Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Plant Biol ; 21(1): 3, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407133

RESUMO

BACKGROUND: Siberian wildrye (Elymus sibiricus L.) attracts considerable interest for grassland establishment and pasture recovery in the Qinghai-Tibet Plateau (QTP) due to its excellence in strong stress tolerance, high nutritional value and ease to cultivate. However, the lack of genomic information of E. sibiricus hampers its genetics study and breeding process. RESULTS: In this study, we performed a genome survey and developed a set of SSR markers for E. sibiricus based on Next-generation sequencing (NGS). We generated 469.17 Gb clean sequence which is 58.64× of the 6.86 Gb estimated genome size. We assembled a draft genome of 4.34 Gb which has 73.23% repetitive elements, a heterozygosity ratio of 0.01% and GC content of 45.68%. Based on the gnomic sequences we identified 67,833 SSR loci and from which four hundred were randomly selected to develop markers. Finally, 30 markers exhibited polymorphism between accessions and ten were identified as single-locus SSR. These newly developed markers along with previously reported 30 ones were applied to analyze genetic polymorphism among 27 wild E. sibiricus accessions. We found that single-locus SSRs are superior to multi-loci SSRs in effectiveness. CONCLUSIONS: This study provided insights into further whole genome sequencing of E. sibiricus in strategy selection. The novel developed SSR markers will facilitate genetics study and breeding for Elymus species.


Assuntos
DNA de Plantas/genética , Elymus/genética , Etiquetas de Sequências Expressas , Loci Gênicos , Genoma de Planta , Genômica , Repetições de Microssatélites/genética , Mapeamento Cromossômico , Biblioteca Gênica , Marcadores Genéticos , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala
2.
Plants (Basel) ; 9(10)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076513

RESUMO

Elymus sibiricus L. is an important cold-season grass with excellent cold and drought tolerance, good palatability, and nutrition. Flowering time is a key trait that affects forage and seed yield. Development of EST-SSR (expressed sequence tag simple sequence repeat) markers based on flowering genes contributes to the improvement of flowering traits. In the study, we detected 155 candidate genes related to flowering traits from 10,591 unigenes via transcriptome sequencing in early- and late-flowering genotypes. These candidate genes were mainly involved in the photoperiodic pathway, vernalization pathway, central integrator, and gibberellin pathway. A total of 125 candidate gene-based EST-SSRs were developed. Further, 15 polymorphic EST-SSRs closely associated to 13 candidate genes were used for genetic diversity and population structure analysis among 20 E. sibiricus accessions, including two contrasting panels (early-flowering and late-flowering). Among them, primer 28366, designed from heading date 3a (HD3a), effectively distinguished early- and late-flowering genotypes using a specifically amplified band of 175 bp. The polymorphic information content (PIC) value ranged from 0.12 to 0.48, with an average of 0.25. The unweighted pair group method analysis (UPGMA) cluster and structure analysis showed that the 20 E. sibiricus genotypes with similar flowering times tended to group together. These newly developed EST-SSR markers have the potential to be used for molecular markers assisted selection and germplasm evaluation of flowering traits in E. sibiricus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA