Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 525
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(11): e2317702121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38446850

RESUMO

The electro-Fenton process is a state-of-the-art water treatment technology used to remove organic contaminants. However, the low O2 utilization efficiency (OUE, <1%) and high energy consumption remain the biggest obstacles to practical application. Here, we propose a local O2 concentrating (LOC) approach to increase the OUE by over 11-fold compared to the conventional simple O2 diffusion route. Due to the well-designed molecular structure, the LOC approach enables direct extraction of O2 from the bulk solution to the reaction interface; this eliminates the need to pump O2/air to overcome the sluggish O2 mass transfer and results in high Faradaic efficiencies (~50%) even under natural air diffusion conditions. Long-term operation of a flow-through pilot device indicated that the LOC approach saved more than 65% of the electric energy normally consumed in treating actual industrial wastewater, demonstrating the great potential of this system-level design to boost the electro-Fenton process for energy-efficient water remediation.

2.
Proc Natl Acad Sci U S A ; 120(13): e2213480120, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36952380

RESUMO

Peroxidase-like catalysts are safe and low-cost candidates to tackle the dilemma in constructing sustainable cathodic heterogeneous electro-Fenton (CHEF) catalysts for water purification, but the elusive structure-property relationship of enzyme-like catalysts constitutes a pressing challenge for the advancement of CHEF processes in practically relevant water and wastewater treatment. Herein, we probe the origins of catalytic efficiency in the CHEF process by artificially tailoring the peroxidase-like activity of Fe3O4 through a series of acetylated chitosan-based hydrogels, which serve as ecofriendly alternatives to traditional carbon shells. The optimized acetylated chitosan wrapping Fe3O4 hydrogel on the cathode shows an impressive activity and stability in CHEF process, overcoming the complicated and environmentally unfavored procedures in the electro-Fenton-related processes. Structural characterizations and theoretical calculations reveal that the amide group in chitosan can modulate the intrinsic redox capacity of surficial Fe sites on Fe3O4 toward CHEF catalysis via the neutral hydrogen bond. This work provides a sustainable path and molecule-level insight for the rational design of high-efficiency CHEF catalysts and beyond.

3.
Proc Natl Acad Sci U S A ; 120(39): e2305883120, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37725637

RESUMO

Inspired by the development of single-atom catalysts (SACs), the fabrication of multimetallic SACs can be a promising technical approach for the in situ electro-Fenton (EF) process. Herein, dual-functional atomically dispersed Mo-Fe sites embedded in carbon nitride (C3N5) (i.e., MoFe/C3N5) were synthesized via a facile SiO2 template method. The atomically isolated bimetallic configuration in MoFe/C3N5 was identified by combining the microscopic and spectroscopic techniques. The MoFe/C3N5 catalyst on the cathode exhibited a remarkable catalytic activity toward the three electron-dominated oxygen reduction reaction in sodium sulfate, leading to a highly effective EF reaction with a low overpotential for the removal of organic contaminants from wastewater. The new catalyst showed a superior performance over its conventional counterparts, owing to the dual functions of the dual-metal active sites. Density functional theory (DFT) analysis revealed that the dual-functional 50-MoFe/C3N5 catalyst enabled a synergistic action of the Mo-Fe dual single atomic centers, which can alter the adsorption/dissociation behavior and decrease the overall reaction barriers for effective organic oxidation during the EF process. This study not only sheds light on the controlled synthesis of atomically isolated catalyst materials but also provides deeper understanding of the structure-performance relationship of the nanocatalysts with dual active sites for the catalytic EF process. Additionally, the findings will promote the advanced catalysis for the treatment of emerging organic contaminants in water and wastewater.

4.
Environ Sci Technol ; 58(43): 19545-19554, 2024 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-39425788

RESUMO

Heterogeneous electro-Fenton degradation with 1O2 and •OH generated from O2 reduction is cost-effective for the removal of refractory organic pollutants from wastewater. As 1O2 is more tolerant to background constituents such as salt ions and a high pH value than •OH, tuning the production of 1O2 and •OH is important for efficient electro-Fenton degradation. However, it remains a great challenge to selectively produce 1O2 and improve the species yield. Herein, the electronic structure of atomically dispersed Cu-N4 sites was regulated by doping electron-deficient B into porous hollow carbon microspheres (CuBN-HCMs), which improved *O2 adsorption and significantly enhanced 1O2 selectivity in electro-Fenton degradation. Its 1O2 yield was 2.3 times higher than that of a Cu single-atom catalyst without B doping. Meanwhile, •OH was simultaneously generated as a minor species. The CuBN-HCMs were efficient for the electro-Fenton degradation of phenol, sulfamethoxazole, and bisphenol A with a high mineralization efficiency. Its kinetic constants showed insignificant changes under various anions and a wide pH range of 1-9. More importantly, it was energy-efficient for treating actual coking wastewater with a low energy consumption of 19.0 kWh kgCOD-1. The superior performance of the CuBN-HCMs was contributed from 1O2 and •OH and its high 1O2 selectivity.


Assuntos
Cobre , Cobre/química , Catálise , Poluentes Químicos da Água/química , Águas Residuárias/química , Ferro/química , Peróxido de Hidrogênio/química
5.
Environ Res ; 244: 117908, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38092238

RESUMO

Although the electro-Fenton (EF) process is effective for wastewater treatment, recycling spent catalysts remain a major challenge. Therefore, we introduce a reuse strategy for spent catalysts where an iron hydroxyphosphate [Fe5(PO4)4(OH)3·2H2O] catalyst is utilized. Fe5(PO4)4(OH)3·2H2O obtained •OH and •O2- by activating in-situ produced H2O2, and the degradation rate of sulfamethoxazole reached 94.5% after 120 min and showed excellent stability (maintained above 90%) for 10 cycles. Finally, the used catalyst was converted into slow-release ammonium ferrous phosphate (NH4FePO4·H2O) fertiliser at a conversion rate of 85.6%. NH4FePO4·H2O significantly promoted plant and seed growth within 6 days, highlighting the contribution of the resource recycling of the spent catalyst. This study serves as a valuable reference for the efficient utilization of spent catalysts. This study successfully applied EF catalysts and explored the recycling of spent catalysts.


Assuntos
Compostos Ferrosos , Ferro , Fosfatos , Poluentes Químicos da Água , Fertilizantes , Sulfametoxazol , Peróxido de Hidrogênio , Poluentes Químicos da Água/análise , Catálise , Oxirredução
6.
Environ Res ; 244: 117837, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38065381

RESUMO

This study investigated the removal performance of ofloxacin (OFL) by a novel electro-Fenton enhanced microfiltration membrane. The membranes used in this study consisted of metal-organic framework derived porous carbon, carbon nanotubes and Fe2+, which were able to produce hydroxyl radicals (•OH) in-situ via reducing O2 to hydrogen peroxide. Herein, membrane filtration with bias not only concentrated the pollutants to the level that could be efficiently treated by electro-Fenton but also confined/retained the toxic intermediates within the membrane to ensure a prolonged contact time with the oxidants. After validated by experiments, the applied bias of -1.0 V, pH of 3 and electrolyte concentration of 0.1 M were the relatively optimum conditions for OFL degradation. Under these conditions, the average OFL removal rate could be reach 75% with merely 5% membrane flux loss after 4 cycles operation by filtrating 1 mg/L OFL. Via decarboxylation reaction, piperazinyl ring opening, dealkylation and ipso substitution reaction, etc., OFL could be gradually and efficiently degraded to intermediate products and even to CO2 by •OH. Moreover, the oxidation reaction was preferred to following first-order reaction kinetics. This research verified a possibility for antibiotic removal by electro-enhanced microfiltration membrane.


Assuntos
Nanotubos de Carbono , Poluentes Químicos da Água , Ofloxacino , Porosidade , Antibacterianos , Oxidantes , Peróxido de Hidrogênio , Oxirredução
7.
Environ Res ; 261: 119647, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39032618

RESUMO

A Co3Mn-LDHs and carbon nanotube (Co3Mn-LDHs/CNT) composite catalyst was constructed for permonosulfate (PMS) activation and degrading sulfamethoxazole (SMX) under Vis light irradiation. The introduction of CNTs into Co3Mn-LDHs facilitate the exciton dissociation and carrier migration, and the e- and h+ were readily separated from Co3Mn-LDHs/CNT in the photocatalysis process, which promoted the production rate of reactive oxygen species (ROS), so the Co3Mn-LDHs + Vis + PMS system exhibited better activity with an SMX degradation ratio of 61.25% than those of Co3Mn-LDHs + Vis system (42.30%) and Co3Mn-LDHs + PMS system (48.30%). After 10 cycles, the degradation rate of SMX only decreased by 7.16%, indicating the good reusability of the Co3Mn-LDHs/CNTs catalyst. The results of electron paramagnetic resonance (EPR) analysis and radical quenching experiments demonstrated that that the SO4•- played crucial role for SMX removal in Co3Mn-LDHs/CNTs + Vis + PMS system, and both e- and h+ made an important contribution to activating PMS to produce ROS. Overall, this work provided an excellent catalyst for photo-assisted PMS activation and suggested the activation mechanism for organic pollutant remediation.


Assuntos
Nanotubos de Carbono , Sulfametoxazol , Sulfametoxazol/química , Nanotubos de Carbono/química , Catálise , Poluentes Químicos da Água/química , Hidróxidos/química , Sulfatos/química
8.
Environ Res ; 263(Pt 1): 120020, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39288546

RESUMO

The low yield of hydrogen peroxide, narrow pH application range, and secondary pollution due to iron sludge precipitation are the major drawbacks of the electro-Fenton (EF) process. Metal-free electro-Fenton technology based on carbonaceous materials is a promising green pollutant degradation technology. Activated carbon cathodes enriched with carbonyl functional groups were prepared using a two-step annealing method for the degradation of phenol pollutants. The •OH in the activation process of H2O2 were identified using the EPR test technique. The action mechanism of carbonyl groups on H2O2 activation was investigated in conjunction with density functional theory (DFT) calculations. The EPR tests demonstrated that the modified activated carbon could promote the in-situ activation of H2O2 to •OH. And the results of material analysis and DFT showed that C=O could facilitate the activation of hydrogen peroxide through the electron transfer mechanism as an electron-donating group. Electrochemical tests showed that both the oxygen reduction activity and 2e-ORR selectivity of the modified activated carbons were significantly improved. Compared with the original activated carbon cathode and EF, the degradation efficiency of phenol in the ACNH-1000/GF cathode was increased by 58.10% and 45.61%, respectively. Compared with EF, ACNH-1000/GF metal-free electro-Fenton effectively expands the pH application range, and is proven to be less affected by solution initial pH, while avoiding secondary pollution. The metal-free electro-Fenton system can save more than a quarter of the cost of EF system. This study has a deep understanding of the reaction mechanism of the carbonyl modified activated carbon, and provides valuable insights for the design of metal-free catalysts, so as to promote its application in the degradation of organic pollutants.

9.
Environ Res ; 261: 119775, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39134112

RESUMO

The performance of Electro-Fenton (EF) cathode materials is primarily assessed by H2O2 yield and Fe3+ reduction efficiency. This study explores the impact of pore structure in chitin-based porous carbon on EF cathode effectiveness. We fabricated mesoporous carbon (CPC-700-2) and microporous carbon (ZPC-700-3) using template and activation methods, retaining nitrogen from the precursors. CPC-700-2, with mesopores (3-5 nm), enhanced O2 diffusion and oxygen reduction, producing up to 778 mg/L of H2O2 in 90 min. ZPC-700-3, with a specific surface area of 1059.83 m2/g, facilitated electron transport and ion diffusion, achieving a Fe2+/Fe3+ conversion rate of 79.9%. EF systems employing CPC-700-2 or ZPC-700-3 as the cathode exhibited superior degradation performance, achieving 99% degradation of Rhodamine B, efficient degradation, and noticeable decolorization. This study provides a reference for the preparation of functionalized carbon cathode materials for efficient H2O2 production and effective Fe3+ reduction in EF systems.


Assuntos
Quitina , Eletrodos , Peróxido de Hidrogênio , Ferro , Oxirredução , Rodaminas , Peróxido de Hidrogênio/química , Quitina/química , Porosidade , Ferro/química , Rodaminas/química , Carbono/química , Poluentes Químicos da Água/química
10.
Environ Res ; 251(Pt 2): 118644, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38485074

RESUMO

Tetracycline hydrochloride (TC) accumulates in large quantities in the water environment, causing a serious threat to human health and ecological environment safety. This research focused on developing cost-effective catalysts with high 2e- selectivity for electro-Fenton (EF) technology, a green pollution treatment method. Defective nitrogen-doped porous carbon (d-NPC) was prepared using the metal-organic framework as the precursor to achieve in-situ H2O2 production and self-decomposition into high activity ·OH for degradation of TC combined with Co2+/Co3+. The d-NPC produced 172.1 mg L-1 H2O2 within 120 min, and could degrade 96.4% of TC in EF system. The self-doped defects and graphite-nitrogen in d-NPC improved the oxygen reduction performance and increased the H2O2 yield, while pyridine nitrogen could catalyze H2O2 to generate ·OH. The possible pathway of TC degradation was also proposed. In this study, defective carbon materials were prepared by ball milling, which provided a new strategy for efficient in-situ H2O2 production and the degradation of pollutants.


Assuntos
Carbono , Peróxido de Hidrogênio , Nitrogênio , Tetraciclina , Poluentes Químicos da Água , Peróxido de Hidrogênio/química , Nitrogênio/química , Carbono/química , Tetraciclina/química , Poluentes Químicos da Água/química , Estruturas Metalorgânicas/química , Ferro/química
11.
Environ Res ; 245: 117998, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38145735

RESUMO

The present work demonstrates a novel strategy of synthesizing iron-biochar (Fe@BCSB) composite made with the waste iron bottle cap and sugar cane bagasse for implementation in the three-dimensional electro-Fenton (3DEF) process. The catalytic ability of the Fe@BCSB composite was explored to remediate the sodium dodecyl sulphate (SDS) surfactant from wastewater at neutral pH. At the optimum operating condition of Fe@BCSB dose of 1.0 g L-1, current density of 4.66 mA cm-2, and Na2SO4 dose of 50 mM, nearly 92.7 ± 3.1% of 20 mg L-1 of SDS abatement was attained during 120 min of electrolysis time. Moreover, the Fe@BCSB showed significant recyclability up to six cycles. Besides, other organics were successfully treated with more than 85% abatement efficiency in the proposed Fe@BCSB-supported 3DEF process. The total operating cost obtained during SDS treatment was around 0.31 US$ m-3 of wastewater. The phytotoxicity test revealed the positive impact of the 3DEF-treated effluent on the germination of the Vigna radiata. The electron paramagnetic resonance conveyed •OH as the prevailing reactive species for the oxidation of SDS in the 3DEF process. Further, about 81.3 ± 3.8% of SDS and 53.7 ± 4.1% of mineralization efficacy were acquired from the real institutional sewage.


Assuntos
Carvão Vegetal , Saccharum , Poluentes Químicos da Água , Ferro , Águas Residuárias , Celulose , Dodecilsulfato de Sódio , Eletrodos , Peróxido de Hidrogênio , Oxirredução , Poluentes Químicos da Água/análise
12.
Environ Res ; 247: 118357, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38325782

RESUMO

The widespread occurrence of organic antibiotic pollution in the environment and the associated harmful effects necessitate effective treatment method. Heterogeneous electro-Fenton (hetero-EF) has been regarded as one of the most promising techniques towards organic pollutant removal. However, the preparation of efficient cathode still remains challenging. Herein, a novel metal-organic framework (MOF)-derived Fe/Ni@C marigold-like nanosheets were fabricated successfully for the degradation of oxytetracycline (OTC) by serving as the hetero-EF cathode. The FeNi3@C (Fe/Ni molar ratio of 1:3) based hetero-EF system exhibited 8.2 times faster OTC removal rate than that of anodic oxidation and possessed many advantages such as excellent OTC degradation efficiency (95.4% within 90 min), broad environmental adaptability (satisfactory treatment performance for multiple antibiotics under various actual water matrixes), good stability and reusability, and significant toxicity reduction. The superior hetero-EF catalytic performance was mainly attributed to: 1) porous carbon and Ni existence were both conducive to the in-situ generation of H2O2 from dissolved O2; 2) the synergistic effects of bimetals together with electron transfer from the cathode promoted the regeneration of ≡ FeII/NiII, thereby accelerating the production of reactive oxygen species; 3) the unique nanosheet structure derived from the precursor two-dimensional Fe-Ni MOFs enhanced the accessibility of active sites. This work presented a promising hetero-EF cathode for the electrocatalytic treatment of antibiotic-containing wastewaters.


Assuntos
Estruturas Metalorgânicas , Oxitetraciclina , Poluentes Químicos da Água , Antibacterianos , Peróxido de Hidrogênio/química , Oxirredução , Eletrodos , Poluentes Químicos da Água/análise
13.
Environ Res ; 262(Pt 1): 119883, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39214488

RESUMO

Favipiravir (FAV) is a widely utilized antiviral drug effective against various viruses, including SARS-CoV-2, influenza, and RNA viruses. This article aims to introduce a novel approach, known as Linear-Paired Electrocatalytic Degradation (LPED), as an efficient technique for the electrocatalytic degradation of emerging pollutants. LPED involves simultaneously utilizing a carbon-Felt/Co-PbO2 anode and a carbon-felt/Co/Fe-MOF-74 cathode, working together to degrade and mineralize FAV. The prepared anode and cathode characteristics were analyzed using XPS, SEM, EDX mapping, XRD, LSV, and CV analyses. A rotatable central composite design-based quadratic model was employed to optimize FAV degradation, yielding statistically desirable results. Under optimized conditions (pH = 5, current density = 4.2 mA/cm2, FAV concentration = 0.4 mM), individual processes of cathodic electro-Fenton and anodic oxidation with a CF/Co-PbO2 anode achieved degradation rates of 58.9% and 89.5% after 120 min, respectively. In contrast, using the LPED strategy resulted in a remarkable degradation efficiency of 98.4%. Furthermore, a cyclic voltammetric study of FAV on a glassy carbon electrode was conducted to gather additional electrochemical insights and rectify previously published data regarding redox behavior, pH-dependent properties, and adsorption activities. The research also offers a new understanding of the LPED mechanism of FAV at the surfaces of both CF/Co-PbO2 and CF/Co/Fe-MOF-74 electrodes, utilizing data from cyclic voltammetry and LC-MS techniques. The conceptual strategy of LPED is generalizable in order to the synergism of anodic oxidation and cathodic electro-Fenton for the degradation of other toxic and resistant pollutants.

14.
Environ Res ; 249: 118254, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38301762

RESUMO

The electro-Fenton (EF) based on gas-diffusion electrodes (GDEs) reveals promising application prospective towards recalcitrant organics degradation because such GDEs often yields superior H2O2 generation efficiency and selectivity. However, the low efficiency of Fe2+/Fe3+ cycle with GDEs is always considered to be the limiting step for the EF process. In this study, activated carbon fiber (ACF) was firstly employed as co-catalyst to facilitate the performance of antibiotic cefaclor (CEC) decomposition in EF process. It was found that the addition of ACF co-catalyst achieved a rapid Fe2+/Fe3+ cycling, which significantly enhanced Fenton's reaction and hydroxyl radicals (•OH) generation. X-ray photoelectron spectroscopy (XPS) results indicated that the functional groups on ACF surface are related to the conversion of Fe3+ into Fe2+. Moreover, DMSO probing experiment confirmed the enhanced •OH production in EF + ACF system compared to conventional EF system. When inactive BDD and Ti4O7/Ti anodes were paired to EF system, the addition of ACF could significantly improve mineralization degree. However, a large amount of toxic byproducts, including chlorate (ClO3-) and perchlorate (ClO4-), were generated in these EF processes, especially for BDD anode, due to their robust oxidation capacity. Higher mineralization efficiency and less toxic ClO4- generation were obtained in the EF + ACF process with Ti4O7/Ti anode. This presents a novel alternative for efficient chloride-containing organic removal during wastewater remediation.


Assuntos
Antibacterianos , Fibra de Carbono , Cefaclor , Eletrodos , Peróxido de Hidrogênio , Ferro , Poluentes Químicos da Água , Fibra de Carbono/química , Antibacterianos/química , Peróxido de Hidrogênio/química , Poluentes Químicos da Água/química , Ferro/química , Cefaclor/química , Catálise , Carvão Vegetal/química , Técnicas Eletroquímicas/métodos
15.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34404732

RESUMO

Electro-Fenton processes aim at producing oxidizing radicals with fewer added chemicals and residues but are still unable to completely eliminate both. This study demonstrates that a reagent-free electro-Fenton process that runs solely on oxygen and electricity can be achieved by sequential dual-cathode electrocatalysis. H2O2 is produced on an electrodeposited PEDOT on carbon cloth (PEDOT/CC) cathode and subsequently converted to hydroxyl radicals on a stainless-steel-mesh cathode. The dual-cathode system demonstrates efficient decolorization and total organic carbon (TOC) removal toward organic dyes at optimized cathodic potentials of -0.9 V for PEDOT/CC and -0.8 V for the stainless-steel mesh. The sequential dual-cathode process also displays high reusability, no iron leaching, high removal efficiency using air instead of oxygen, and low installation and operation costs. This work demonstrates a preeminent and commercially viable example of pollution control rendered by the "catalysis instead of chemical reagent" philosophy of green chemistry.

16.
J Environ Manage ; 354: 120336, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367502

RESUMO

In this work, a novel and efficient Fe-Ni LDH@ZIF-67 catalyst modified carbon cloth (CC) cathode was developed for tetracycline (TC) degradation in heterogeneous electro-Fenton (Hetero-EF) process. Compared to Fe-Ni LDH/CC (75.7%), TC degradation rate of Fe-Ni LDH@ZIF-67/CC cathode increased to 95.6% within 60 min. The synergistic effect of hetero-EF and anodic oxidation process accelerated electron transfer, the maximum H2O2 production of Fe-Ni LDH@ZIF-67/CC electrode reached 264 mg/L, improving utilization efficiency of H2O2. The cathode possessing a satisfied TC degradation performance over a wide pH (3-9). Free radical capture experiment revealed the collaboration of ·O2-, ·OH, and 1O2 play a significant role in TC degradation. The 5 cycles experiment and metal ion leaching experiment showed that the proposed Fe-Ni LDH@ZIF-67/CC has good recyclability and stability. In addition, the proposed Fe-Ni LDH@ZIF-67/CC cathode achieved satisfying performance in real water (tap water: 97.3%, lake water: 97.7%), demonstrating the possibility for practical application. TC degradation pathways were proposed by theory analysis and experimental results. The toxicity of TC intermediates was reduced by Hetero-EF degradation according to Toxicity Estimation Software Tool and Escherichia coli growth inhibition experiments. This work provides a novel modified cathode to improve removal efficiency of antibiotics in wastewater.


Assuntos
Carbono , Poluentes Químicos da Água , Carbono/química , Peróxido de Hidrogênio/química , Poluentes Químicos da Água/química , Antibacterianos/química , Tetraciclina , Oxirredução , Eletrodos , Água
17.
J Environ Manage ; 370: 122873, 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39405855

RESUMO

The persistence and stability of refractory organic compounds such as dyes in water bodies cause serious toxicity to humans. The present study provides an in-depth investigation into the evolution law of electro-Fenton (EF) oxidation to in situ electrocoagulation (EC) process and its mechanism for highly efficient removal of refractory organic pollutants. A comprehensive evaluation of the energy efficiency by EC, EF (constant pH = 3) and electrocatalytic oxidation (EO) processes under the same research levels was conducted. The results showed that in the EF-EC mode, the removal efficiency of Rhodamine B (RhB) was enhanced by 33.41% compared to the EC system. Additionally, electrode consumption is 52.9% of the EF system, and current efficiency was improved by 272.98% compared to the EO system. Hydroxyl radical (·OH) and polynuclear species (Fe(b)) are the main species to remove refractory organics and intermediates. Unlike the synergistic effect of ·OH homogeneous oxidation and electrocoagulation in the EF-EC process, the ·OH produced in the EO process mainly undergoes heterogeneous oxidation at the electrode interface. The formed iron oxides were mainly Fe2O3 and ɑ-FeOOH. Density functional theory calculations and liquid chromatograph-mass spectrometer analysis indicated that the degradation of RhB mainly included deethylation, deamination, degradation, ring-opening and mineralization reactions. This study provides a valuable reference for related research in the field of environmental electrochemical remediation.

18.
J Environ Manage ; 370: 122797, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39383744

RESUMO

Glyphosate (GLY), a globally-used organophosphate herbicide, is frequently detected in various environmental matrices, including water, prompting significant attention due to its persistence and potential ecological impacts. In light of this environmental concern, innovative remediation strategies are warranted. This study utilized Serratia sp. AC-11 isolated from a tropical peatland as a biocatalyst in a microbial fuel cell (MFC) coupled with a homogeneous electron-Fenton (EF) process to degrade glyphosate in aqueous medium. After coupling the processes with a resistance of 100 Ω, an output voltage value of 0.64 V was obtained and maintained stable throughout the experiment. A bacterial biofilm of Serratia sp. AC-11 was formed on the carbon felt electrode, confirmed by attenuated total reflectance-Fourier transformed infrared (ATR-FTIR) and scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS). In the anodic chamber, the GLY biodegradation rate was 100% after 48 h of experimentation, with aminomethylphosphonic acid (AMPA) remaining in the solution. In the cathodic chamber, the GLY degradation rate for the EF process was 69.5% after 48 h experimentation, with almost all of the AMPA degraded by the in situ generated hydroxyl radicals. In conclusion, the results demonstrated that Serratia sp. AC-11 not only catalyzed the biodegradation of glyphosate but also facilitated the generation of electrons for subsequent transfer to initiate the EF reaction to degrade glyphosate. This dual functionality emphasizes the unique capabilities of Serratia sp. AC-11, it as an electrogenic microorganism with application in innovative bioelectrochemical processes, and highlighting its role in sustainable strategies for environmental remediation.

19.
J Environ Manage ; 359: 120972, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38678901

RESUMO

The presence of levofloxacin (LEV) in aqueous solutions can pose health risks to humans, have adverse effects on aquatic organisms and ecosystems, and contribute to the development of antibiotic-resistant bacteria. This study aims to investigate the feasibility of using electrocoagulation residuals (ECRs) as a heterogeneous catalyst in the electro-Fenton process for degrading LEV. By combining electrocoagulation residuals with sodium alginate, ECRs-alginate beads were synthesized as a heterogeneous electro-Fenton composite. The response surface method was employed to investigate the optimization and influence of various operating parameters such as the initial concentration of LEV (10-50 mg/L), voltage (15-35 V), pH (3-9), and catalyst dose (1-9 g/L). The successful incorporation of iron and other metals into the ECRs-alginate beads was confirmed by characterization tests such as EDX and FTIR. By conducting a batch reaction under optimal conditions (initial LEV concentration = 20 mg/L, pH = 4.5, voltage = 30V, and catalyst dose = 7 g/L), a remarkable degradation of 99% for LEV was achieved. Additionally, under these optimal conditions, a high removal efficiency of 92.3% for total organic carbon (TOC) could be attained within 120 min and these findings are remarkable compared to previous studies. The results further indicated that the degradation of levofloxacin (LEV) could be accurately quantified by utilizing the first-order kinetic reaction with a 0.03 min-1 rate constant. The synthesized beads offered notable advantages in terms of being eco-friendly, simple to use, highly efficient, and easily recoverable from the liquid medium after use.


Assuntos
Alginatos , Levofloxacino , Levofloxacino/química , Alginatos/química , Ferro/química , Poluentes Químicos da Água/química , Antibacterianos/química , Catálise , Peróxido de Hidrogênio/química
20.
J Environ Manage ; 357: 120823, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38583380

RESUMO

Fe(II) regeneration plays a crucial role in the electro-Fenton process, significantly influencing the rate of ·OH formation. In this study, a method is proposed to improve Fe(II) regeneration through N-doping aimed at enhancing the adsorption capacity of the activated carbon cathode for Fe(III). N-doping not only enriched the pore structure on the surface of activated carbon, providing numerous adsorption sites, but also significantly increased the adsorption energy for Fe(III). Among the types of nitrogen introduced, pyridine-N exhibited the most substantial enhancement effect, followed by pyrrole-N, while graphite-N showed a certain degree of inhibition. Furthermore, N-doping facilitated the adsorption of all forms of Fe(III) by activated carbon. The adsorption and electrosorption rates of the NAC-900 electrode for Fe(III) were 30.33% and 42.36%, respectively. Such modification markedly enhanced the Fe3+/Fe2+ cycle within the electro-Fenton system. The NAC-900 system demonstrated an impressive phenol degradation efficiency of 93.67%, alongside the lowest electricity consumption attributed to the effective "adsorption-reduction" synergy for Fe(III) on the NAC-900 electrode. Compared to the AC cathode electro-Fenton system, the degradation efficiency of the NAC-900 cathode electro-Fenton system at pH = levels ranging from 3 to 5 exceeded 90%; thus, extending the pH applicability of the electro-Fenton process. The degradation efficiency of phenol using the NAC-900 cathode electro-Fenton system in various water matrices approached 90%, indicating robust performance in real wastewater treatment scenarios. This research elucidates the impact of cathodic Fe(III) adsorption on Fe(II) regeneration within the electro-Fenton system, and clarifies the influence of different N- doping types on the cathodic adsorption of Fe(III).


Assuntos
Compostos Férricos , Poluentes Químicos da Água , Adsorção , Poluentes Químicos da Água/química , Carvão Vegetal/química , Conservação de Recursos Energéticos , Oxirredução , Eletrodos , Fenol , Compostos Ferrosos , Peróxido de Hidrogênio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA