Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Neurosurg Spine ; : 1-9, 2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32005025

RESUMO

OBJECTIVE: The C7 vertebral body is morphometrically unique; it represents the transition from the subaxial cervical spine to the upper thoracic spine. It has larger pedicles but relatively small lateral masses compared to other levels of the subaxial cervical spine. Although the biomechanical properties of C7 pedicle screws are superior to those of lateral mass screws, they are rarely placed due to increased risk of neurological injury. Although pedicle screw stimulation has been shown to be safe and effective in determining satisfactory screw placement in the thoracolumbar spine, there are few studies determining its utility in the cervical spine. Thus, the purpose of this study was to determine the feasibility, clinical reliability, and threshold characteristics of intraoperative evoked electromyographic (EMG) stimulation in determining satisfactory pedicle screw placement at C7. METHODS: The authors retrospectively reviewed a prospectively collected data set. All adult patients who underwent posterior cervical decompression and fusion with placement of C7 pedicle screws at the authors' institution between January 2015 and March 2019 were identified. Demographic, clinical, neurophysiological, operative, and radiographic data were gathered. All patients underwent postoperative CT scanning, and the position of C7 pedicle screws was compared to intraoperative neurophysiological data. RESULTS: Fifty-one consecutive C7 pedicle screws were stimulated and recorded intraoperatively in 25 consecutive patients. Based on EMG findings, 1 patient underwent intraoperative repositioning of a C7 pedicle screw, and 1 underwent removal of a C7 pedicle screw. CT scans demonstrated ideal placement of the C7 pedicle screw in 40 of 43 instances in which EMG stimulation thresholds were > 15 mA. In the remaining 3 cases the trajectories were suboptimal but safe. When the screw stimulation thresholds were between 11 and 15 mA, 5 of 6 screws were suboptimal but safe, and in 1 instance was potentially dangerous. In instances in which the screw stimulated at thresholds ≤ 10 mA, all trajectories were potentially dangerous with neural compression. CONCLUSIONS: Ideal C7 pedicle screw position strongly correlated with EMG stimulation thresholds > 15 mA. In instances, in which the screw stimulates at values between 11 and 15 mA, screw trajectory exploration is recommended. Screws with thresholds ≤ 10 mA should always be explored, and possibly repositioned or removed. In conjunction with other techniques, EMG threshold testing is a useful and safe modality in determining appropriate C7 pedicle screw placement.

2.
J Neurosurg ; : 1-11, 2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31653805

RESUMO

OBJECTIVE: Patients with neurofibromatosis type 1 (NF1) are predisposed to visceral neurofibromas, some of which can progress to premalignant atypical neurofibromas (ANFs) and malignant peripheral nerve sheath tumors (MPNSTs). Though subtotal resection of ANF may prevent malignant transformation and thus deaths with no neural complications, local recurrences require reoperation. The aim of this study was to assess the surgical morbidity associated with marginal resection of targeted ANF nodules identified via preoperative serial volumetric MRI and 18F-FDG-PET imaging. METHODS: The authors analyzed clinical outcomes of 16 NF resections of 21 tumors in 11 NF1 patients treated at the NIH Clinical Center between 2008 and 2018. Preoperative volumetric growth rates and 18F-FDG-PET SUVMax (maximum standardized uptake value within the tumor) of the target lesions and any electromyographic or nerve conduction velocity abnormalities of the parent nerves were measured and assessed in tandem with postoperative complications, histopathological classification of the resected tumors, and surgical margins through Dunnett's multiple comparisons test and t-test. The surgical approach for safe marginal resection of ANF was also described. RESULTS: Eleven consecutive NF1 patients (4 male, 7 female; median age 18.5 years) underwent 16 surgical procedures for marginal resections of 21 tumors. Preoperatively, 13 of the 14 (93%) sets of serial MRI studies and 10 of the 11 (91%) 18F-FDG-PET scans showed rapid growth (≥ 20% increase in volume per year) and avidity (SUVMax ≥ 3.5) of the identified tumor, respectively (median tumor size 48.7 cm3; median growth rate 92% per year; median SUVMax 6.45). Most surgeries (n = 14, 88%) resulted in no persistent postoperative parent nerve-related complications, and to date, none of the resected tumors have recurred. The median length of postoperative follow-up has been 2.45 years (range 0.00-10.39 years). Histopathological analysis confirmed significantly greater SUVMax among the ANFs (6.51 ± 0.83, p = 0.0042) and low-grade MPNSTs (13.8, p = 0.0001) than in benign neurofibromas (1.9). CONCLUSIONS: This report evaluates the utility of serial imaging (MRI and 18F-FDG-PET SUVMax) to successfully detect ANF and demonstrates that safe, fascicle-sparing gross-total, extracapsular resection of ANF is possible with the use of intraoperative nerve stimulation and microdissection of nerve fascicles.

3.
J Neurosurg Spine ; 29(3): 292-305, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29905525

RESUMO

OBJECTIVE The overall goal of this study was to develop an image-guided spinal stereotactic setup for intraoperative intraspinal microstimulation (ISMS). System requirements were as follows: 1) ability to place implants in various segments of the spinal cord, targeting the gray matter with a < 0.5-mm error; 2) modularity; and 3) compatibility with standard surgical tools. METHODS A spine-mounted stereotactic system was developed, optimized, and tested in pigs. The system consists of a platform supporting a micromanipulator with 6 degrees of freedom. It is modular and flexible in design and can be applied to various regions of the spine. An intraoperative ultrasound imaging technique was also developed and assessed for guidance of electrode alignment prior to and after electrode insertion into the spinal cord. Performance of the ultrasound-guided stereotactic system was assessed both in pigs (1 live and 6 fresh cadaveric pigs) and on the bench using four gelatin-based surrogate spinal cords. Pig experiments were conducted to evaluate the performance of ultrasound imaging in aligning the electrode trajectory using three techniques and under two conditions. Benchtop experiments were performed to assess the performance of ultrasound-guided targeting more directly. These experiments were used to quantify the accuracy of electrode alignment as well as assess the accuracy of the implantation depth and the error in spatial targeting within the gray matter of the spinal cord. As proof of concept, an intraoperative ISMS experiment was also conducted in an additional live pig using the stereotactic system, and the resulting movements and electromyographic responses were recorded. RESULTS The stereotactic system was quick to set up (< 10 minutes) and provided sufficient stability and range of motion to reach the ISMS targets reliably in the pigs. Transverse ultrasound images with the probe angled at 25°-45° provided acceptable contrast between the gray and white matter of the spinal cord. In pigs, the largest electrode alignment error using ultrasound guidance, relative to the minor axis of the spinal cord, was ≤ 3.57° (upper bound of the 95% confidence interval). The targeting error with ultrasound guidance in bench testing for targets 4 mm deep into the surrogate spinal cords was 0.2 ± 0.02 mm (mean ± standard deviation). CONCLUSIONS The authors developed and evaluated an ultrasound-guided spinal stereotactic system for precise insertion of intraspinal implants. The system is compatible with existing spinal instrumentation. Intraoperative ultrasound imaging of the spinal cord aids in alignment of the implants before insertion and provides feedback during and after implantation. The ability of ultrasound imaging to distinguish between spinal cord gray and white matter also improves confidence in the localization of targets within the gray matter. This system would be suitable for accurate guidance of intraspinal electrodes and drug or cell injections.


Assuntos
Eletrodos Implantados , Medula Espinal/cirurgia , Técnicas Estereotáxicas , Ultrassonografia de Intervenção/métodos , Animais , Medula Espinal/diagnóstico por imagem , Suínos
4.
J Neurosurg ; 128(3): 885-890, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28498061

RESUMO

OBJECTIVE The purpose of this study was to evaluate whether intraoperative monitoring of lateral spread response (LSR) improves the efficacy of microvascular decompression (MVD) for hemifacial spasm (HFS). METHODS In this prospective study, patients undergoing MVD for HFS were assigned to one of 2 groups, Group A (MVD with intraoperative LSR monitoring) or Group B (MVD without LSR monitoring). Clinical outcome at 12 months after surgery was assessed through telephone survey. Data analysis was performed to investigate the effect of intraoperative LSR monitoring on efficacy of MVD. RESULTS A total of 283 patients were enrolled in the study, 145 in Group A and 138 in Group B. There was no statistically significant difference between the 2 groups with respect to the percentage of patients who had spasm relief at either 1 week (Group A 87.59% vs Group B 83.33%; p = 0.317) or 1 year (93.1% vs 94.2%; p = 0.809) after surgery. A clear-cut elimination of LSR during surgery was observed in 131 (90.34%) of 145 patients; LSR persisted in 14 patients (9.66%) at the end of the surgical procedure. Disappearance of LSR correlated with spasm-free status at 1 week postoperatively (p = 0.017) but not at 1 year postoperatively (p = 0.249). CONCLUSIONS Intraoperative LSR monitoring does not appear to provide significant benefit with respect to the outcome of MVD for HFS in skilled hands. Persistence of LSR does not always correlate with poor outcome, and LSR elimination should not be pursued in all patients after verification of complete decompression.


Assuntos
Espasmo Hemifacial/cirurgia , Cirurgia de Descompressão Microvascular/métodos , Monitorização Intraoperatória/métodos , Adulto , Nervo Facial/cirurgia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Resultado do Tratamento
5.
J Neurosurg ; : 1-10, 2018 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-29424647

RESUMO

OBJECTIVE Electrical stimulation of peripheral nerve tissue has been shown to accelerate axonal regeneration. Yet existing methods of applying electrical stimulation to injured peripheral nerves have presented significant barriers to clinical translation. In this study, the authors examined the use of a novel implantable wireless nerve stimulator capable of simultaneously delivering therapeutic electrical stimulation of injured peripheral nerve tissue and providing postoperative serial assessment of functional recovery. METHODS Flexible wireless stimulators were fabricated and implanted into Lewis rats. Thin-film implants were used to deliver brief electrical stimulation (1 hour, 20 Hz) to sciatic nerves after nerve crush or nerve transection-and-repair injuries. RESULTS Electrical stimulation of injured nerves via implanted wireless stimulators significantly improved functional recovery. Brief electrical stimulation was observed to increase the rate of functional recovery after both nerve crush and nerve transection-and-repair injuries. Wireless stimulators successfully facilitated therapeutic stimulation of peripheral nerve tissue and serial assessment of nerve recovery. CONCLUSIONS Implantable wireless stimulators can deliver therapeutic electrical stimulation to injured peripheral nerve tissue. Implantable wireless nerve stimulators might represent a novel means of facilitating therapeutic electrical stimulation in both intraoperative and postoperative settings.

6.
J Neurosurg Pediatr ; 22(1): 89-101, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29652243

RESUMO

OBJECTIVE The utility of intraoperative neuromonitoring (ION), namely the study of muscle responses to radicular stimulation, remains controversial. The authors performed a prospective study combining ventral root (VR) stimulation for mapping anatomical levels and dorsal root (DR) stimulation as physiological testing of metameric excitability. The purpose was to evaluate to what extent the intraoperative data led to modifications in the initial decisions for surgical sectioning established by the pediatric multidisciplinary team (i.e., preoperative chart), and thus estimate its practical usefulness. METHODS Thirteen children with spastic diplegia underwent the following surgical protocol. First, a bilateral intradural approach was made to the L2-S2 VRs and DRs at the exit from or entry to their respective dural sheaths, through multilevel interlaminar enlarged openings. Second, stimulation-just above the threshold-of the VR at 2 Hz to establish topography of radicular myotome distribution, and then of the DR at 50 Hz as an excitability test of root circuitry, with independent identification of muscle responses by the physiotherapist and by electromyographic recordings. The study aimed to compare the final amounts of root sectioning-per radicular level, established after intraoperative neuromonitoring guidance-with those determined by the multidisciplinary team in the presurgical chart. RESULTS The use of ION resulted in differences in the final percentage of root sectioning for all root levels. The root levels corresponding to the upper lumbar segments were modestly excitable under DR stimulation, whereas progressively lower root levels displayed higher excitability. The difference between root levels was highly significant, as evaluated by electromyography (p = 0.00004) as well as by the physiotherapist (p = 0.00001). Modifications were decided in 11 of the 13 patients (84%), and the mean absolute difference in the percentage of sectioning quantity per radicular level was 8.4% for L-2 (p = 0.004), 6.4% for L-3 (p = 0.0004), 19.6% for L-4 (p = 0.00003), 16.5% for L-5 (p = 0.00006), and 3.2% for S-1 roots (p = 0.016). Decreases were most frequently decided for roots L-2 and L-3, whereas increases most frequently involved roots L-4 and L-5, with the largest changes in terms of percentage of sectioning. CONCLUSIONS The use of ION during dorsal rhizotomy led to modifications regarding which DRs to section and to what extent. This was especially true for L-4 and L-5 roots, which are known to be involved in antigravity and pelvic stability functions. In this series, ION contributed significantly to further adjust the patient-tailored dorsal rhizotomy procedure to the clinical presentation and the therapeutic goals of each patient.


Assuntos
Paralisia Cerebral/cirurgia , Monitorização Intraoperatória/métodos , Rizotomia/métodos , Raízes Nervosas Espinhais/cirurgia , Adolescente , Paralisia Cerebral/fisiopatologia , Criança , Estimulação Elétrica , Eletromiografia , Feminino , Humanos , Masculino
7.
J Neurosurg ; 130(1): 17-27, 2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29473778

RESUMO

OBJECTIVEApraxia is a cognitive-motor deficit affecting the execution of skilled movements, termed praxis gestures, in the absence of primary sensory or motor disorders. In patients affected by stroke, apraxia is associated with lesions of the lateral parietofrontal stream, connecting the posterior parietal areas with the ventrolateral premotor area and subserving sensory-motor integration for the hand movements. In the neurosurgical literature to date, there are few reports regarding the incidence of apraxia after glioma surgery. A retrospective analysis of patients who harbored a glioma around the central sulcus and close to the parietofrontal circuits in depth showed a high incidence of long-term postoperative hand apraxia, impairing the patients' quality of life. To avoid the occurrence of postoperative apraxia, the authors sought to develop an innovative intraoperative hand manipulation task (HMt) that can be used in association with the brain mapping technique to identify and preserve the cortical and subcortical structures belonging to the praxis network.METHODSThe intraoperative efficacy of the HMt was investigated by comparing the incidence of postoperative ideomotor apraxia between patients undergoing mapping with (n = 79) and without (n = 41) the HMt. Patient groups were balanced for all demographic and clinical features.RESULTSIn patients with lesions in the dominant hemisphere, the HMt dramatically reduced the incidence of apraxia, with a higher sensitivity for the ideomotor than for the constructional abilities; patients with lesions in the nondominant hemisphere benefitted from the HMt for both ideomotor and constructional abilities. The administration of the test did not reduce the extent of resection.CONCLUSIONSThe HMt is a safe and feasible intraoperative tool that allowed surgeons to prevent the occurrence of long-term hand apraxia while attaining resection goals for the surgical treatment of glioma.


Assuntos
Apraxia Ideomotora/prevenção & controle , Mapeamento Encefálico , Neoplasias Encefálicas/cirurgia , Glioma/cirurgia , Monitorização Intraoperatória , Complicações Pós-Operatórias/prevenção & controle , Apraxia Ideomotora/epidemiologia , Neoplasias Encefálicas/fisiopatologia , Feminino , Glioma/fisiopatologia , Mãos/fisiopatologia , Humanos , Incidência , Masculino , Complicações Pós-Operatórias/epidemiologia , Desempenho Psicomotor/fisiologia , Estudos Retrospectivos
8.
J Neurosurg ; 126(2): 379-385, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27177175

RESUMO

OBJECTIVE Hemifacial spasm (HFS) is a cranial nerve hyperactivity disorder characterized by unique neurophysiological features, although the underlying pathophysiology remains disputed. In this study, the authors compared the effects of desflurane on facial motor evoked potentials (MEPs) from the spasm and nonspasm sides of patients who were undergoing microvascular decompression (MVD) surgery to test the hypothesis that HFS is associated with a central elevation of facial motor neuron excitability. METHODS Facial MEPs were elicited in 31 patients who were undergoing MVD for HFS and were administered total intravenous anesthesia (TIVA) with or without additional desflurane, an inhaled anesthetic known to centrally suppress MEPs. All measurements were completed before dural opening while a consistent mean arterial blood pressure was maintained and electroencephalography was performed. The activation threshold voltage and mean amplitudes of the MEPs from both sides of the face were compared. RESULTS There was a significantly lower mean activation threshold of facial MEPs on the spasm side than on the nonspasm side (mean ± SD 162.9 ± 10.1 vs 198.3 ± 10.1 V, respectively; p = 0.01). In addition, MEPs were also elicited more readily when single-pulse transcranial electrical stimulation was used on the spasm side (74% vs 31%, respectively; p = 0.03). Although desflurane (1 minimum alveolar concentration) suppressed facial MEPs on both sides, the suppressive effects of desflurane were less on the spasm side than on the nonspasm side (59% vs 79%, respectively; p = 0.03), and M waves recorded from the mentalis muscle remained unchanged, which indicates that desflurane did not affect the peripheral facial nerve or neuromuscular junction. CONCLUSIONS Centrally acting inhaled anesthetic agents can suppress facial MEPs and therefore might interfere with intraoperative monitoring. The elevated motor neuron excitability and differential effects of desflurane between the spasm and nonspasm sides support a mechanism of central pathophysiology in HFS. Clinical trial registration no.: B2012:099 ( clinicaltrials.gov ).


Assuntos
Anestésicos Inalatórios/farmacologia , Desflurano/farmacologia , Potencial Evocado Motor/efeitos dos fármacos , Espasmo Hemifacial/fisiopatologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Potencial Evocado Motor/fisiologia , Feminino , Espasmo Hemifacial/etiologia , Espasmo Hemifacial/cirurgia , Humanos , Masculino , Cirurgia de Descompressão Microvascular , Pessoa de Meia-Idade , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/fisiologia , Estudos Prospectivos , Adulto Jovem
9.
J Neurosurg ; 126(3): 913-921, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27058194

RESUMO

OBJECTIVE Classically the 11th cranial nerve (CN XI, or accessory nerve) is described as having a cranial and a spinal root, the latter arising from the upper segments of the spinal cord through a number of very fine rootlets. According to classical knowledge, the cranial root gives motor innervation to the vocal cords, whereas the spinal root provides the motor innervation of the sternocleidomastoid muscle (SCM) and of the upper portions of the trapezius muscle (TZ). The specific function of each of the rootlets of the spinal component is not well known. Therefore the authors aimed to map, using intraoperative direct electrical stimulation and electromyographic (EMG) recordings, the innervation territory of these rootlets in relation to their exit level from the CNS. METHODS Forty-nine patients undergoing surgery with intradural exposure at the craniocervical junction were enrolled in the study. The EMG recordings included the sternal and clavicular parts of the SCM (SCM-S and SCM-C), the superior and middle parts of the TZ (TZ-S and TZ-M), and whenever possible the vocal cords. The main trunk of CN XI, its roots (both cranial and spinal), and when possible the fine cervical rootlets, were stimulated at predetermined locations, from the jugular foramen down to the lowest cervical level exposed. The EMG responses were collected, and a map of the responses was drawn up. RESULTS Monitoring and stimulation of the spinal root were performed in all cases, whereas for the cranial root this was possible in only 19 cases. A total of 262 stimulation sites were explored: 70 at the common trunk of the nerve, 19 at the cranial root, 136 at various levels on the spinal root, and 37 at the cervical rootlets. A vocal cord response was obtained by stimulation of the cranial root in 84.2% (16/19); absence of response was considered to have a technical origin. In no case did the vocal cords respond to the stimulation of the spinal root or rootlets. Stimulation of the cervical rootlets yielded responses that differed according to the level of stimulation: at C-1 the SCM-S responded 95.8% of the time (23/24); at C-2 the SCM-C responded 90.0% of the time (9/10); at C-3 the TZ-S responded 66.6% of the time (2/3); and below that level only the TZ-M responded. The spinal root stimulated at its various levels responded accordingly. CONCLUSIONS The function of each of the rootlets of CN XI appears to be specific. The cranial root contributes, independently of the spinal root, to the innervation of the vocal cords, which makes it a specific entity. The spinal root innervates the SCM and TZ with a cranio-caudal motor organization of its cervical rootlets.


Assuntos
Nervo Acessório/anatomia & histologia , Nervo Acessório/fisiologia , Monitorização Neurofisiológica Intraoperatória , Adulto , Idoso , Malformação de Arnold-Chiari/fisiopatologia , Malformação de Arnold-Chiari/cirurgia , Músculos do Dorso/inervação , Músculos do Dorso/fisiologia , Mapeamento Encefálico , Neoplasias do Sistema Nervoso Central/fisiopatologia , Neoplasias do Sistema Nervoso Central/cirurgia , Estimulação Elétrica , Eletromiografia , Feminino , Neuroimagem Funcional , Humanos , Masculino , Pessoa de Meia-Idade , Músculos do Pescoço/inervação , Músculos do Pescoço/fisiologia , Adulto Jovem
10.
J Neurosurg Spine ; 25(5): 566-571, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27285667

RESUMO

The authors report herein a case of anterior cervical discectomy and fusion (ACDF) surgery in which findings on somatosensory evoked potential (SSEP) monitoring led to the correction of carotid artery compression in a patient with a vascularly isolated hemisphere (no significant collateral blood vessels to the carotid artery territory). The amplitude of the cortical SSEP component to left ulnar nerve stimulation progressively decreased in multiple runs, but there were no changes in the cervicomedullary SSEP component to the same stimulus. When the lateral (right-sided) retractor was removed, the cortical SSEP component returned to baseline. The retraction was then intermittently relaxed during the rest of the operation, and the patient suffered no neurological morbidity. Magnetic resonance angiography demonstrated a vascularly isolated right hemisphere. During anterior cervical spine surgery, carotid artery compression by the retractor can cause hemispheric ischemia and infarction in patients with inadequate collateral circulation. The primary purpose of SSEP monitoring during ACDF surgery is to detect compromise of the dorsal column somatosensory pathways within the cervical spinal cord, but intraoperative SSEP monitoring can also detect hemispheric ischemia. Concurrent recording of cervicomedullary SSEPs can help differentiate cortical SSEP changes due to hemispheric ischemia from those due to compromise of the dorsal column pathways. If there are adverse changes in the cortical SSEPs but no changes in the cervicomedullary SSEPs, the possibility of hemispheric ischemia due to carotid artery compression by the retractor should be considered.


Assuntos
Artéria Carótida Primitiva/fisiopatologia , Vértebras Cervicais/cirurgia , Discotomia/métodos , Potenciais Somatossensoriais Evocados , Monitorização Neurofisiológica Intraoperatória/métodos , Fusão Vertebral/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Isquemia Encefálica/diagnóstico , Isquemia Encefálica/etiologia , Isquemia Encefálica/fisiopatologia , Discotomia/efeitos adversos , Lateralidade Funcional , Humanos , Deslocamento do Disco Intervertebral/complicações , Deslocamento do Disco Intervertebral/diagnóstico , Deslocamento do Disco Intervertebral/fisiopatologia , Deslocamento do Disco Intervertebral/cirurgia , Masculino , Pessoa de Meia-Idade , Fusão Vertebral/efeitos adversos
11.
J Neurosurg ; 123(1): 270-82, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25679274

RESUMO

OBJECT: Transection of peripheral nerves produces loss of sensory and/or motor function. After complete nerve cutting, the distal and proximal segment ends retract, but if both ends are bridged with unaltered chitosan, progesterone-impregnated chitosan, or silicone tubes, an axonal repair process begins. Progesterone promotes nerve repair and has neuroprotective effects thwarting regulation of neuron survival, inflammation, and edema. It also modulates aberrant axonal sprouting and demyelination. The authors compared the efficacy of nerve recovery after implantation of progesterone-loaded chitosan, unaltered chitosan, or silicone tubes after sciatic nerve transection in rats. METHODS: After surgical removal of a 5-mm segment of the proximal sciatic nerve, rats were implanted with progesterone-loaded chitosan, unaltered chitosan, or silicone tubes in the transected nerve for evaluating progesterone and chitosan effects on sciatic nerve repair and ipsilateral hindlimb kinematic function, as well as on gastrocnemius electro-myographic responses. In some experiments, tube implantation was performed 90 minutes after nerve transection. RESULTS: At 90 days after sciatic nerve transection and tube implantation, rats with progesterone-loaded chitosan tubes showed knee angular displacement recovery and better outcomes for step length, velocity of locomotion, and normal hindlimb raising above the ground. In contrast, rats with chitosan-only tubes showed reduced normal raising and pendulum-like hindlimb movements. Aberrant fibers coming from the tibial nerve innervated the gastrocnemius muscle, producing electromyographic responses. Electrical responses in the gastrocnemius muscle produced by sciatic nerve stimulation occurred only when the distal nerve segment was stimulated; they were absent when the proximal or intratubular segment was stimulated. A clear sciatic nerve morphology with some myelinated fiber fascicles appeared in the tube section in rats with progesterone-impregnated chitosan tubes. Some gastrocnemius efferent fibers were partially repaired 90 days after nerve resection. The better outcome in knee angle displacement may be partially attributable to the aberrant neuromuscular synaptic effects, since nerve conduction in the gastrocnemius muscle could be blocked in the progesterone-impregnated chitosan tubes. In addition, in the region of the gap produced by the nerve resection, the number of axons and amount of myelination were reduced in the sciatic nerve implanted with chitosan, progesterone-loaded chitosan, and silicone tubes. At 180 days after sciatic nerve sectioning, the knee kinematic function recovered to a level observed in control rats of a similar age. In rats with progesterone-loaded chitosan tubes, stimulation of the proximal and intratubular sciatic nerve segments produced an electromyographic response. The axon morphology of the proximal and intratubular segments of the sciatic nerve resembled that of the contralateral nontransected nerve. CONCLUSIONS: Progesterone-impregnated chitosan tubes produced aberrant innervation of the gastrocnemius muscle, which allowed partial recovery of gait locomotion and could be adequate for reinnervating synergistic denervated muscles while a parent innervation is reestablished. Hindlimb kinematic parameters differed between younger (those at 90 days) and older (those at 180 days) rats.


Assuntos
Locomoção/efeitos dos fármacos , Músculo Esquelético/inervação , Regeneração Nervosa/fisiologia , Progesterona/farmacologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Nervo Isquiático/lesões , Nervo Tibial/fisiologia , Animais , Quitosana , Eletromiografia , Locomoção/fisiologia , Masculino , Modelos Animais , Regeneração Nervosa/efeitos dos fármacos , Neurônios Aferentes/efeitos dos fármacos , Neurônios Aferentes/fisiologia , Progesterona/administração & dosagem , Ratos , Ratos Wistar , Recuperação de Função Fisiológica/fisiologia , Nervo Isquiático/fisiologia , Nervo Isquiático/cirurgia , Silicones , Nervo Tibial/efeitos dos fármacos
12.
J Neurosurg ; 123(1): 232-242, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25479124

RESUMO

OBJECT: Despite a promising outlook, existing intraspinal microstimulation (ISMS) techniques for restoring functional motor control after spinal cord injury are not yet suitable for use outside a controlled laboratory environment. Thus, successful application of ISMS therapy in humans will require the use of versatile chronic neurostimulation systems. The objective of this study was to establish proof of principle for wireless control of ISMS to evoke controlled motor function in a rodent model of complete spinal cord injury. METHODS: The lumbar spinal cord in each of 17 fully anesthetized Sprague-Dawley rats was stimulated via ISMS electrodes to evoke hindlimb function. Nine subjects underwent complete surgical transection of the spinal cord at the T-4 level 7 days before stimulation. Targeting for both groups (spinalized and control) was performed under visual inspection via dorsal spinal cord landmarks such as the dorsal root entry zone and the dorsal median fissure. Teflon-insulated stimulating platinum-iridium microwire electrodes (50 µm in diameter, with a 30- to 60-µm exposed tip) were implanted within the ventral gray matter to an approximate depth of 1.8 mm. Electrode implantation was performed using a free-hand delivery technique (n = 12) or a Kopf spinal frame system (n = 5) to compare the efficacy of these 2 commonly used targeting techniques. Stimulation was controlled remotely using a wireless neurostimulation control system. Hindlimb movements evoked by stimulation were tracked via kinematic markers placed on the hips, knees, ankles, and paws. Postmortem fixation and staining of the spinal cord tissue were conducted to determine the final positions of the stimulating electrodes within the spinal cord tissue. RESULTS: The results show that wireless ISMS was capable of evoking controlled and sustained activation of ankle, knee, and hip muscles in 90% of the spinalized rats (n = 9) and 100% of the healthy control rats (n = 8). No functional differences between movements evoked by either of the 2 targeting techniques were revealed. However, frame-based targeting required fewer electrode penetrations to evoke target movements. CONCLUSIONS: Clinical restoration of functional movement via ISMS remains a distant goal. However, the technology presented herein represents the first step toward restoring functional independence for individuals with chronic spinal cord injury.


Assuntos
Estimulação Elétrica/métodos , Paralisia/terapia , Traumatismos da Medula Espinal/terapia , Medula Espinal/fisiopatologia , Tecnologia sem Fio , Animais , Potencial Evocado Motor/fisiologia , Feminino , Microeletrodos , Modelos Animais , Movimento/fisiologia , Músculo Esquelético/inervação , Músculo Esquelético/fisiologia , Paralisia/fisiopatologia , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/fisiopatologia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA