Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 780
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(18): 4626-4639.e13, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34411517

RESUMO

Speech perception is thought to rely on a cortical feedforward serial transformation of acoustic into linguistic representations. Using intracranial recordings across the entire human auditory cortex, electrocortical stimulation, and surgical ablation, we show that cortical processing across areas is not consistent with a serial hierarchical organization. Instead, response latency and receptive field analyses demonstrate parallel and distinct information processing in the primary and nonprimary auditory cortices. This functional dissociation was also observed where stimulation of the primary auditory cortex evokes auditory hallucination but does not distort or interfere with speech perception. Opposite effects were observed during stimulation of nonprimary cortex in superior temporal gyrus. Ablation of the primary auditory cortex does not affect speech perception. These results establish a distributed functional organization of parallel information processing throughout the human auditory cortex and demonstrate an essential independent role for nonprimary auditory cortex in speech processing.


Assuntos
Córtex Auditivo/fisiologia , Fala/fisiologia , Audiometria de Tons Puros , Eletrodos , Processamento Eletrônico de Dados , Humanos , Fonética , Percepção da Altura Sonora , Tempo de Reação/fisiologia , Lobo Temporal/fisiologia
2.
Proc Natl Acad Sci U S A ; 120(42): e2300255120, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37819985

RESUMO

Speech production is a complex human function requiring continuous feedforward commands together with reafferent feedback processing. These processes are carried out by distinct frontal and temporal cortical networks, but the degree and timing of their recruitment and dynamics remain poorly understood. We present a deep learning architecture that translates neural signals recorded directly from the cortex to an interpretable representational space that can reconstruct speech. We leverage learned decoding networks to disentangle feedforward vs. feedback processing. Unlike prevailing models, we find a mixed cortical architecture in which frontal and temporal networks each process both feedforward and feedback information in tandem. We elucidate the timing of feedforward and feedback-related processing by quantifying the derived receptive fields. Our approach provides evidence for a surprisingly mixed cortical architecture of speech circuitry together with decoding advances that have important implications for neural prosthetics.


Assuntos
Fala , Lobo Temporal , Humanos , Retroalimentação , Estimulação Acústica
3.
J Neurosci ; 44(17)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38485257

RESUMO

Previous neuroimaging studies have offered unique insights about the spatial organization of activations and deactivations across the brain; however, these were not powered to explore the exact timing of events at the subsecond scale combined with a precise anatomical source of information at the level of individual brains. As a result, we know little about the order of engagement across different brain regions during a given cognitive task. Using experimental arithmetic tasks as a prototype for human-unique symbolic processing, we recorded directly across 10,076 brain sites in 85 human subjects (52% female) using the intracranial electroencephalography. Our data revealed a remarkably distributed change of activity in almost half of the sampled sites. In each activated brain region, we found juxtaposed neuronal populations preferentially responsive to either the target or control conditions, arranged in an anatomically orderly manner. Notably, an orderly successive activation of a set of brain regions-anatomically consistent across subjects-was observed in individual brains. The temporal order of activations across these sites was replicable across subjects and trials. Moreover, the degree of functional connectivity between the sites decreased as a function of temporal distance between regions, suggesting that the information is partially leaked or transformed along the processing chain. Our study complements prior imaging studies by providing hitherto unknown information about the timing of events in the brain during arithmetic processing. Such findings can be a basis for developing mechanistic computational models of human-specific cognitive symbolic systems.


Assuntos
Encéfalo , Humanos , Feminino , Masculino , Adulto , Encéfalo/fisiologia , Adulto Jovem , Mapeamento Encefálico , Eletrocorticografia
4.
J Neurosci ; 44(40)2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39197939

RESUMO

Executive control of movement enables inhibiting impulsive responses critical for successful navigation of the environment. Circuits mediating stop commands involve prefrontal and basal ganglia structures with fMRI evidence demonstrating increased activity during response inhibition in the dorsolateral prefrontal cortex (dlPFC)-often ascribed to maintaining task attentional demands. Using direct intraoperative cortical recordings in male and female human subjects, we investigated oscillatory dynamics along the rostral-caudal axis of dlPFC during a modified Go/No-go task, probing components of both proactive and reactive motor control. We assessed whether cognitive control is topographically organized along this axis and observed that low-frequency power increased prominently in mid-rostral dlPFC when inhibiting and delaying responses. These findings provide evidence for a key role for mid-rostral dlPFC low-frequency oscillations in sculpting motor control.


Assuntos
Córtex Pré-Frontal Dorsolateral , Inibição Psicológica , Humanos , Masculino , Feminino , Adulto , Córtex Pré-Frontal Dorsolateral/fisiologia , Adulto Jovem , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia , Pessoa de Meia-Idade , Função Executiva/fisiologia , Imageamento por Ressonância Magnética , Córtex Pré-Frontal/fisiologia , Ondas Encefálicas/fisiologia
5.
Brain ; 147(10): 3358-3369, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-38954651

RESUMO

The ability to initiate volitional action is fundamental to human behaviour. Loss of dopaminergic neurons in Parkinson's disease is associated with impaired action initiation, also termed akinesia. Both dopamine and subthalamic deep brain stimulation (DBS) can alleviate akinesia, but the underlying mechanisms are unknown. An important question is whether dopamine and DBS facilitate de novo build-up of neural dynamics for motor execution or accelerate existing cortical movement initiation signals through shared modulatory circuit effects. Answering these questions can provide the foundation for new closed-loop neurotherapies with adaptive DBS, but the objectification of neural processing delays prior to performance of volitional action remains a significant challenge. To overcome this challenge, we studied readiness potentials and trained brain signal decoders on invasive neurophysiology signals in 25 DBS patients (12 female) with Parkinson's disease during performance of self-initiated movements. Combined sensorimotor cortex electrocorticography and subthalamic local field potential recordings were performed OFF therapy (n = 22), ON dopaminergic medication (n = 18) and on subthalamic deep brain stimulation (n = 8). This allowed us to compare their therapeutic effects on neural latencies between the earliest cortical representation of movement intention as decoded by linear discriminant analysis classifiers and onset of muscle activation recorded with electromyography. In the hypodopaminergic OFF state, we observed long latencies between motor intention and motor execution for readiness potentials and machine learning classifications. Both, dopamine and DBS significantly shortened these latencies, hinting towards a shared therapeutic mechanism for alleviation of akinesia. To investigate this further, we analysed directional cortico-subthalamic oscillatory communication with multivariate granger causality. Strikingly, we found that both therapies independently shifted cortico-subthalamic oscillatory information flow from antikinetic beta (13-35 Hz) to prokinetic theta (4-10 Hz) rhythms, which was correlated with latencies in motor execution. Our study reveals a shared brain network modulation pattern of dopamine and DBS that may underlie the acceleration of neural dynamics for augmentation of movement initiation in Parkinson's disease. Instead of producing or increasing preparatory brain signals, both therapies modulate oscillatory communication. These insights provide a link between the pathophysiology of akinesia and its' therapeutic alleviation with oscillatory network changes in other non-motor and motor domains, e.g. related to hyperkinesia or effort and reward perception. In the future, our study may inspire the development of clinical brain computer interfaces based on brain signal decoders to provide temporally precise support for action initiation in patients with brain disorders.


Assuntos
Estimulação Encefálica Profunda , Dopamina , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/terapia , Doença de Parkinson/fisiopatologia , Estimulação Encefálica Profunda/métodos , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Núcleo Subtalâmico/fisiopatologia , Dopamina/metabolismo , Volição , Eletrocorticografia/métodos , Eletromiografia , Movimento/fisiologia , Córtex Sensório-Motor/fisiopatologia
6.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38183184

RESUMO

Auditory sensory processing is assumed to occur in a hierarchical structure including the primary auditory cortex (A1), superior temporal gyrus, and frontal areas. These areas are postulated to generate predictions for incoming stimuli, creating an internal model of the surrounding environment. Previous studies on mismatch negativity have indicated the involvement of the superior temporal gyrus in this processing, whereas reports have been mixed regarding the contribution of the frontal cortex. We designed a novel auditory paradigm, the "cascade roving" paradigm, which incorporated complex structures (cascade sequences) into a roving paradigm. We analyzed electrocorticography data from six patients with refractory epilepsy who passively listened to this novel auditory paradigm and detected responses to deviants mainly in the superior temporal gyrus and inferior frontal gyrus. Notably, the inferior frontal gyrus exhibited broader distribution and sustained duration of deviant-elicited responses, seemingly differing in spatio-temporal characteristics from the prediction error responses observed in the superior temporal gyrus, compared with conventional oddball paradigms performed on the same participants. Moreover, we observed that the deviant responses were enhanced through stimulus repetition in the high-gamma range mainly in the superior temporal gyrus. These features of the novel paradigm may aid in our understanding of auditory predictive coding.


Assuntos
Córtex Auditivo , Eletrocorticografia , Humanos , Eletroencefalografia , Potenciais Evocados Auditivos/fisiologia , Córtex Auditivo/fisiologia , Lobo Temporal/fisiologia , Estimulação Acústica , Percepção Auditiva/fisiologia
7.
Brain Topogr ; 37(2): 287-295, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-36939988

RESUMO

Electroencephalography (EEG) microstates are short successive periods of stable scalp field potentials representing spontaneous activation of brain resting-state networks. EEG microstates are assumed to mediate local activity patterns. To test this hypothesis, we correlated momentary global EEG microstate dynamics with the local temporo-spectral evolution of electrocorticography (ECoG) and stereotactic EEG (SEEG) depth electrode recordings. We hypothesized that these correlations involve the gamma band. We also hypothesized that the anatomical locations of these correlations would converge with those of previous studies using either combined functional magnetic resonance imaging (fMRI)-EEG or EEG source localization. We analyzed resting-state data (5 min) of simultaneous noninvasive scalp EEG and invasive ECoG and SEEG recordings of two participants. Data were recorded during the presurgical evaluation of pharmacoresistant epilepsy using subdural and intracranial electrodes. After standard preprocessing, we fitted a set of normative microstate template maps to the scalp EEG data. Using covariance mapping with EEG microstate timelines and ECoG/SEEG temporo-spectral evolutions as inputs, we identified systematic changes in the activation of ECoG/SEEG local field potentials in different frequency bands (theta, alpha, beta, and high-gamma) based on the presence of particular microstate classes. We found significant covariation of ECoG/SEEG spectral amplitudes with microstate timelines in all four frequency bands (p = 0.001, permutation test). The covariance patterns of the ECoG/SEEG electrodes during the different microstates of both participants were similar. To our knowledge, this is the first study to demonstrate distinct activation/deactivation patterns of frequency-domain ECoG local field potentials associated with simultaneous EEG microstates.


Assuntos
Mapeamento Encefálico , Eletrocorticografia , Humanos , Mapeamento Encefálico/métodos , Eletroencefalografia/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Couro Cabeludo
8.
Cereb Cortex ; 33(17): 9850-9866, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37434363

RESUMO

Theories of consciousness suggest that brain mechanisms underlying transitions into and out of unconsciousness are conserved no matter the context or precipitating conditions. We compared signatures of these mechanisms using intracranial electroencephalography in neurosurgical patients during propofol anesthesia and overnight sleep and found strikingly similar reorganization of human cortical networks. We computed the "effective dimensionality" of the normalized resting state functional connectivity matrix to quantify network complexity. Effective dimensionality decreased during stages of reduced consciousness (anesthesia unresponsiveness, N2 and N3 sleep). These changes were not region-specific, suggesting global network reorganization. When connectivity data were embedded into a low-dimensional space in which proximity represents functional similarity, we observed greater distances between brain regions during stages of reduced consciousness, and individual recording sites became closer to their nearest neighbors. These changes corresponded to decreased differentiation and functional integration and correlated with decreases in effective dimensionality. This network reorganization constitutes a neural signature of states of reduced consciousness that is common to anesthesia and sleep. These results establish a framework for understanding the neural correlates of consciousness and for practical evaluation of loss and recovery of consciousness.


Assuntos
Anestesia , Propofol , Humanos , Estado de Consciência , Propofol/farmacologia , Inconsciência/induzido quimicamente , Encéfalo , Sono , Eletroencefalografia
9.
Childs Nerv Syst ; 40(3): 839-854, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38010434

RESUMO

OBJECTIVES: The utility of intraoperative electrocorticography (ECoG)-guided resective surgery for pediatric long-term epilepsy-associated tumors (LEATs) with antiseizure medication (ASM) resistant epilepsy is not supported by robust evidence. As epilepsy networks and their ramifications are different in children from those in adults, the impact of intraoperative ECoG-based tailored resections in predicting prognosis and influencing outcomes may also differ. We evaluated this hypothesis by comparing the outcomes of resections with and without the use of ECoG in children and adults by a randomized study. METHODS: From June 2020 to January 2022, 42 patients (17 children and 25 adults) with LEATs and antiseizure medication (ASM)-resistant epilepsy were randomly assigned to one of the 2 groups (ECoG or no ECoG), prior to surgical resection. The 'no ECoG' arm underwent gross total lesion resection (GTR) without ECoG guidance and the ECoG arm underwent GTR with ECoG guidance and further additional tailored resections, as necessary. Factors evaluated were tumor location, size, lateralization, seizure duration, preoperative antiepileptic drug therapy, pre- and postresection ECoG patterns and tumor histology. Postoperative Engel score and adverse event rates were compared in the pediatric and adult groups of both arms. Eloquent cortex lesions and re-explorations were excluded to avoid confounders. RESULTS: Forty-two patients were included in the study of which 17 patients were in the pediatric cohort (age < 18 years) and 25 in the adult cohort. The mean age in the pediatric group was 11.11 years (SD 4.72) and in the adult group was 29.56 years (SD 9.29). The mean duration of epilepsy was 9.7 years (SD 4.8) in the pediatric group and 10.96 (SD 8.8) in the adult group. The ECoG arm of LEAT resections had 23 patients (9 children and 14 adults) and the non-ECoG arm had 19 patients (8 children and 11 adults). Three children and 3 adults from the ECoG group further underwent ECoG-guided tailored resections (average 1.33 additional tailored resections/per patient.).The histology of the tailored resection specimen was unremarkable in 3/6 (50%).Overall, the commonest histology in both groups was ganglioglioma and the temporal lobe, the commonest site of the lesion. 88.23% of pediatric cases (n = 15/17) had an excellent outcome (Engel Ia) following resection, compared to 84% of adult cases (n = 21/25) at a mean duration of follow-up of 25.76 months in children and 26.72 months in adults (p = 0.405).There was no significant difference in seizure outcomes between the ECoG and no ECoG groups both in children and adults, respectively (p > 0.05). Additional tailored resection did not offer any seizure outcome benefit when compared to the non-tailored resections. CONCLUSIONS: The use of intraoperative electrocorticography in LEATs did not contribute to postoperative seizure outcome benefit in children and adults. No additional advantage or utility was offered by ECoG in children when compared to its use in adults. ECoG-guided additional tailored resections did not offer any additional seizure outcome benefit both in children and adults.


Assuntos
Neoplasias Encefálicas , Epilepsia Resistente a Medicamentos , Epilepsia , Ganglioglioma , Adulto , Humanos , Criança , Adolescente , Eletrocorticografia , Estudos Retrospectivos , Epilepsia/etiologia , Epilepsia/cirurgia , Convulsões/cirurgia , Epilepsia Resistente a Medicamentos/cirurgia , Neoplasias Encefálicas/complicações , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia
10.
J Neurosci ; 42(25): 5034-5046, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35534226

RESUMO

The dynamics of information flow within the auditory cortical hierarchy associated with speech processing and the emergence of hemispheric specialization remain incompletely understood. To study these questions with high spatiotemporal resolution, intracranial recordings in 29 human neurosurgical patients of both sexes were obtained while subjects performed a semantic classification task. Neural activity was recorded from posteromedial portion of Heschl's gyrus (HGPM) and anterolateral portion of Heschl's gyrus (HGAL), planum temporale (PT), planum polare, insula, and superior temporal gyrus (STG). Responses to monosyllabic words exhibited early gamma power increases and a later suppression of alpha power, envisioned to represent feedforward activity and decreased feedback signaling, respectively. Gamma activation and alpha suppression had distinct magnitude and latency profiles. HGPM and PT had the strongest gamma responses with shortest onset latencies, indicating that they are the earliest auditory cortical processing stages. The origin of attenuated top-down influences in auditory cortex, as indexed by alpha suppression, was in STG and HGAL. Gamma responses and alpha suppression were typically larger to nontarget words than tones. Alpha suppression was uniformly greater to target versus nontarget stimuli. Hemispheric bias for words versus tones and for target versus nontarget words, when present, was left lateralized. Better task performance was associated with increased gamma activity in the left PT and greater alpha suppression in HGPM and HGAL bilaterally. The prominence of alpha suppression during semantic classification and its accessibility for noninvasive electrophysiologic studies suggests that this measure is a promising index of auditory cortical speech processing.SIGNIFICANCE STATEMENT Understanding the dynamics of cortical speech processing requires the use of active tasks. This is the first comprehensive intracranial electroencephalography study to examine cortical activity within the superior temporal plane, lateral superior temporal gyrus, and the insula during a semantic classification task. Distinct gamma activation and alpha suppression profiles clarify the functional organization of feedforward and feedback processing within the auditory cortical hierarchy. Asymmetries in cortical speech processing emerge at early processing stages. Relationships between cortical activity and task performance are interpreted in the context of current models of speech processing. Results lay the groundwork for iEEG studies using connectivity measures of the bidirectional information flow within the auditory processing hierarchy.


Assuntos
Córtex Auditivo , Percepção da Fala , Estimulação Acústica , Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Mapeamento Encefálico/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Fala , Percepção da Fala/fisiologia
11.
Neuroimage ; 276: 120197, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37245558

RESUMO

Tactile and movement-related somatosensory perceptions are crucial for our daily lives and survival. Although the primary somatosensory cortex is thought to be the key structure of somatosensory perception, various cortical downstream areas are also involved in somatosensory perceptual processing. However, little is known about whether cortical networks of these downstream areas can be dissociated depending on each perception, especially in human. We address this issue by combining data from direct cortical stimulation (DCS) for eliciting somatosensation and data from high-gamma band (HG) elicited during tactile stimulation and movement tasks. We found that artificial somatosensory perception is elicited not only from conventional somatosensory-related areas such as the primary and secondary somatosensory cortices but also from a widespread network including superior/inferior parietal lobules and premotor cortex. Interestingly, DCS on the dorsal part of the fronto-parietal area including superior parietal lobule and dorsal premotor cortex often induces movement-related somatosensations, whereas that on the ventral one including inferior parietal lobule and ventral premotor cortex generally elicits tactile sensations. Furthermore, the HG mapping results of the movement and passive tactile stimulation tasks revealed considerable similarity in the spatial distribution between the HG and DCS functional maps. Our findings showed that macroscopic neural processing for tactile and movement-related perceptions could be segregated.


Assuntos
Mapeamento Encefálico , Córtex Cerebral , Percepção de Movimento , Percepção do Tato , Córtex Cerebral/fisiologia , Córtex Somatossensorial/fisiologia , Humanos , Masculino , Feminino , Adolescente , Adulto Jovem , Adulto , Estimulação Transcraniana por Corrente Contínua , Epilepsia Resistente a Medicamentos/fisiopatologia
12.
Neuroimage ; 270: 119954, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36828156

RESUMO

We built normative brain atlases that animate millisecond-scale intra- and inter-hemispheric white matter-level connectivity dynamics supporting object recognition and speech production. We quantified electrocorticographic modulations during three naming tasks using event-related high-gamma activity from 1,114 nonepileptogenic intracranial electrodes (i.e., non-lesional areas unaffected by epileptiform discharges). Using this electrocorticography data, we visualized functional connectivity modulations defined as significant naming-related high-gamma modulations occurring simultaneously at two sites connected by direct white matter streamlines on diffusion-weighted imaging tractography. Immediately after stimulus onset, intra- and inter-hemispheric functional connectivity enhancements were confined mainly across modality-specific perceptual regions. During response preparation, left intra-hemispheric connectivity enhancements propagated in a posterior-to-anterior direction, involving the left precentral and prefrontal areas. After overt response onset, inter- and intra-hemispheric connectivity enhancements mainly encompassed precentral, postcentral, and superior-temporal (STG) gyri. We found task-specific connectivity enhancements during response preparation as follows. Picture naming enhanced activity along the left arcuate fasciculus between the inferior-temporal and precentral/posterior inferior-frontal (pIFG) gyri. Nonspeech environmental sound naming augmented functional connectivity via the left inferior longitudinal and fronto-occipital fasciculi between the medial-occipital and STG/pIFG. Auditory descriptive naming task enhanced usage of the left frontal U-fibers, involving the middle-frontal gyrus. Taken together, the commonly observed network enhancements include inter-hemispheric connectivity optimizing perceptual processing exerted in each hemisphere, left intra-hemispheric connectivity supporting semantic and lexical processing, and inter-hemispheric connectivity for symmetric oral movements during overt speech. Our atlases improve the currently available models of object recognition and speech production by adding neural dynamics via direct intra- and inter-hemispheric white matter tracts.


Assuntos
Idioma , Fala , Humanos , Fala/fisiologia , Mapeamento Encefálico/métodos , Encéfalo , Percepção Visual/fisiologia
13.
J Neurophysiol ; 130(3): 628-639, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37584101

RESUMO

Electrical activity at high gamma frequencies (70-170 Hz) is thought to reflect the activity of small cortical ensembles. For example, high gamma activity (often quantified by spectral power) can increase in sensory-motor cortex in response to sensory stimuli or movement. On the other hand, synchrony of neural activity between cortical areas (often quantified by coherence) has been hypothesized as an important mechanism for inter-areal communication, thereby serving functional roles in cognition and behavior. Currently, high gamma activity has primarily been studied as a local amplitude phenomenon. We investigated the synchronization of high gamma activity within sensory-motor cortex and the extent to which underlying high gamma activity can explain coherence during motor tasks. We characterized high gamma coherence in sensory-motor networks and the relationship between coherence and power by analyzing electrocorticography (ECoG) data from human subjects as they performed a motor response to sensory cues. We found greatly increased high gamma coherence during the motor response compared with the sensory cue. High gamma power poorly predicted high gamma coherence, but the two shared a similar time course. However, high gamma coherence persisted longer than high gamma power. The results of this study suggest that high gamma coherence is a physiologically distinct phenomenon during a sensory-motor task, the emergence of which may require active task participation.NEW & NOTEWORTHY Motor action after auditory stimulus elicits high gamma responses in sensory-motor and auditory cortex, respectively. We show that high gamma coherence reliably and greatly increased during motor response, but not after auditory stimulus. Underlying high gamma power could not explain high gamma coherence. Our results indicate that high gamma coherence is a physiologically distinct sensory-motor phenomenon that may serve as an indicator of increased synaptic communication on short timescales (∼1 s).


Assuntos
Eletroencefalografia , Córtex Sensório-Motor , Humanos , Eletrocorticografia , Movimento/fisiologia , Cognição
14.
Neurobiol Dis ; 186: 106269, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37619791

RESUMO

Traumatic brain injury (TBI) involves an acute injury (primary damage), which may evolve in the hours to days after impact (secondary damage). Seizures and cortical spreading depolarization (CSD) are metabolically demanding processes that may worsen secondary brain injury. Metabolic stress has been associated with mitochondrial dysfunction, including impaired calcium homeostasis, reduced ATP production, and elevated ROS production. However, the association between mitochondrial impairment and vascular function after TBI is poorly understood. Here, we explored this association using a rodent closed head injury model. CSD is associated with neurobehavioral decline after TBI. Craniotomy was performed to elicit CSD via electrical stimulation or to induce seizures via 4-aminopyridine application. We measured vascular dysfunction following CSDs and seizures in TBI animals using laser doppler flowmetry. We observed a more profound reduction in local cortical blood flow in TBI animals compared to healthy controls. CSD resulted in mitochondrial dysfunction and pathological signs of increased oxidative stress adjacent to the vasculature. We explored these findings further using electron microscopy and found that TBI and CSDs resulted in vascular morphological changes and mitochondrial cristae damage in astrocytes, pericytes and endothelial cells. Overall, we provide evidence that CSDs induce mitochondrial dysfunction, impaired cortical blood flow, and neurobehavioral deficits in the setting of TBI.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Acoplamento Neurovascular , Animais , Células Endoteliais , Lesões Encefálicas Traumáticas/complicações
15.
Eur J Neurosci ; 57(8): 1260-1288, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36843389

RESUMO

In recent years, electrocorticography (ECoG) has arisen as a neural signal recording tool in the development of clinically viable neural interfaces. ECoG electrodes are generally placed below the dura mater (subdural) but can also be placed on top of the dura (epidural). In deciding which of these modalities best suits long-term implants, complications and signal quality are important considerations. Conceptually, epidural placement may present a lower risk of complications as the dura is left intact but also a lower signal quality due to the dura acting as a signal attenuator. The extent to which complications and signal quality are affected by the dura, however, has been a matter of debate. To improve our understanding of the effects of the dura on complications and signal quality, we conducted a literature review. We inventorized the effect of the dura on signal quality, decodability and longevity of acute and chronic ECoG recordings in humans and non-human primates. Also, we compared the incidence and nature of serious complications in studies that employed epidural and subdural ECoG. Overall, we found that, even though epidural recordings exhibit attenuated signal amplitude over subdural recordings, particularly for high-density grids, the decodability of epidural recorded signals does not seem to be markedly affected. Additionally, we found that the nature of serious complications was comparable between epidural and subdural recordings. These results indicate that both epidural and subdural ECoG may be suited for long-term neural signal recordings, at least for current generations of clinical and high-density ECoG grids.


Assuntos
Eletrocorticografia , Espaço Subdural , Animais , Eletrocorticografia/métodos , Dura-Máter , Eletrodos Implantados
16.
Epilepsia ; 64(2): 253-265, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36404579

RESUMO

Despite the widespread use of intraoperative electrocorticography (iECoG) during resective epilepsy surgery, there are conflicting data on its overall efficacy and inability to predict benefit per pathology. Given the heterogeneity of iECoG use in resective epilepsy surgery, it is important to assess the utility of interictal-based iECoG. This individual patient data (IPD) meta-analysis seeks to identify the benefit of iECoG during resective epilepsy surgery in achieving seizure freedom for various pathologies. Embase, Scopus, and PubMed were searched from inception to January 31, 2021 using the following terms: "ecog", "electrocorticography", and "epilepsy". Articles were included if they reported seizure freedom at ≥12-month follow-up in cohorts with and without iECoG for epilepsy surgery. Non-English articles, noncomparative iECoG cohorts, and studies with <10% iECoG use were excluded. This meta-analysis followed the PRISMA 2020 guidelines. The primary outcome was seizure freedom at last follow-up and time to seizure recurrence, if applicable. Forest plots with random effects modeling assessed the relationship between iECoG use and seizure freedom. Cox regression of IPD was performed to identify predictors of longer duration of seizure freedom. Kaplan-Meier curves with log-rank test were created to visualize differences in time to seizure recurrence. Of 7504 articles identified, 18 were included for study-level analysis. iECoG was not associated with higher seizure freedom at the study level (relative risk = 1.09, 95% confidence interval [CI] = 0.96-1.23, p = .19, I2  = 64%), but on IPD (n = 7 studies, 231 patients) iECoG use was independently associated with more favorable seizure outcomes (hazard ratio = 0.47, 95% CI = .23-.95, p = .037). In Kaplan-Meier analysis of specific pathologies, iECoG use was significantly associated with longer seizure freedom only for focal cortical dysplasia (FCD; p < .001) etiology. Number needed to treat for iECoG was 8.8, and for iECoG in FCD it was 4.7. We show iECoG seizure freedom is not achieved uniformly across centers. iECoG is particularly beneficial for FCD etiology in improving seizure freedom.


Assuntos
Eletrocorticografia , Epilepsia , Humanos , Resultado do Tratamento , Seguimentos , Epilepsia/cirurgia , Epilepsia/etiologia , Convulsões/etiologia , Estudos Retrospectivos
17.
Epilepsia ; 64(1): 6-16, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36300659

RESUMO

Visual review of intracranial electroencephalography (iEEG) is often an essential component for defining the zone of resection for epilepsy surgery. Unsupervised approaches using machine and deep learning are being employed to identify seizure onset zones (SOZs). This prompts a more comprehensive understanding of the reliability of visual review as a reference standard. We sought to summarize existing evidence on the reliability of visual review of iEEG in defining the SOZ for patients undergoing surgical workup and understand its implications for algorithm accuracy for SOZ prediction. We performed a systematic literature review on the reliability of determining the SOZ by visual inspection of iEEG in accordance with best practices. Searches included MEDLINE, Embase, Cochrane Library, and Web of Science on May 8, 2022. We included studies with a quantitative reliability assessment within or between observers. Risk of bias assessment was performed with QUADAS-2. A model was developed to estimate the effect of Cohen kappa on the maximum possible accuracy for any algorithm detecting the SOZ. Two thousand three hundred thirty-eight articles were identified and evaluated, of which one met inclusion criteria. This study assessed reliability between two reviewers for 10 patients with temporal lobe epilepsy and found a kappa of .80. These limited data were used to model the maximum accuracy of automated methods. For a hypothetical algorithm that is 100% accurate to the ground truth, the maximum accuracy modeled with a Cohen kappa of .8 ranged from .60 to .85 (F-2). The reliability of reviewing iEEG to localize the SOZ has been evaluated only in a small sample of patients with methodologic limitations. The ability of any algorithm to estimate the SOZ is notably limited by the reliability of iEEG interpretation. We acknowledge practical limitations of rigorous reliability analysis, and we propose design characteristics and study questions to further investigate reliability.


Assuntos
Epilepsia do Lobo Temporal , Convulsões , Humanos , Convulsões/diagnóstico , Convulsões/cirurgia , Reprodutibilidade dos Testes , Eletroencefalografia/métodos , Epilepsia do Lobo Temporal/cirurgia , Eletrocorticografia/métodos
18.
J Neurooncol ; 165(2): 313-320, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37932608

RESUMO

PURPOSE: Awake craniotomy with intraoperative functional brain mapping (FBM) bedside neurological testing is an important technique used to optimize resective brain surgeries near eloquent cortex. Awake craniotomy performed with electrocorticography (ECoG) and direct electrical stimulation (DES) for FBM can delineate eloquent cortex from lesions and epileptogenic regions. However, current electrode technology demonstrates spatial limitations. Our group has developed a novel circular grid with the goal of improving spatial recording of ECoG to enhance detection of ictal and interictal activity. METHODS: This retrospective study was approved by the institutional review board at Mayo Clinic Florida. We analyzed patients undergoing awake craniotomy with ECoG and DES and compared ECoG data obtained using the 22 contact circular grid to standard 6 contact strip electrode. RESULTS: We included 144 cases of awake craniotomy with ECoG, 73 using circular grid and 71 with strip electrode. No significant differences were seen regarding preoperative clinical and demographic data, duration of ECoG recording (p = 0.676) and use of DES (p = 0.926). Circular grid was more sensitive in detecting periodic focal epileptiform discharges (PFEDs) (p = 0.004), PFEDs plus (p = 0.032), afterdischarges (ADs) per case (p = 0.022) at lower minimum (p = 0.012) and maximum (p < 0.0012) intensity stimulation, and seizures (p = 0.048). PFEDs (p < 0.001), PFEDs plus (p < 0.001), and HFOs (p < 0.001) but not ADs (p = 0.255) predicted electrographic seizures. CONCLUSION: We demonstrate higher sensitivity in detecting ictal and interictal activity on ECoG during awake craniotomy with a novel circular grid compared to strip electrode, likely due to better spatial sampling during ECoG. We also found association between PFEDs and intraoperative seizures.


Assuntos
Eletrocorticografia , Vigília , Humanos , Eletrocorticografia/métodos , Estudos Retrospectivos , Convulsões/diagnóstico , Convulsões/cirurgia , Craniotomia/métodos , Mapeamento Encefálico/métodos , Eletrodos
19.
Cereb Cortex ; 32(17): 3726-3735, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-34921723

RESUMO

We test the performance of a novel operator-independent EEG-based method for passive identification of the central sulcus (CS) and sensorimotor (SM) cortex. We studied seven patients with intractable epilepsy undergoing intracranial EEG (icEEG) monitoring, in whom CS localization was accomplished by standard methods. Our innovative approach takes advantage of intrinsic properties of the primary motor cortex (MC), which exhibits enhanced icEEG band-power and coherence across the CS. For each contact, we computed a composite power, coherence, and entropy values for activity in the high gamma band (80-115) Hz of 6-10 min of NREM sleep. Statistically transformed EEG data values that did not reach a threshold (th) were set to 0. We computed a metric M based on the transformed values and the mean Euclidian distance of each contact from contacts with Z-scores higher than 0. The last step was implemented to accentuate local network activity. The SM cortex exhibited higher EEG-band-power than non-SM cortex (P < 0.0002). There was no significant difference between the motor/premotor and sensory cortices (P < 0.47). CS was localized in all patients with 0.4 < th < 0.6. The primary hand and leg motor areas showed the highest metric values followed by the tongue motor area. Higher threshold values were specific (94%) for the anterior bank of the CS but not sensitive (42%). Intermediate threshold values achieved an acceptable trade-off (0.4: 89% specific and 70% sensitive).


Assuntos
Epilepsia Resistente a Medicamentos , Córtex Motor , Mapeamento Encefálico/métodos , Epilepsia Resistente a Medicamentos/cirurgia , Eletrocorticografia , Eletroencefalografia/métodos , Humanos , Sono
20.
Cereb Cortex ; 33(2): 486-496, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-35288751

RESUMO

The spatiotemporal dynamics of interaction between slow (delta or infraslow) waves and fast (gamma) activities during wakefulness and sleep are yet to be elucidated in human electrocorticography (ECoG). We evaluated phase-amplitude coupling (PAC), which reflects neuronal coding in information processing, using ECoG in 11 patients with intractable focal epilepsy. PAC was observed between slow waves of 0.5-0.6 Hz and gamma activities, not only during light sleep and slow-wave sleep (SWS) but even during wakefulness and rapid eye movement (REM) sleep. While PAC was high over a large region during SWS, it was stronger in the posterior cortical region around the temporoparietal junction than in the frontal cortical region during REM sleep. PAC tended to be higher in the posterior cortical region than in the frontal cortical region even during wakefulness. Our findings suggest that the posterior cortical region has a functional role in REM sleep and may contribute to the maintenance of the dreaming experience.


Assuntos
Sono REM , Sono de Ondas Lentas , Humanos , Sono REM/fisiologia , Eletrocorticografia , Sono/fisiologia , Vigília/fisiologia , Sono de Ondas Lentas/fisiologia , Eletroencefalografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA