroblastos , Herpesvirus Humano 4/metabolismo , Humanos , Linfoma de Células B/virologia , Camundongos , Camundongos Knockout , Plasmócitos/virologia , Cultura Primária de Células , Transativadores/genética , Transativadores/metabolismo , Proteínas da Matriz Viral/metabolismo , Proteínas Virais/metabolismo
15.
Int J Mol Sci ; 24(18)2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37762195

RESUMO

Epstein-Barr virus (EBV) is an oncogenic herpes virus associated with several human malignancies. Two main EBV genotypes (type 1 and type 2) distinguished by the differences in EBV nuclear antigens are known. Geographic variability in these genetic differences has been observed in the incidence of some EBV-related tumors. Here, we investigated the genetic variation of EBV in lymphoma specimens collected in Ethiopia. A total of 207 DNA samples were used for EBV detection and typing, and EBNA1 and EBNA3C genes were used to detect and subtype the EBV genome, respectively. EBV genotype 1 was detected in 52.2% of lymphoma patients. EBV genotype 2 was detected in 38.2% of the lymphoma patients, and 9.7% were coinfected by both EBV genotypes. Overall, 52.8% of the Hodgkin's lymphoma (HL) patients and 51.8% of non-Hodgkin's lymphoma (NHL) patients showed the presence of genotype 1. Meanwhile, 42.8% and 2.3% of HL patients and 35.8% and 12.4% of NHL patients showed EBV genotype 2 and both genotypes, respectively. Significant associations between the age groups and EBV genotypes were observed (p = 0.027). However, no significant association was seen between EBV genotypes and other sociodemographic and clinical characteristics. This study showed that the distribution of EBV genotype 1 was higher in Ethiopian lymphoma patients.

16.
Int J Mol Sci ; 24(14)2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37511034

RESUMO

The Epstein-Barr virus (EBV) has been associated with gastric cancer (GC), one of the deadliest malignancies in Chile and the world. Little is known about Chilean EBV strains. This study aims to investigate the frequency and genetic diversity of EBV in GC in patients in southern Chile. To evaluate the prevalence of EBV in GC patients from the Chilean population, we studied 54 GC samples using the gold standard detection method of EBV-encoded small RNA (EBER). The EBV-positive samples were subjected to amplification and sequencing of the Epstein-Barr virus nuclear protein 3A (EBNA3A) gene to evaluate the genetic diversity of EBV strains circulating in southern Chile. In total, 22.2% of the GC samples were EBV-positive and significantly associated with diffuse-type histology (p = 0.003). Phylogenetic analyses identified EBV-1 and EBV-2 in the GC samples, showing genetic diversity among Chilean isolates. This work provides important information for an epidemiological follow-up of the different EBV subtypes that may cause GC in southern Chile.


Assuntos
Infecções por Vírus Epstein-Barr , Neoplasias Gástricas , Humanos , Herpesvirus Humano 4/genética , Neoplasias Gástricas/epidemiologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/epidemiologia , Chile/epidemiologia , Filogenia , Variação Genética
17.
Cell Immunol ; 374: 104484, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35247713

RESUMO

The accumulation of protein aggregates is toxic and linked to different diseases such as neurodegenerative disorders, but the role of the immune system to target and destroy aggregate-carrying cells is still relatively unknown. Here we show a substrate-specific presentation of antigenic peptides to the direct MHC class I pathway via autophagy. We observed no difference in presentation of peptides derived from the viral EBNA1 protein following suppression of autophagy by knocking down Atg5 and Atg12. However, the same knock down treatment suppressed the presentation from ovalbumin. Fusing the aggregate-prone poly-glutamine (PolyQ) to the ovalbumin had no effect on antigen presentation via autophagy. Interestingly, fusing the EBNA1-derived gly-ala repeat (GAr) sequence to ovalbumin rendered the presentation Atg5/12 independent. We also demonstrate that the relative levels of protein expression did not affect autophagy-mediated antigen presentation. These data suggest a substrate-dependent presentation of antigenic peptides for the MHC class I pathway via autophagy and indicate that the GAr of the EBNA1 illustrates a novel virus-mediated mechanism for immune evasion of autophagy-dependent antigen presentation.


Assuntos
Apresentação de Antígeno , Antígenos de Histocompatibilidade Classe I , Antígenos , Autofagia , Antígenos de Histocompatibilidade Classe II/metabolismo , Evasão da Resposta Imune , Ovalbumina
18.
J Autoimmun ; 127: 102781, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34952359

RESUMO

To investigate the molecular mechanisms through which Epstein-Barr virus (EBV) may contribute to Systemic Lupus Erythematosus (SLE) pathogenesis, we interrogated SLE genetic risk loci for signatures of EBV infection. We first compared the gene expression profile of SLE risk genes across 459 different cell/tissue types. EBV-infected B cells (LCLs) had the strongest representation of highly expressed SLE risk genes. By determining an SLE risk allele effect on gene expression (expression quantitative trait loci, eQTL) in LCLs and 16 other immune cell types, we identified 79 SLE risk locus:gene pairs putatively interacting with EBV infection. A total of 10 SLE risk genes from this list (CD40, LYST, JAZF1, IRF5, BLK, IKZF2, IL12RB2, FAM167A, PTPRC and SLC15A) were targeted by the EBV transcription factor, EBNA2, differentially expressed between LCLs and B cells, and the majority were also associated with EBV DNA copy number, and expression level of EBV encoded genes. Our final gene network model based on these genes is suggestive of a nexus involving SLE risk loci and EBV latency III and B cell proliferation signalling pathways. Collectively, our findings provide further evidence to support the interaction between SLE risk loci and EBV infection that is in part mediated by EBNA2. This interplay may increase the tendency towards EBV lytic switching dependent on the presence of SLE risk alleles. These results support further investigation into targeting EBV as a therapeutic strategy for SLE.


Assuntos
Infecções por Vírus Epstein-Barr , Lúpus Eritematoso Sistêmico , Linfócitos B , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/genética , Herpesvirus Humano 4/genética , Humanos , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/metabolismo , Transcriptoma
19.
Proc Natl Acad Sci U S A ; 116(52): 26614-26624, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31822610

RESUMO

Epstein-Barr nuclear antigen 1 (EBNA1) plays a vital role in the maintenance of the viral genome and is the only viral protein expressed in nearly all forms of Epstein-Barr virus (EBV) latency and EBV-associated diseases, including numerous cancer types. To our knowledge, no specific agent against EBV genes or proteins has been established to target EBV lytic reactivation. Here we report an EBNA1- and Zn2+-responsive probe (ZRL5P4) which alone could reactivate the EBV lytic cycle through specific disruption of EBNA1. We have utilized the Zn2+ chelator to further interfere with the higher order of EBNA1 self-association. The bioprobe ZRL5P4 can respond independently to its interactions with Zn2+ and EBNA1 with different fluorescence changes. It can selectively enter the nuclei of EBV-positive cells and disrupt the oligomerization and oriP-enhanced transactivation of EBNA1. ZRL5P4 can also specifically enhance Dicer1 and PML expression, molecular events which had been reported to occur after the depletion of EBNA1 expression. Importantly, we found that treatment with ZRL5P4 alone could reactivate EBV lytic induction by expressing the early and late EBV lytic genes/proteins. Lytic induction is likely mediated by disruption of EBNA1 oligomerization and the subsequent change of Dicer1 expression. Our probe ZRL5P4 is an EBV protein-specific agent that potently reactivates EBV from latency, leading to the shrinkage of EBV-positive tumors, and our study also suggests the association of EBNA1 oligomerization with the maintenance of EBV latency.

20.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35806271

RESUMO

Epstein-Barr virus (EBV), the representative of the Herpesviridae family, is a pathogen extensively distributed in the human population. One of its most characteristic features is the capability to establish latent infection in the host. The infected cells serve as a sanctuary for the dormant virus, and therefore their desensitization to apoptotic stimuli is part of the viral strategy for long-term survival. For this reason, EBV encodes a set of anti-apoptotic products. They may increase the viability of infected cells and enhance their resistance to chemotherapy, thereby contributing to the development of EBV-associated diseases, including Burkitt's lymphoma (BL), Hodgkin's lymphoma (HL), gastric cancer (GC), nasopharyngeal carcinoma (NPC) and several other malignancies. In this paper, we have described the molecular mechanism of anti-apoptotic actions of a set of EBV proteins. Moreover, we have reviewed the pro-survival role of non-coding viral transcripts: EBV-encoded small RNAs (EBERs) and microRNAs (miRNAs), in EBV-carrying malignant cells. The influence of EBV on the expression, activity and/or intracellular distribution of B-cell lymphoma 2 (Bcl-2) protein family members, has been presented. Finally, we have also discussed therapeutic perspectives of targeting viral anti-apoptotic products or their molecular partners.


Assuntos
Infecções por Vírus Epstein-Barr , Neoplasias Nasofaríngeas , Apoptose , Infecções por Vírus Epstein-Barr/complicações , Antígenos Nucleares do Vírus Epstein-Barr , Herpesvirus Humano 4 , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA