Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33903242

RESUMO

Infection with obligatory intracellular bacteria is difficult to treat, as intracellular targets and delivery methods of therapeutics are not well known. Ehrlichia translocated factor-1 (Etf-1), a type IV secretion system (T4SS) effector, is a primary virulence factor for an obligatory intracellular bacterium, Ehrlichia chaffeensis In this study, we developed Etf-1-specific nanobodies (Nbs) by immunizing a llama to determine if intracellular Nbs block Etf-1 functions and Ehrlichia infection. Of 24 distinct anti-Etf-1 Nbs, NbD7 blocked mitochondrial localization of Etf-1-GFP in cotransfected cells. NbD7 and control Nb (NbD3) bound to different regions of Etf-1. Size-exclusion chromatography showed that the NbD7 and Etf-1 complex was more stable than the NbD3 and Etf-1 complex. Intracellular expression of NbD7 inhibited three activities of Etf-1 and E. chaffeensis: up-regulation of mitochondrial manganese superoxide dismutase, reduction of intracellular reactive oxygen species, and inhibition of cellular apoptosis. Consequently, intracellular NbD7 inhibited Ehrlichia infection, whereas NbD3 did not. To safely and effectively deliver Nbs into the host cell cytoplasm, NbD7 was conjugated to cyclized cell-permeable peptide 12 (CPP12-NbD7). CPP12-NbD7 effectively entered mammalian cells and abrogated the blockade of cellular apoptosis caused by E. chaffeensis and inhibited infection by E. chaffeensis in cell culture and in a severe combined-immunodeficiency mouse model. Our results demonstrate the development of an Nb that interferes with T4SS effector functions and intracellular pathogen infection, along with an intracellular delivery method for this Nb. This strategy should overcome current barriers to advance mechanistic research and develop therapies complementary or alternative to the current broad-spectrum antibiotic.


Assuntos
Ehrlichia chaffeensis/efeitos dos fármacos , Ehrlichiose/tratamento farmacológico , Anticorpos de Domínio Único/farmacologia , Sistemas de Secreção Tipo IV/genética , Animais , Apoptose/genética , Subpopulações de Linfócitos B/imunologia , Ehrlichia chaffeensis/genética , Ehrlichia chaffeensis/imunologia , Ehrlichia chaffeensis/patogenicidade , Ehrlichiose/genética , Ehrlichiose/imunologia , Ehrlichiose/patologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Anticorpos de Domínio Único/imunologia , Sistemas de Secreção Tipo IV/antagonistas & inibidores , Sistemas de Secreção Tipo IV/imunologia , Fatores de Virulência
2.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34074773

RESUMO

Iron is essential for survival and proliferation of Ehrlichia chaffeensis, an obligatory intracellular bacterium that causes an emerging zoonosis, human monocytic ehrlichiosis. However, how Ehrlichia acquires iron in the host cells is poorly understood. Here, we found that native and recombinant (cloned into the Ehrlichia genome) Ehrlichia translocated factor-3 (Etf-3), a previously predicted effector of the Ehrlichia type IV secretion system (T4SS), is secreted into the host cell cytoplasm. Secreted Etf-3 directly bound ferritin light chain with high affinity and induced ferritinophagy by recruiting NCOA4, a cargo receptor that mediates ferritinophagy, a selective form of autophagy, and LC3, an autophagosome biogenesis protein. Etf-3-induced ferritinophagy caused ferritin degradation and significantly increased the labile cellular iron pool, which feeds Ehrlichia Indeed, an increase in cellular ferritin by ferric ammonium citrate or overexpression of Etf-3 or NCOA4 enhanced Ehrlichia proliferation, whereas knockdown of Etf-3 in Ehrlichia via transfection with a plasmid encoding an Etf-3 antisense peptide nucleic acid inhibited Ehrlichia proliferation. Excessive ferritinophagy induces the generation of toxic reactive oxygen species (ROS), which could presumably kill both Ehrlichia and host cells. However, during Ehrlichia proliferation, we observed concomitant up-regulation of Ehrlichia Fe-superoxide dismutase, which is an integral component of Ehrlichia T4SS operon, and increased mitochondrial Mn-superoxide dismutase by cosecreted T4SS effector Etf-1. Consequently, despite enhanced ferritinophagy, cellular ROS levels were reduced in Ehrlichia-infected cells compared with uninfected cells. Thus, Ehrlichia safely robs host cell iron sequestered in ferritin. Etf-3 is a unique example of a bacterial protein that induces ferritinophagy to facilitate pathogen iron capture.


Assuntos
Autofagia/fisiologia , Bactérias/metabolismo , Ehrlichia chaffeensis/metabolismo , Ferritinas/metabolismo , Ferro/metabolismo , Autofagossomos/metabolismo , Bactérias/genética , Proteínas de Bactérias/metabolismo , Ehrlichia chaffeensis/genética , Ehrlichiose/microbiologia , Regulação Bacteriana da Expressão Gênica , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Mitocôndrias/metabolismo , Monócitos/metabolismo , Coativadores de Receptor Nuclear , RNA Ribossômico 16S , Espécies Reativas de Oxigênio/metabolismo , Sistemas de Secreção Tipo IV/metabolismo
3.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38473798

RESUMO

Ehrlichia chaffeensis infects human monocytes or macrophages and causes human monocytic ehrlichiosis (HME), an emerging life-threatening zoonosis. After internalization, E. chaffeensis resides in membrane-bound inclusions, E. chaffeensis-containing vesicles (ECVs), which have early endosome-like characteristics and fuse with early autophagosomes but not lysosomes, to evade host innate immune microbicidal mechanisms and obtain nutrients for bacterial intracellular growth. The mechanisms exploited by E. chaffeensis to modulate intracellular vesicle trafficking in host cells have not been comprehensively studied. Here, we demonstrate that E. chaffeensis type IV secretion system (T4SS) effector Etf-3 induces RAB15 upregulation in host cells and that RAB15, which is localized on ECVs, inhibits ECV fusion with lysosomes and induces autophagy. We found that E. chaffeensis infection upregulated RAB15 expression using qRT-PCR, and RAB15 was colocalized with E. chaffeensis using confocal microscopy. Silence of RAB15 using siRNA enhanced ECV maturation to late endosomes and fusion with lysosomes, as well as inhibited host cell autophagy. Overexpression of Etf-3 in host cells specifically induced RAB15 upregulation and autophagy. Our findings deepen the understanding of E. chaffeensis pathogenesis and adaptation in hosts as well as the function of RAB15 and facilitate the development of new therapeutics for HME.


Assuntos
Ehrlichia chaffeensis , Humanos , Regulação para Cima , Autofagossomos , Autofagia , Mecanismos de Defesa
4.
Crit Rev Biochem Mol Biol ; 56(4): 360-372, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33823724

RESUMO

Electron transfer flavoprotein dehydrogenase, also called ETF-ubiquinone oxidoreductase (ETF-QO), is a protein localized in the inner membrane of mitochondria, playing a central role in the electron-transfer system. Indeed, ETF-QO mediates electron transport from flavoprotein dehydrogenases to the ubiquinone pool. ETF-QO mutations are often associated with riboflavin-responsive multiple acyl-CoA dehydrogenase deficiency (RR-MADD, OMIM#231680), a multisystem genetic disease characterized by various clinical manifestations with different degrees of severity. In this review, we outline the clinical features correlated with ETF-QO deficiency and the benefits obtained from different treatments, such as riboflavin, L-carnitine and/or coenzyme Q10 supplementation, and a diet poor in fat and protein. Moreover, we provide a detailed summary of molecular and bioinformatic investigations, describing the mutations identified in ETFDH gene and highlighting their predicted impact on enzymatic structure and activity. In addition, we report biochemical and functional analysis, performed in HEK293 cells and patient fibroblasts and muscle cells, to show the relationship between the nature of ETFDH mutations, the variable impairment of enzyme function, and the different degrees of RR-MADD severity. Finally, we describe in detail 5 RR-MADD patients carrying different ETFDH mutations and presenting variable degrees of clinical symptom severity.


Assuntos
Flavoproteínas Transferidoras de Elétrons , Proteínas Ferro-Enxofre , Mitocôndrias , Deficiência Múltipla de Acil Coenzima A Desidrogenase , Mutação , Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Animais , Carnitina/genética , Carnitina/metabolismo , Flavoproteínas Transferidoras de Elétrons/genética , Flavoproteínas Transferidoras de Elétrons/metabolismo , Humanos , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Mitocôndrias/enzimologia , Mitocôndrias/genética , Deficiência Múltipla de Acil Coenzima A Desidrogenase/enzimologia , Deficiência Múltipla de Acil Coenzima A Desidrogenase/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/genética , Ubiquinona/metabolismo
5.
Plant J ; 109(1): 196-214, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34741366

RESUMO

The importance of the alternative donation of electrons to the ubiquinol pool via the electron-transfer flavoprotein/electron-transfer flavoprotein:ubiquinone oxidoreductase (ETF/ETFQO) complex has been demonstrated. However, the functional significance of this pathway during seed development and germination remains to be elucidated. To assess the function of this pathway, we performed a detailed metabolic and transcriptomic analysis of Arabidopsis mutants to test the molecular consequences of a dysfunctional ETF/ETFQO pathway. We demonstrate that the disruption of this pathway compromises seed germination in the absence of an external carbon source and also impacts seed size and yield. Total protein and storage protein content is reduced in dry seeds, whilst sucrose levels remain invariant. Seeds of ETFQO and related mutants were also characterized by an altered fatty acid composition. During seed development, lower levels of fatty acids and proteins accumulated in the etfqo-1 mutant as well as in mutants in the alternative electron donors isovaleryl-CoA dehydrogenase (ivdh-1) and d-2-hydroxyglutarate dehydrogenase (d2hgdh1-2). Furthermore, the content of several amino acids was increased in etfqo-1 mutants during seed development, indicating that these mutants are not using such amino acids as alternative energy source for respiration. Transcriptome analysis revealed alterations in the expression levels of several genes involved in energy and hormonal metabolism. Our findings demonstrated that the alternative pathway of respiration mediated by the ETF/ETFQO complex affects seed germination and development by directly adjusting carbon storage during seed filling. These results indicate a role for the pathway in the normal plant life cycle to complement its previously defined roles in the response to abiotic stress.


Assuntos
Aminoácidos/metabolismo , Arabidopsis/genética , Carbono/metabolismo , Flavoproteínas Transferidoras de Elétrons/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flavoproteínas Transferidoras de Elétrons/genética , Germinação , Proteínas Ferro-Enxofre/genética , Mutação , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Sementes/enzimologia , Sementes/genética , Sementes/crescimento & desenvolvimento , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo
6.
Plant Cell Rep ; 41(2): 431-446, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35031834

RESUMO

KEY MESSAGE: The functional absence of the electron-transfer flavoprotein: ubiquinone oxidoreductase (ETFQO) directly impacts electrons donation to the mitochondrial electron transport chain under carbohydrate-limiting conditions without major impacts on the respiration of cell cultures. Alternative substrates (e.g., amino acids) can directly feed electrons into the mitochondrial electron transport chain (mETC) via the electron transfer flavoprotein/electron-transfer flavoprotein: ubiquinone oxidoreductase (ETF/ETFQO) complex, which supports plant respiration during stress situations. By using a cell culture system, here we investigated the responses of Arabidopsis thaliana mutants deficient in the expression of ETFQO (etfqo-1) following carbon limitation and supplied with amino acids. Our results demonstrate that isovaleryl-CoA dehydrogenase (IVDH) activity was induced during carbon limitation only in wild-type and that these changes occurred concomit with enhanced protein content. By contrast, neither the activity nor the total amount of IVDH was altered in etfqo-1 mutants. We also demonstrate that the activities of mitochondrial complexes in etfqo-1 mutants, display a similar pattern as in wild-type cells. Our findings suggest that the defect of ETFQO protein culminates with an impaired functioning of the IVDH, since no induction of IVDH activity was observed. However, the functional absence of the ETFQO seems not to cause major impacts on plant respiration under carbon limiting conditions, most likely due to other alternative electron entry pathways.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Flavoproteínas Transferidoras de Elétrons , Aminoácidos de Cadeia Ramificada/farmacologia , Arabidopsis/citologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Metabolismo dos Carboidratos , Técnicas de Cultura de Células , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Flavoproteínas Transferidoras de Elétrons/genética , Flavoproteínas Transferidoras de Elétrons/metabolismo , Regulação da Expressão Gênica de Plantas , Isovaleril-CoA Desidrogenase/genética , Isovaleril-CoA Desidrogenase/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mutação
7.
J Bank Financ ; 136: 106413, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35079196

RESUMO

In the financial crisis and recession induced by the Covid-19 pandemic, many investment-grade firms became unable to borrow from securities markets. In response, the Fed not only reopened its commercial paper funding facility but also announced it would purchase newly issued and seasoned corporate bonds rated as investment grade before the Covid pandemic. We assess the effectiveness of this program using long sample periods, spanning the Great Depression through the Great and Covid Recessions. Findings indicate that the announcement of corporate bond backstop facilities helped stop risk premia from rising further than they had by late-March 2020. In doing so, these backstop facilities limited the role of external finance premia in amplifying the macroeconomic impact of the Covid pandemic. Nevertheless, the corporate bond programs blend the roles of the Federal Reserve in conducting monetary policy via its balance sheet, acting as a lender of last resort, and pursuing credit policies.

8.
Comput Econ ; 60(1): 47-69, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34230769

RESUMO

This work presents a novel application of the Stochastic Dual Dynamic Problem (SDDP) to large-scale asset allocation. We construct a model that delivers allocation policies based on how the portfolio performs with respect to user-defined (synthetic) indexes, and implement it in a SDDP open-source package. Based on US economic cycles and ETF data, we generate Markovian regime-dependent returns to solve an instance of multiple assets and 28 time periods. Results show our solution outperforms its benchmark, in both profitability and tracking error.

9.
J Biol Chem ; 295(36): 12618-12634, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32661195

RESUMO

A remarkable charge transfer (CT) band is described in the bifurcating electron transfer flavoprotein (Bf-ETF) from Rhodopseudomonas palustris (RpaETF). RpaETF contains two FADs that play contrasting roles in electron bifurcation. The Bf-FAD accepts electrons pairwise from NADH, directs one to a lower-reduction midpoint potential (E°) carrier, and the other to the higher-E° electron transfer FAD (ET-FAD). Previous work noted that a CT band at 726 nm formed when ET-FAD was reduced and Bf-FAD was oxidized, suggesting that both flavins participate. However, existing crystal structures place them too far apart to interact directly. We present biochemical experiments addressing this conundrum and elucidating the nature of this CT species. We observed that RpaETF missing either FAD lacked the 726 nm band. Site-directed mutagenesis near either FAD produced altered yields of the CT species, supporting involvement of both flavins. The residue substitutions did not alter the absorption maximum of the signal, ruling out contributions from residue orbitals. Instead, we propose that the residue identities modulate the population of a protein conformation that brings the ET-flavin and Bf-flavin into direct contact, explaining the 726 nm band based on a CT complex of reduced ET-FAD and oxidized Bf-FAD. This is corroborated by persistence of the 726 nm species during gentle protein denaturation and simple density functional theory calculations of flavin dimers. Although such a CT complex has been demonstrated for free flavins, this is the first observation of such, to our knowledge, in an enzyme. Thus, Bf-ETFs may optimize electron transfer efficiency by enabling direct flavin-flavin contact.


Assuntos
Proteínas de Bactérias/química , Flavina-Adenina Dinucleotídeo/química , Flavoproteínas/química , Rodopseudomonas/química , Proteínas de Bactérias/genética , Cristalografia por Raios X , Flavina-Adenina Dinucleotídeo/genética , Flavoproteínas/genética , Rodopseudomonas/genética
10.
J Inherit Metab Dis ; 44(2): 450-468, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33438237

RESUMO

Late-onset multiple acyl-CoA dehydrogenase deficiency (MADD) is the most common form of lipid storage myopathy. The disease is mainly caused by mutations in electron-transfer flavoprotein dehydrogenase gene (ETFDH), which leads to decreased levels of ETF:QO in skeletal muscle. However, the specific underlying mechanisms triggering such degradation remain unknown. We constructed expression plasmids containing wild type ETF:QO and mutants ETF:QO-A84T, R175H, A215T, Y333C, and cultured patient-derived fibroblasts containing the following mutations in ETFDH: c.250G>A (p.A84T), c.998A>G (p.Y333C), c.770A>G (p.Y257C), c.1254_1257delAACT (p. L418TfsX10), c.524G>A (p.R175H), c.380T>A (p.L127P), and c.892C>T (p.P298S). We used in vitro expression systems and patient-derived fibroblasts to detect stability of ETF:QO mutants then evaluated their interaction with Hsp70 interacting protein CHIP with active/inactive ubiquitin E3 ligase carboxyl terminus using western blot and immunofluorescence staining. This interaction was confirmed in vitro and in vivo by co-immunoprecipitation and immunofluorescence staining. We confirmed the existence two ubiquitination sites in mutant ETF:QO using mass spectrometry (MS) analysis. We found that mutant ETF:QO proteins were unstable and easily degraded in patient fibroblasts and in vitro expression systems by ubiquitin-proteasome pathway, and identified the specific ubiquitin E3 ligase as CHIP, which forms complex to control mutant ETF:QO degradation through poly-ubiquitination. CHIP-dependent degradation of mutant ETF:QO proteins was confirmed by MS and site-directed mutagenesis of ubiquitination sites. Hsp70 is directly involved in this process as molecular chaperone of CHIP. CHIP plays an important role in ubiquitin-proteasome pathway dependent degradation of mutant ETF:QO by working as a chaperone-assisted E3 ligase, which reveals CHIP's potential role in pathological mechanisms of late-onset MADD.


Assuntos
Flavoproteínas Transferidoras de Elétrons/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Deficiência Múltipla de Acil Coenzima A Desidrogenase/genética , Mutação/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Adolescente , Adulto , Criança , Flavoproteínas Transferidoras de Elétrons/genética , Feminino , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Proteínas Ferro-Enxofre/genética , Masculino , Mitocôndrias/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Riboflavina/metabolismo , Ubiquinona/metabolismo , Ubiquitina-Proteína Ligases/genética , Adulto Jovem
11.
Sensors (Basel) ; 21(4)2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33572453

RESUMO

Compressed sensing (CS) has been proposed to improve the efficiency of signal processing by simultaneously sampling and compressing the signal of interest under the assumption that the signal is sparse in a certain domain. This paper aims to improve the CS system performance by constructing a novel sparsifying dictionary and optimizing the measurement matrix. Owing to the adaptability and robustness of the Takenaka-Malmquist (TM) functions in system identification, the use of it as the basis function of a sparsifying dictionary makes the represented signal exhibit a sparser structure than the existing sparsifying dictionaries. To reduce the mutual coherence between the dictionary and the measurement matrix, an equiangular tight frame (ETF) based iterative minimization algorithm is proposed. In our approach, we modify the singular values without changing the properties of the corresponding Gram matrix of the sensing matrix to enhance the independence between the column vectors of the Gram matrix. Simulation results demonstrate the promising performance of the proposed algorithm as well as the superiority of the CS system, designed with the constructed sparsifying dictionary and the optimized measurement matrix, over existing ones in terms of signal recovery accuracy.

12.
Financ Res Lett ; 42: 101914, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36570608

RESUMO

We investigate the performance of SRI/ESG investments against conventional investments during the COVID-19 pandemic. Although previous studies have examined the performance of SRI during financial crises, little is known about their performance during the COVID-19 crisis. Applying asset-pricing models, we analyze returns, abnormal returns, and the Sharpe ratio of the ESG ETFs in the US and the MSCI SRI indices for the world, the US, Japan, and Europe before and during the pandemic period vis-à-vis conventional investments. Our results confirm the greater outperformance of SRI indices during the pandemic. These findings have academic and practical implications.

13.
J Biol Chem ; 293(13): 4688-4701, 2018 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-29462786

RESUMO

A newly recognized third fundamental mechanism of energy conservation in biology, electron bifurcation, uses free energy from exergonic redox reactions to drive endergonic redox reactions. Flavin-based electron bifurcation furnishes low-potential electrons to demanding chemical reactions, such as reduction of dinitrogen to ammonia. We employed the heterodimeric flavoenzyme FixAB from the diazotrophic bacterium Rhodopseudomonas palustris to elucidate unique properties that underpin flavin-based electron bifurcation. FixAB is distinguished from canonical electron transfer flavoproteins (ETFs) by a second FAD that replaces the AMP of canonical ETF. We exploited near-UV-visible CD spectroscopy to resolve signals from the different flavin sites in FixAB and to interrogate the putative bifurcating FAD. CD aided in assigning the measured reduction midpoint potentials (E° values) to individual flavins, and the E° values tested the accepted model regarding the redox properties required for bifurcation. We found that the higher-E° flavin displays sequential one-electron (1-e-) reductions to anionic semiquinone and then to hydroquinone, consistent with the reactivity seen in canonical ETFs. In contrast, the lower-E° flavin displayed a single two-electron (2-e-) reduction without detectable accumulation of semiquinone, consistent with unstable semiquinone states, as required for bifurcation. This is the first demonstration that a FixAB protein possesses the thermodynamic prerequisites for bifurcating activity, and the separation of distinct optical signatures for the two flavins lays a foundation for mechanistic studies to learn how electron flow can be directed in a protein environment. We propose that a novel optical signal observed at long wavelength may reflect electron delocalization between the two flavins.


Assuntos
Monofosfato de Adenosina/química , Proteínas de Bactérias/química , Flavoproteínas Transferidoras de Elétrons/química , Flavina-Adenina Dinucleotídeo/química , Rodopseudomonas/enzimologia , Termodinâmica
14.
Biotechnol Bioeng ; 116(4): 805-815, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30537067

RESUMO

Halomonas has been developed as a platform for the next generation industrial biotechnology allowing open and nonsterile growth without microbial contamination under a high-salt concentration and alkali pH. To reduce downstream cost associated with continuous centrifugation and salt containing wastewater treatment, Halomonas campaniensis strain LS21 was engineered to become self-flocculating by knocking out an etf operon encoding two subunits of an electron transferring flavoprotein in the predicted electron transfer chain. Self-flocculation could be attributed to the decrease of the surface charge and increase of the cellular hydrophobicity resulted from deleted etf. A wastewaterless fermentation strategy based on the self-flocculating H. campaniensis was developed for growth and the production of poly-3-hydroxybutyrate (PHB) as an example. Most microbial cells flocculated and precipitated to the bottom of the bioreactor within 1 min after stopping the aeration and agitation. The supernatant can be used again without sterilization or inoculation for the growth of the next batch after collecting the precipitated cell mass. The wastewaterless process was conducted for four runs without generating wastewater. PHB accumulation by the self-flocculent strain was enhanced via promoter and ribosome binding site optimizations, the productivities of cell dry weight and PHB were increased from 0.45 and 0.18 g·L -1 ·hr -1 for the batch process compared to 0.82 and 0.33 g·L -1 ·hr -1 for the wastewaterless continuous process, respectively. This has clearly demonstrated the advantages of the wastewaterless process in that it not only reduces wastewater but also increases cell growth and product formation efficiency in a given period of time.


Assuntos
Fermentação , Halomonas/metabolismo , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo , Águas Residuárias/microbiologia , Reatores Biológicos/microbiologia , Engenharia Celular/métodos , Floculação , Halomonas/genética , Halomonas/crescimento & desenvolvimento , Microbiologia Industrial/métodos , Águas Residuárias/análise , Purificação da Água/métodos
15.
Microb Cell Fact ; 18(1): 36, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30760264

RESUMO

BACKGROUND: Interactions between microorganisms during specific steps of anaerobic digestion determine metabolic pathways in bioreactors and consequently the efficiency of fermentation processes. This study focuses on conversion of lactate and acetate to butyrate by bacteria of dark fermentation. The recently recognized flavin-based electron bifurcation as a mode of energy coupling by anaerobes increases our knowledge of anaerobic lactate oxidation and butyrate formation. RESULTS: Microbial communities from dark fermentation bioreactors or pure culture of Clostridium butyricum are able to convert lactate and acetate to butyrate in batch experiments. The ability of C. butyricum to transform lactate and acetate to butyrate was shown for the first time, with ethanol identified as an additional end product of this process. A search for genes encoding EtfAB complexes and their gene neighbourhood in C. butyricum and other bacteria capable of lactate and acetate conversion to butyrate as well as butyrate-producers only and the lactate oxidiser Acetobacterium woodii, revealed that the Etf complexes involved in (i) lactate oxidation and (ii) butyrate synthesis, form separate clusters. There is a more extent similarity between Etf subunits that are involved in lactate oxidation in various species (e.g. A. woodii and C. butyricum) than between the different etf gene products within the same species of butyrate producers. A scheme for the metabolic pathway of lactate and acetate transformation to butyrate in C. butyricum was constructed. CONCLUSIONS: Studies on the conversion of lactate and acetate to butyrate by microbial communities from dark fermentation bioreactors or Clostridium butyricum suggest that a phenomenon analogous to cross-feeding of lactate in gastrointestinal tract also occurs in hydrogen-yielding reactors. A scheme of lactate and acetate transformation pathway is proposed, based on the example of C. butyricum, which employs flavin-based electron bifurcation. This process utilizes electron-transferring flavoprotein (Etf) complexes specific for (i) lactate oxidation and (ii) butyrate formation. Phylogenetic analysis revealed that such complexes are encoded in the genomes of other bacteria capable of lactate and acetate conversion to butyrate. These findings contribute significantly to our understanding of the metabolic pathways and symbiotic interactions between bacteria during the acidogenic step of anaerobic digestion.


Assuntos
Acetatos/metabolismo , Butiratos/metabolismo , Clostridium butyricum/metabolismo , Fermentação , Ácido Láctico/metabolismo , Microbiota , Bactérias Anaeróbias/metabolismo , Reatores Biológicos/microbiologia , Clostridium butyricum/genética , Microbiologia Industrial , Redes e Vias Metabólicas
16.
Metab Eng ; 49: 275-286, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30219528

RESUMO

Halomonas bluephagenesis has been developed as a platform strain for the next generation industrial biotechnology (NGIB) with advantages of resistances to microbial contamination and high cell density growth (HCD), especially for production of polyhydroxyalkanoates (PHA) including poly(3-hydroxybutyrate) (PHB), poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P34HB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). However, little is known about the mechanism behind PHA accumulation under oxygen limitation. This study for the first time found that H. bluephagenesis utilizes NADH instead of NADPH as a cofactor for PHB production, thus revealing the rare situation of enhanced PHA accumulation under oxygen limitation. To increase NADH/NAD+ ratio for enhanced PHA accumulation under oxygen limitation, an electron transport pathway containing electron transfer flavoprotein subunits α and ß encoded by etf operon was blocked to increase NADH supply, leading to 90% PHB accumulation in the cell dry weight (CDW) of H. bluephagenesis compared with 84% by the wild type. Acetic acid, a cost-effective carbon source, was used together with glucose to balance the redox state and reduce inhibition on pyruvate metabolism, resulting in 22% more CDW and 94% PHB accumulation. The cellular redox state changes induced by the addition of acetic acid increased 3HV ratio in its copolymer PHBV from 4% to 8%, 4HB in its copolymer P34HB from 8% to 12%, respectively, by engineered H. bluephagenesis. The strategy of systematically modulation on the redox potential of H. bluephagenesis led to enhanced PHA accumulation and controllable monomer ratios in PHA copolymers under oxygen limitation, reducing energy consumption and scale-up complexity.


Assuntos
Halomonas/metabolismo , Hidroxibutiratos/metabolismo , Engenharia Metabólica , NAD/metabolismo , Poliésteres/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Halomonas/genética , NAD/genética , Oxigênio/metabolismo
17.
Sensors (Basel) ; 18(2)2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-29385059

RESUMO

Synthetic aperture radar (SAR) equipped on the hypersonic air vehicle in near space has many advantages over the conventional airborne SAR. However, its high-speed maneuvering characteristics with curved trajectory result in serious range migration, and exacerbate the contradiction between the high resolution and wide swath. To solve this problem, this paper establishes the imaging geometrical model matched with the flight trajectory of the hypersonic platform and the multichannel azimuth sampling model based on the displaced phase center antenna (DPCA) technology. Furthermore, based on the multichannel signal reconstruction theory, a more efficient spectrum reconstruction model using discrete Fourier transform is proposed to obtain the azimuth uniform sampling data. Due to the high complexity of the slant range model, it is difficult to deduce the processing algorithm for SAR imaging. Thus, an approximate range model is derived based on the minimax criterion, and the optimal second-order approximate coefficients of cosine function are obtained using the two-population coevolutionary algorithm. On this basis, aiming at the problem that the traditional Omega-K algorithm cannot compensate the residual phase with the difficulty of Stolt mapping along the range frequency axis, this paper proposes an Exact Transfer Function (ETF) algorithm for SAR imaging, and presents a method of range division to achieve wide swath imaging. Simulation results verify the effectiveness of the ETF imaging algorithm.

18.
Can J Microbiol ; 63(10): 857-863, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28817787

RESUMO

There are hundreds of essential genes in multidrug-resistant bacterial genomes, but only a few of their products are exploited as antibacterial targets. An example is the electron transfer flavoprotein (ETF), which is required for growth and viability in Burkholderia cenocepacia. Here, we evaluated ETF as an antibiotic target for Burkholderia cepacia complex (Bcc). Depletion of the bacterial ETF during infection of Caenorhabditis elegans significantly extended survival of the nematodes, proving that ETF is essential for survival of B. cenocepacia in this host model. In spite of the arrest in respiration in ETF mutants, the inhibition of etf expression did not increase the formation of persister cells, when treated with high doses of ciprofloxacin or meropenem. To test if etf translation could be inhibited by RNA interference, antisense oligonucleotides that target the etfBA operon were synthesized. One antisense oligonucleotide was effective in inhibiting etfB translation in vitro but not in vivo, highlighting the challenge of reduced membrane permeability for the design of drugs against B. cenocepacia. This work contributes to the validation of ETF of B. cenocepacia as a target for antibacterial therapy and demonstrates the utility of a C. elegans liquid killing assay to validate gene essentiality in an in vivo infection model.


Assuntos
Burkholderia cenocepacia/genética , Caenorhabditis elegans/microbiologia , Flavoproteínas Transferidoras de Elétrons/genética , Animais , Antibacterianos/farmacologia , Burkholderia cenocepacia/fisiologia , Caenorhabditis elegans/fisiologia , Permeabilidade da Membrana Celular , Ciprofloxacina/farmacologia , Flavoproteínas Transferidoras de Elétrons/metabolismo , Meropeném , Mutação , Oligonucleotídeos Antissenso/genética , Interferência de RNA , Tienamicinas/farmacologia
19.
Plant Cell Environ ; 39(6): 1304-19, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26616144

RESUMO

During dark-induced senescence isovaleryl-CoA dehydrogenase (IVDH) and D-2-hydroxyglutarate dehydrogenase (D-2HGDH) act as alternate electron donors to the ubiquinol pool via the electron-transfer flavoprotein/electron-transfer flavoprotein:ubiquinone oxidoreductase (ETF/ETFQO) pathway. However, the role of this pathway in response to other stresses still remains unclear. Here, we demonstrated that this alternative pathway is associated with tolerance to drought in Arabidopsis. In comparison with wild type (WT) and lines overexpressing D-2GHDH, loss-of-function etfqo-1, d2hgdh-2 and ivdh-1 mutants displayed compromised respiration rates and were more sensitive to drought. Our results demonstrated that an operational ETF/ETFQO pathway is associated with plants' ability to withstand drought and to recover growth once water becomes replete. Drought-induced metabolic reprogramming resulted in an increase in tricarboxylic acid (TCA) cycle intermediates and total amino acid levels, as well as decreases in protein, starch and nitrate contents. The enhanced levels of the branched-chain amino acids in loss-of-function mutants appear to be related to their increased utilization as substrates for the TCA cycle under water stress. Our results thus show that mitochondrial metabolism is highly active during drought stress responses and provide support for a role of alternative respiratory pathways within this response.


Assuntos
Aminoácidos de Cadeia Ramificada/fisiologia , Arabidopsis/fisiologia , Aminoácidos de Cadeia Ramificada/metabolismo , Arabidopsis/metabolismo , Respiração Celular/fisiologia , Ciclo do Ácido Cítrico/fisiologia , Desidratação/metabolismo , Desidratação/fisiopatologia , Fotossíntese/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Ácidos Tricarboxílicos/metabolismo
20.
Biochim Biophys Acta ; 1832(10): 1591-604, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23643711

RESUMO

The mitochondrial redox state plays a central role in the link between mitochondrial overloading and insulin resistance. However, the mechanism by which the ROS induce insulin resistance in skeletal muscle cells is not completely understood. We examined the association between mitochondrial function and H2O2 production in insulin resistant cells. Our hypothesis is that the low mitochondrial oxygen consumption leads to elevated ROS production by a mechanism associated with reduced PGC1α transcription and low content of phosphorylated CREB. The cells were transfected with either the encoded sequence for catalase overexpression or the specific siRNA for catalase inhibition. After transfection, myotubes were incubated with palmitic acid (500µM) and the insulin response, as well as mitochondrial function and fatty acid metabolism, was determined. The low mitochondrial oxygen consumption led to elevated ROS production by a mechanism associated with ß-oxidation of fatty acids. Rotenone was observed to reduce the ratio of ROS production. The elevated H2O2 production markedly decreased the PGC1α transcription, an effect that was accompanied by a reduced phosphorylation of Akt and CREB. The catalase transfection prevented the reduction in the phosphorylated level of Akt and upregulated the levels of phosphorylated CREB. The mitochondrial function was elevated and H2O2 production reduced, thus increasing the insulin sensitivity. The catalase overexpression improved mitochondrial respiration protecting the cells from fatty acid-induced, insulin resistance. This effect indicates that control of hydrogen peroxide production regulates the mitochondrial respiration preventing the insulin resistance in skeletal muscle cells by a mechanism associated with CREB phosphorylation and ß-oxidation of fatty acids.


Assuntos
Catalase/metabolismo , Peróxido de Hidrogênio/metabolismo , Resistência à Insulina , Mitocôndrias Musculares/fisiologia , Animais , Antioxidantes/metabolismo , Células Cultivadas , Masculino , Mitocôndrias Musculares/enzimologia , Músculo Esquelético/citologia , Músculo Esquelético/enzimologia , Músculo Esquelético/metabolismo , Consumo de Oxigênio , Ácido Palmítico/farmacologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA