RESUMO
Methamphetamine (METH) is a highly abused psychostimulant that is neurotoxic to dopaminergic (DAergic) nerve terminals in the striatum and increases the risk of developing Parkinson's disease (PD). In vivo, METH-mediated DA release, followed by DA-mediated oxidative stress and mitochondrial dysfunction in pre- and postsynaptic neurons, mediates METH neurotoxicity. METH-triggered oxidative stress damages parkin, a neuroprotective protein involved in PD etiology via its involvement in the maintenance of mitochondria. It is not known whether METH itself contributes to mitochondrial dysfunction and whether parkin regulates complex I, an enzymatic complex downregulated in PD. To determine this, we separately assessed the effects of METH or DA alone on electron transport chain (ETC) complexes and the protein parkin in isolated striatal mitochondria. We show that METH decreases the levels of selected complex I, II, and III subunits (NDUFS3, SDHA, and UQCRC2, respectively), whereas DA decreases the levels only of the NDUFS3 subunit in our preparations. We also show that the selected subunits are not decreased in synaptosomal mitochondria under similar experimental conditions. Finally, we found that parkin overexpression does not influence the levels of the NDUFS3 subunit in rat striatum. The presented results indicate that METH itself is a factor promoting dysfunction of striatal mitochondria; therefore, it is a potential drug target against METH neurotoxicity. The observed decreases in ETC complex subunits suggest that DA and METH decrease activities of the ETC complexes via oxidative damage to their subunits and that synaptosomal mitochondria may be somewhat "resistant" to DA- and METH-induced disruption in mitochondrial ETC complexes than perikaryal mitochondria. The results also suggest that parkin does not regulate NDUFS3 turnover in rat striatum.
Assuntos
Corpo Estriado/metabolismo , Dopamina/farmacologia , Metanfetamina/toxicidade , Neurotoxinas/toxicidade , Ubiquitina-Proteína Ligases/metabolismo , Animais , Soluções Tampão , Corpo Estriado/efeitos dos fármacos , Transporte de Elétrons/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Biológicos , NADH Desidrogenase/metabolismo , Subunidades Proteicas/metabolismo , Ratos , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismoRESUMO
Mutations in SUCLA2 result in succinyl-CoA ligase (ATP-forming) or succinyl-CoA synthetase (ADP-forming) (A-SCS) deficiency, a mitochondrial tricarboxylic acid cycle disorder. The phenotype associated with this gene defect is largely encephalomyopathy. We describe two siblings compound heterozygous for SUCLA2 mutations, c.985A>G (p.M329V) and c.920C>T (p.A307V), with parents confirmed as carriers of each mutation. We developed a new LC-MS/MS based enzyme assay to demonstrate the decreased SCS activity in the siblings with this unique genotype. Both siblings shared bilateral progressive hearing loss, encephalopathy, global developmental delay, generalized myopathy, and dystonia with choreoathetosis. Prior to diagnosis and because of lactic acidosis and low activity of muscle pyruvate dehydrogenase complex (PDC), sibling 1 (S1) was placed on dichloroacetate, while sibling 2 (S2) was on a ketogenic diet. S1 developed severe cyclic vomiting refractory to therapy, while S2 developed Leigh syndrome, severe GI dysmotility, intermittent anemia, hypogammaglobulinemia and eventually succumbed to his disorder. The mitochondrial DNA contents in skeletal muscle (SM) were normal in both siblings. Pyruvate dehydrogenase complex, ketoglutarate dehydrogenase complex, and several mitochondrial electron transport chain (ETC) activities were low or at the low end of the reference range in frozen SM from S1 and/or S2. In contrast, activities of PDC, other mitochondrial enzymes of pyruvate metabolism, ETC and, integrated oxidative phosphorylation, in skin fibroblasts were not significantly impaired. Although we show that propionyl-CoA inhibits PDC, it does not appear to account for decreased PDC activity in SM. A better understanding of the mechanisms of phenotypic variability and the etiology for tissue-specific secondary deficiencies of mitochondrial enzymes of oxidative metabolism, and independently mitochondrial DNA depletion (common in other cases of A-SCS deficiency), is needed given the implications for control of lactic acidosis and possible clinical management.
Assuntos
Doenças Mitocondriais/genética , Músculo Esquelético/enzimologia , Polimorfismo de Nucleotídeo Único , Succinato-CoA Ligases/deficiência , Adolescente , Criança , DNA Mitocondrial/genética , Evolução Fatal , Humanos , Masculino , Doenças Mitocondriais/enzimologia , Músculo Esquelético/metabolismo , Deleção de Sequência , Irmãos , Succinato-CoA Ligases/genéticaRESUMO
Mitochondria are critical for maintaining normal cardiac function, and a deficit in mitochondrial energetics can lead to the development of the substrate that promotes atrial fibrillation (AF) and its progression. However, the link between mitochondrial dysfunction and AF in humans is still not fully defined. The aim of this study was to elucidate differences in the functional activity of mitochondrial oxidative phosphorylation (OXPHOS) complexes and oxidative stress in right atrial tissue from patients without (non-AF) and with AF (AF) who were undergoing open-heart surgery and were not significantly different for age, sex, major comorbidities, and medications. The overall functional activity of the electron transport chain (ETC), NADH:O2 oxidoreductase activity, was reduced by 30% in atrial tissue from AF compared with non-AF patients. This was predominantly due to a selective reduction in complex I (0.06 ± 0.007 vs. 0.09 ± 0.006 nmol·min(-1)·citrate synthase activity(-1), P = 0.02) and II (0.11 ± 0.012 vs. 0.16 ± 0.012 nmol·min(-1)·citrate synthase activity(-1), P = 0.003) functional activity in AF patients. Conversely, complex V activity was significantly increased in AF patients (0.21 ± 0.027 vs. 0.12 ± 0.01 nmol·min(-1)·citrate synthase activity(-1), P = 0.005). In addition, AF patients exhibited a higher oxidative stress with increased production of mitochondrial superoxide (73 ± 17 vs. 11 ± 2 arbitrary units, P = 0.03) and 4-hydroxynonenal level (77.64 ± 30.2 vs. 9.83 ± 2.83 ng·mg(-1) protein, P = 0.048). Our findings suggest that AF is associated with selective downregulation of ETC activity and increased oxidative stress that can contribute to the progression of the substrate for AF.
Assuntos
Fibrilação Atrial/enzimologia , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias Cardíacas/enzimologia , Miócitos Cardíacos/enzimologia , Fosforilação Oxidativa , Estresse Oxidativo , Idoso , Idoso de 80 Anos ou mais , Aldeídos/metabolismo , Fibrilação Atrial/fisiopatologia , Fibrilação Atrial/cirurgia , Estudos de Casos e Controles , Progressão da Doença , Regulação para Baixo , Feminino , Átrios do Coração/enzimologia , Átrios do Coração/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Superóxidos/metabolismoRESUMO
The trends of novel AD therapeutics are focused on multitarget-directed ligands (MTDLs), which combine cholinesterase inhibition with additional biological properties such as antioxidant properties to positively affect neuronal energy metabolism as well as mitochondrial function. We examined the in vitro effects of 10 novel MTDLs on the activities of mitochondrial enzymes (electron transport chain complexes and citrate synthase), mitochondrial respiration, and monoamine oxidase isoform (MAO-A and MAO-B) activity. The drug-induced effects of 7-MEOTA-adamantylamine heterodimers (K1011, K1013, K1018, K1020, and K1022) and tacrine/7-MEOTA/6-chlorotacrine-trolox heterodimers (K1046, K1053, K1056, K1060, and K1065) were measured in pig brain mitochondria. Most of the substances inhibited complex I- and complex II-linked respiration at high concentrations; K1046, K1053, K1056, and K1060 resulted in the least inhibition of mitochondrial respiration. Citrate synthase activity was not significantly inhibited by the tested substances; the least inhibition of complex I was observed for compounds K1060 and K1053, while both complex II/III and complex IV activity were markedly inhibited by K1011 and K1018. MAO-A was fully inhibited by K1018 and K1065, and MAO-B was fully inhibited by K1053 and K1065; the other tested drugs were partial inhibitors of both MAO-A and MAO-B. The tacrine/7-MEOTA/6-chlorotacrine-trolox heterodimers K1046, K1053, and K1060 seem to be the most suitable molecules for subsequent in vivo studies. These compounds had balanced inhibitory effects on mitochondrial respiration, with low complex I and complex II/III inhibition and full or partial inhibition of MAO-B activity.
Assuntos
Metabolismo Energético , Mitocôndrias/metabolismo , Monoaminoxidase/metabolismo , Tacrina/farmacologia , Doença de Alzheimer/tratamento farmacológico , Animais , Respiração Celular/efeitos dos fármacos , Complexo II de Transporte de Elétrons/metabolismo , Metabolismo Energético/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Inibidores da Monoaminoxidase/farmacologia , Suínos , Tacrina/químicaRESUMO
Mitochondria are recognized as the main source of ATP to meet the energy demands of the cell. ATP production occurs by oxidative phosphorylation when electrons are transported through the electron transport chain (ETC) complexes and develop the proton motive force across the inner mitochondrial membrane that is used for ATP synthesis. Studies since the 1960s have been concentrated on the two models of structural organization of ETC complexes known as "solid-state" and "fluid-state" models. However, advanced new techniques such as blue-native gel electrophoresis, mass spectroscopy, and cryogenic electron microscopy for analysis of macromolecular protein complexes provided new data in favor of the solid-state model. According to this model, individual ETC complexes are assembled into macromolecular structures known as respiratory supercomplexes (SCs). A large number of studies over the last 20 years proposed the potential role of SCs to facilitate substrate channeling, maintain the integrity of individual ETC complexes, reduce electron leakage and production of reactive oxygen species, and prevent excessive and random aggregation of proteins in the inner mitochondrial membrane. However, many other studies have challenged the proposed functional role of SCs. Recently, a third model known as the "plasticity" model was proposed that partly reconciles both "solid-state" and "fluid-state" models. According to the "plasticity" model, respiratory SCs can co-exist with the individual ETC complexes. To date, the physiological role of SCs remains unknown, although several studies using tissue samples of patients or animal/cell models of human diseases revealed an associative link between functional changes and the disintegration of SC assembly. This review summarizes and discusses previous studies on the mechanisms and regulation of SC assembly under physiological and pathological conditions.
Assuntos
Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Animais , Respiração Celular , HumanosRESUMO
The evaluation of drug-induced mitochondrial impairment may be important in drug development as well as in the comprehension of molecular mechanisms of the therapeutic and adverse effects of drugs. The primary aim of this study was to investigate the effects of four drugs for treatment of depression (bupropion, fluoxetine, amitriptyline, and imipramine) and five drugs for bipolar disorder treatment (lithium, valproate, valpromide, lamotrigine, and carbamazepine) on cell energy metabolism. The in vitro effects of the selected psychopharmaca were measured in isolated pig brain mitochondria; the activities of citrate synthase (CS) and electron transport chain (ETC) complexes (I, II + III, and IV) and mitochondrial respiration rates linked to complex I and complex II were measured. Complex I was significantly inhibited by lithium, carbamazepine, fluoxetine, amitriptyline, and imipramine. The activity of complex IV was decreased after exposure to carbamazepine. The activities of complex II + III and CS were not affected by any tested drug. Complex I-linked respiration was significantly inhibited by bupropion, fluoxetine, amitriptyline, imipramine, valpromide, carbamazepine, and lamotrigine. Significant inhibition of complex II-linked respiration was observed after mitochondria were exposed to amitriptyline, fluoxetine, and carbamazepine. Our outcomes confirm the need to investigate the effects of drugs on both the total respiration rate and the activities of individual enzymes of the ETC to reveal the risk of adverse effects as well as to understand the molecular mechanisms leading to drug-induced changes in the respiratory rate. Our approach can be further replicated to study the mechanisms of action of newly developed drugs.
Assuntos
Antidepressivos/toxicidade , Antimaníacos/toxicidade , Encéfalo/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Animais , Encéfalo/metabolismo , Respiração Celular/efeitos dos fármacos , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Frações Subcelulares , Sus scrofaRESUMO
Assessment of drug-induced mitochondrial dysfunctions is important in drug development as well as in the understanding of molecular mechanism of therapeutic or adverse effects of drugs. The aim of this study was to investigate the effects of three typical antipsychotics (APs) and seven atypical APs on mitochondrial bioenergetics. The effects of selected APs on citrate synthase, electron transport chain complexes (ETC), and mitochondrial complex I- or complex II-linked respiratory rate were measured using mitochondria isolated from pig brain. Complex I activity was decreased by chlorpromazine, haloperidol, zotepine, aripiprazole, quetiapine, risperidone, and clozapine. Complex II + III was significantly inhibited by zotepine, aripiprazole, quetiapine, and risperidone. Complex IV was inhibited by zotepine, chlorpromazine, and levomepromazine. Mitochondrial respiratory rate was significantly inhibited by all tested APs, except for olanzapine. Typical APs did not exhibit greater efficacy in altering mitochondrial function compared to atypical APs except for complex I inhibition by chlorpromazine and haloperidol. A comparison of the effects of APs on individual respiratory complexes and on the overall mitochondrial respiration has shown that mitochondrial functions may not fully reflect the disruption of complexes of ETC, which indicates AP-induced modulation of other mitochondrial proteins. Due to the complicated processes associated with mitochondrial activity, it is necessary to measure not only the effect of the drug on individual mitochondrial enzymes but also the respiration rate of the mitochondria or a similar complex process. The experimental approach used in the study can be applied to mitochondrial toxicity testing of newly developed drugs.
Assuntos
Antipsicóticos/toxicidade , Complexo II de Transporte de Elétrons/efeitos dos fármacos , Complexo I de Transporte de Elétrons/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Complexo II de Transporte de Elétrons/metabolismo , Metabolismo Energético/efeitos dos fármacos , Técnicas In Vitro , Mitocôndrias/patologia , SuínosRESUMO
OBJECTIVES: The bipolar affective disorder (BAD) pathophysiology is multifactorial and has not been fully clarified. METHOD: We measured selected mitochondrial parameters in peripheral blood components. The analyses were performed for patients suffering from a manic episode during remission and were compared to those performed for healthy controls. BAD was clinically evaluated using well-established diagnostic scales and questionnaires. Mitochondrial respiration was examined in intact and permeabilized blood platelets using high-resolution respirometry. The citrate synthase (CS) and electron transport system (ETS) complex (complex I, II, and IV) activities were examined in platelets. RESULTS: The CS, complex II and complex IV activities were decreased in the BAD patients, complex I activity was increased, and the ratio of complex I to CS was significantly increased. In the intact platelets, respiration after complex I inhibition and residual oxygen consumption were decreased in the BAD patients compared to the healthy controls. In the permeabilized platelets, a decreased ETS capacity was found in the BAD patients. No significant differences were found between BAD patients in mania and remission. CONCLUSION: Increased complex I activity can be a compensatory mechanism for decreased CS and complex II and IV activities. We conclude that complex I and its abnormal activity contribute to defects in cellular energy metabolism during a manic episode and that the deficiency in the complex's functioning, but not the availability of oxidative phosphorylation substrates, seems to be responsible for the decreased ETS capacity in BAD patients. The observed parameters can be further evaluated as 'trait' markers of BAD.
Assuntos
Transtorno Bipolar/metabolismo , Transtornos Plaquetários/metabolismo , Plaquetas/metabolismo , Mitocôndrias/metabolismo , Adulto , Transtorno Bipolar/complicações , Transtorno Bipolar/tratamento farmacológico , Transtornos Plaquetários/complicações , Citrato (si)-Sintase/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Humanos , MasculinoRESUMO
Exact pathophysiological mechanisms of bipolar disorder have not been sufficiently clarified. We review the evidence of mitochondrial dysfunctions on the relation between both disease and pharmacotherapy. Mitochondria produce the most of energy-rich molecules of adenosine triphosphate (ATP), apart from energy production they are involved in other functions: regulation of free radicals, antioxidant defenses, lipid peroxidation, calcium metabolism and participate in the intrinsic pathway of apoptosis. According to increasing evidence dysfunctions of mitochondria are associated with affective disorders, a hypothesis of impaired mitochondrial functions has been proposed in bipolar disorder pathogenesis. Mitochondrial DNA mutations and/or polymorphisms, impaired phospholipid metabolism and glycolytic shift, decrease in ATP production, increased oxidative stress and changes of intracellular calcium are concerned in mood disorders and effects of mood stabilizers. Recent studies have also provided data about the positive effects of chronic treatment by mood stabilizers on mitochondrial functions.
Assuntos
Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/fisiopatologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Doenças Mitocondriais/tratamento farmacológico , Doenças Mitocondriais/fisiopatologia , Animais , Humanos , Psicotrópicos/farmacologia , Psicotrópicos/uso terapêuticoRESUMO
OBJECTIVES: The present study was undertaken to determine the modulatory effect of taurine on the liver mitochondrial enzyme system with reference to mitochondrial lipid peroxidation (LPO), antioxidants, major tricarboxylic acid cycle enzymes, and electron transport chain enzymes during 7,12-dimethyl benz[a]anthracene (DMBA) induced breast cancer in Sprague-Dawley rats. METHODS: Animals in which breast cancer had been induced by using DMBA (25 mg/kg body weight) showed an increase in mitochondrial LPO together with decreases in enzymic antioxidants (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione-S-transferase (GST)), non-enzymic antioxidants (reduced glutathione (GSH), vitamin C, and vitamin E), in citric acid cycle enzymes (isocitrate dehydrogenase (ICDH), alpha ketoglutarate dehydrogenase (alpha KDH), succinate dehydrogenase (SDH) and malate dehydrogenase (MDH)), and in electron transport chain (ETC) complexes. RESULTS: Taurine (100 mg/kg body weight) treatment decreased liver mitochondrial LPO and augmented the activities/levels of enzymic, and non-enzymic antioxidants, tricarboxylic acid cycle enzymes and ETC complexes. CONCLUSION: The results of our present study demonstrated the chemotherapeutic efficacy of taurine treatment for DMBA-induced breast carcinomas.
RESUMO
Efficacy of Kalpaamruthaa on the activities of lipid and carbohydrate metabolic enzymes, electron transport chain complexes and mitochondrial ATPases were studied in heart and liver of experimental rats. Cardiovascular damage (CVD) was developed in 8 weeks after type 2 diabetes mellitus induction with high fat diet (2 weeks) and low dose of streptozotocin (2 × 35 mg/kg b.w. i.p. in 24 hr interval). In CVD-induced rats, the activities of total lipase, cholesterol ester hydrolase and cholesterol ester synthetase were increased, while lipoprotein lipase and lecithin-cholesterol acyltransferase activities were decreased. The activities of lipid-metabolizing enzymes were altered by Kalpaamruthaa in CVD-induced rats towards normal. Kalpaamruthaa modulated the activities of glycolytic enzymes (hexokinase, phosphogluco-isomerase, aldolase and glucose-6-phosphate dehydrogenase), gluconeogenic enzymes (glucose-6-phosphatase and fructose-1, 6-bisphosphatase) and glycogenolytic enzyme (glycogen phosphorylase) along with increased glycogen content in the liver of CVD-induced rats. The activities of isocitrate dehydrogenase, succinate dehydrogenase, malate dehydrogenase, α-ketoglutarate dehydrogenase, Complexes and ATPases (Na(+)/K(+)-ATPase, Ca(2+)-ATPase and Mg(2+)-ATPase) were decreased in CVD-induced rats, which were ameliorated by the treatment with Kalpaamruthaa. This study ascertained the efficacy of Kalpaamruthaa for the treatment of CVD in diabetes through the modulation of metabolizing enzymes and mitochondrial dysfunction.
Assuntos
Glicemia/metabolismo , Doenças Cardiovasculares/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Extratos Vegetais/uso terapêutico , Adenosina Trifosfatases/metabolismo , Animais , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica , Glicogênio/metabolismo , Coração/efeitos dos fármacos , Fígado/enzimologia , Fígado/metabolismo , Magnoliopsida , Masculino , Ayurveda , Mitocôndrias/metabolismo , Fitoterapia , Extratos Vegetais/farmacologia , Ratos Sprague-DawleyRESUMO
Espécies reativas de oxigênio (EROs) são normalmente e continuamente geradas em mitocôndrias, majoritariamente na cadeia de transporte de elétrons (CTE). Harman (1956, 1972 e 1992) teorizou que os radicais livres gerados nas mitocôndrias seriam a principal causa do envelhecimento. De fato, durante o envelhecimento é observado um desequilíbrio entre formação e remoção de EROs, que resulta em estresse redox. Essa condição favorece a formação de lesões oxidadas no DNA, acarretando em mutagênese ou morte celular. Diversos mecanismos moleculares cooperam para o reparo de DNA. Duas vias de reparo de DNA lidam com a maioria das lesões: o reparo por excisão de base (BER) e o reparo por excisão de nucleotídeos (NER). A via BER corrige pequenas modificações de bases que surgem de reações de desaminação, alquilação e oxidação. A via NER é mais versátil, reconhecendo lesões que distorcem a dupla hélice de DNA, como danos induzidos por luz UV e adutos volumos. Pacientes xeroderma pigmentoso (XP-A a XP-G) herdam mutações em um de sete genes que codificam proteínas envolvidas na via NER, ou em um gene que codifica uma polimerase translesão (XP-V). A doença é caracterizada por fotosensibilidade e incidência elevada de neoplasias cutâneas. A proteína XPC atua na etapa de reconhecimento da lesão de DNA na subvia de reparo global do genoma (GG-NER), e sua mutação dá origem aos sintomas clássicos de XP. Novas funções de XPC foram recentemente descritas: i) atuando como cofator na via BER auxiliando as DNA glicosilases OGG1, TDG e SMUG; ii) atuando como cofator transcricional de elementos responsivos a Oct4/Sox2, RXR e PPARα; e iii) na adaptação metabólica na transformação de queratinócitos. Então, propusemo-nos a investigar as relações entre XPC e a manutenção da integridade do DNA mitocondrial, a sensibilidade celular a estresse redox mitocondrial e possíveis alterações bioenergéticas e redox. Para tal, padronizamos um ensaio in vitro de cinética de incisão em DNA plasmidial a fim de investigarmos o possível papel de XPC no reparo de lesões oxidadas em mtDNA. Porém, nossos dados revelaram que XPC não se encontra em mitocôndrias. Apesar disso, células XP-C são mais sensíveis ao tratamento com azul de metileno (AM), antimicina A (AA) e rotenona (ROT), que geram estresse redox mitocondrial. A sensibilidade à AA foi completamente revertida em células corrigidas. Células XP-C apresentaram alterações quanto ao uso dos complexos mitocondriais, com diminuição da taxa de consumo de oxigênio (OCR) via complexo I e um aumento da OCR via complexo II, dependente da presença de XPC. Ademais, a linhagem XP-C apresentou um desequilíbrio redox mitocondrial com maior produção de EROs e menor atividade de GPx. O DNA mitocondrial de células XP-C apresentou níveis elevados de lesão e deleção, que no entanto não retornaram aos níveis encontrados em células selvagens na linhagem XP-C corrigida. Observamos uma acentuada diminuição da expressão de PPARGC1A, um importante regulador de biogênese mitocondrial. Contudo, não foi possível determinar o mecanismo de supressão da expressão de PPARGC1A. Por fim, identificamos que o tipo de mutação em XPC pode estar associado a expressão de PPARGC1A. Esse estudo abre novas possibilidade na investigação do papel de proteína XPC, à parte da instabilidade genômica, na adaptação metabólica e desequilíbrio redox em direção da progressão tumoral
Mitochondria continuously produce reactive oxygen species (ROS), mainly at the electron transport chain. Harman (1956, 1972 e 1992) proposed that normal aging is driven by increased mitochondrially generated free radicals. Indeed, during the course of aging there is an increased imbalance between formation and removal of ROS, leading to redox stress. This condition favours the formation of oxidized DNA lesions, given rise to mutations and cell death. Several molecular mechanisms cooperates to repair the DNA. Two DNA repair pathways deal with the majority of lesions: base excision repair (BER) and nucleotide excision repair (NER). The BER pathway corrects small base modifications that arise from deamination, alkylation and oxidation reactions. The NER pathway is more versitile, recognizing helix-distorting lesions, such as UV-induced damage and bulky adducts. Xeroderma pigmentosum (XP-A to XP-G) patients inherit mutations in one of seven protein-coding genes involved in NER pathway, or in a gene coding a translesion DNA polymerase (XP-V). Photosensitivity and a thousand-fold increased in the risk of developing cutaneous neoplasms are the main clinical features of XP. XPC protein functions in the recognition step of global genome NER (GG-NER) sub-pathway, and mutations in this gene lead to classical XP symptoms. Recently, it has been described that XPC acts: i) as a cofactor in BER pathway through functional interaction with DNA glycosylases OGG1, TDG and SMUG1; ii) as coactivator in transcription at Oct4/Sox2, RXR and PPARα responsive elements; iii) in metabolic shift during keratinocytes transformation. Thus, we sought to investigate a possible role for XPC in the maintenance of mtDNA integrity, cellular sensitivity to mitochondrial redox stress and eventual bioenergetic and redox changes. For this purpose, we established an in vitro plasmid incision assay to investigate the possible role of XPC in the repair of oxidized lesions in mitochondrial DNA. However, our data revealed that XPC did not localized in mitochondria. Nonetheless, XP-C cells are more sensitive to methylene blue, antimycin A (AA) and rotenone treatment, which induce mitochondrial redox stress. The XP-C sensitivity to AA was completely reverted in XPC-corrected cells. XP-C cells presented altered usage of mitochondrial complexes, with decreased oxygen consumption rate (OCR) via complex I and increased OCR through complex II, an XPC-dependent phenomenon. Furthermore, the XP-C cell line showed mitochondrial redox imbalance with increased ROS production and decrease GPx activity. MtDNA from XP-C cells accumulate lesions and deletions, which, however, were found at similar levels in the corrected cell line. We identified a sharp decrease in the expression of PPARGC1A, a master regulator of mitochondrial biogenesis. Nevertheless, it was not possible to determine the mechanism of suppression of PPARGC1A expression. Finally, our results suggest a possible link between the type of XPC mutation and PPARGC1A expression. This study unfolds new possible roles for XPC, aside from its established roles in genomic instability, in metabolic adaptation and redox imbalance towards tumour progression