Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Annu Rev Genomics Hum Genet ; 23: 29-52, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35609926

RESUMO

In cancer, complex genome rearrangements and other structural alterations, including the amplification of oncogenes on circular extrachromosomal DNA (ecDNA) elements, drive the formation and progression of tumors. ecDNA is a particularly challenging structural alteration. By untethering oncogenes from chromosomal constraints, it elevates oncogene copy number, drives intratumoral genetic heterogeneity, promotes rapid tumor evolution, and results in treatment resistance. The profound changes in DNA shape and nuclear architecture generated by ecDNA alter the transcriptional landscape of tumors by catalyzing new types of regulatory interactions that do not occur on chromosomes. The current suite of tools for interrogating cancer genomes is well suited for deciphering sequence but has limited ability to resolve the complex changes in DNA structure and dynamics that ecDNA generates. Here, we review the challenges of resolving ecDNA form and function and discuss the emerging tool kit for deciphering ecDNA architecture and spatial organization, including what has been learned to date about how this dramatic change in shape alters tumor development, progression, and drug resistance.


Assuntos
Neoplasias , Oncogenes , Cromossomos , DNA/genética , Humanos , Neoplasias/genética , Neoplasias/patologia
2.
Br J Haematol ; 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39187468

RESUMO

Structural variations involving enhancer hijacking induce aberrant oncogene expression and cause tumorigenesis. A rare translocation, t(3;8)(q26.2;q24), is associated with MECOM and MYC rearrangement, causing myeloid neoplasms with a dismal prognosis. The most recent World Health Organization classification recognises myeloid neoplasms with MECOM rearrangement as acute myeloid leukaemia (AML) with defining genetic abnormalities. Recently, the increasing use of induced pluripotent stem cell (iPSC) technology has helped elucidate the pathogenic processes of haematological malignancies. However, its utility for investigating enhancer hijacking in myeloid neoplasms remains unclear. In this study, we generated iPSC lines from patients with myelodysplastic syndromes (MDS) harbouring t(3;8)(q26.2;q24) and differentiated them into haematopoietic progenitor cells to model the pathophysiology of MDS with t(3;8)(q26.2;q24). Our iPSC model reproduced the primary patient's MECOM expression changes and histone H3 lysine 27 acetylation (H3K27ac) patterns in the MECOM promoter and MYC blood enhancer cluster (BENC). Furthermore, we revealed the apoptotic effects of the bromodomain and extra-terminal motif (BET) inhibitor on iPSC-derived MDS cells by suppressing activated MECOM. Our study demonstrates the usefulness of iPSC models for uncovering the precise mechanism of enhancer hijacking due to chromosomal structural changes and discovering potential therapeutic drug candidates for cancer treatment.

3.
Br J Haematol ; 205(2): 607-612, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38385580

RESUMO

T/myeloid mixed phenotype acute leukaemia (MPAL) is a rare aggressive acute leukaemia with poorly understood pathogenesis. Herein, we report two cases of T/myeloid MPAL harbouring BCL11B-associated structural variants that activate TLX3 (TLX3::BCL11B-TLX3-activation) by genome sequencing and transcriptomic analyses. Both patients were young males with extramedullary involvement. Cooperative gene alterations characteristic of T/myeloid MPAL and T-lymphoblastic leukaemia (T-ALL) were detected. Both patients achieved initial remission following lineage-matched ALL-based therapy with one patient requiring a lineage-switched myeloid-based therapy. Our study is the first to demonstrate the clinicopathological and genomic features of TLX3::BCL11B-TLX3-activated T/myeloid MPAL and provide insights into leukaemogenesis.


Assuntos
Proteínas Repressoras , Humanos , Masculino , Proteínas Repressoras/genética , Adulto , Proteínas de Fusão Oncogênica/genética , Leucemia Aguda Bifenotípica/genética , Leucemia Aguda Bifenotípica/patologia , Proteínas Supressoras de Tumor/genética , Proteínas de Homeodomínio/genética
4.
Physiol Genomics ; 54(10): 380-388, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36036457

RESUMO

Sequencing cancer predisposing genes (CPGs) in evocative patients (i.e., patients with personal and family history of multiple/early-onset/unusual cancers) allows follow-up in their relatives to be adapted when a causative pathogenic variant is identified. Unfortunately, many evocative families remain unexplained. Part of this "missing heritability" could be due to CPG dysregulations caused by remote noncoding genomic alterations. Transcription levels are regulated through the ability of promoters to physically interact with their distant cis-regulatory elements. Three-dimensional chromatin contacts, mediated by a dynamic loop extrusion process, are uncovered by chromosome conformation capture (3C) and 3C-derived techniques, which have enabled the discovery of new pathological mechanisms in developmental diseases and cancers. High-penetrance cancer predisposition is caused by germline hereditary alterations otherwise found at the somatic level in sporadic cancers. Thus, data from both developmental diseases and cancers provide information about possible unknown cancer predisposition mechanisms. This mini-review aims to deduce from these data whether abnormal chromatin folding can cause high-penetrance cancer predisposition.


Assuntos
Cromatina , Neoplasias , Cromatina/genética , Genoma , Humanos , Neoplasias/genética , Penetrância , Regiões Promotoras Genéticas
5.
Genes Chromosomes Cancer ; 59(11): 652-660, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32654217

RESUMO

The pleomorphic adenoma (PA), which is the most common salivary gland neoplasm, is a benign tumor characterized by recurrent chromosome rearrangements involving 8q12 and 12q14-15. We have previously shown that the PLAG1 and HMGA2 oncogenes are the targets of these rearrangements. Here, we have identified previously unrecognized subsets of PAs with ins(9;8)/t(8;9) (n = 5) and ins(9;12)/t(9;12) (n = 8) and breakpoints located in the vicinity of the PLAG1 and HMGA2 loci. RNA-sequencing and reverse transcriptase (RT)-PCR analyses of a case with an ins(9;8) revealed a novel NFIB-PLAG1 fusion in which NFIB exon 4 is linked to PLAG1 exon 3. In contrast to the developmentally regulated PLAG1 gene, NFIB was highly expressed in normal salivary gland, indicating that PLAG1 in this case, as in other variant fusions, is activated by promoter swapping. RT-PCR analysis of three PAs with t(9;12) revealed two tumors with chimeric transcripts consisting of HMGA2 exon 4 linked to NFIB exons 9 or 3 and one case with a fusion linking HMGA2 exon 3 to NFIB exon 9. The NFIB fusion events resulted in potent activation of PLAG1 and HMGA2. Analysis of the chromatin landscape surrounding NFIB revealed several super-enhancers in the 5'- and 3'-parts of the NFIB locus and its flanking sequences. These findings indicate that PLAG1 and HMGA2, similar to MYB in adenoid cystic carcinoma, may be activated by enhancer-hijacking events, in which super-enhancers in NFIB are translocated upstream of PLAG1 or downstream of HMGA2. Our results further emphasize the role of NFIB as a fusion partner to multiple oncogenes in histopathologically different types of salivary gland tumors.


Assuntos
Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Proteína HMGA2/genética , Fatores de Transcrição NFI/genética , Proteínas de Fusão Oncogênica/genética , Neoplasias das Glândulas Salivares/genética , Cromatina/química , Cromatina/genética , Proteínas de Ligação a DNA/metabolismo , Elementos Facilitadores Genéticos , Proteína HMGA2/metabolismo , Humanos , Fatores de Transcrição NFI/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Glândulas Salivares/metabolismo , Ativação Transcricional
6.
Rinsho Ketsueki ; 61(1): 47-51, 2020.
Artigo em Japonês | MEDLINE | ID: mdl-32023603

RESUMO

Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a hematological malignancy, which seems to originate from the precursor of plasmacytoid dendritic cells. Because BPDCN has an aggressive course and poor prognosis, development of new treatment strategies is essential. Next-Generation Sequencing, a recently evolved technology, reveals new molecular mechanism of BPDCN development. Here I will discuss the recent research on the treatment of BPDCN, including the relationship between chromosomal translocation and enhancer hijacking in BPDCN.


Assuntos
Neoplasias Hematológicas , Transtornos Mieloproliferativos , Neoplasias Cutâneas , Translocação Genética , Células Dendríticas , Humanos
7.
Neoplasia ; 56: 101025, 2024 10.
Artigo em Inglês | MEDLINE | ID: mdl-38996538

RESUMO

The study of extrachromosomal DNA (ecDNA), an element existing beyond classical chromosomes, contributes to creating a more comprehensive map of the cancer genome. In hematological malignancies, research on ecDNA has lacked comprehensive investigation into its frequency, structure, function, and mechanisms of formation. We re-analyzed WGS data from 208 hematological cancer samples across 11 types, focusing on ecDNA characteristics. Amplification of ecDNA was observed in 7 of these cancer types, with no instances found in normal blood cells. Patients with leukemia carrying ecDNA showed a low induction therapy remission rate (<30 %), a high relapse rate (75 %) among those who achieved complete remission, and a significantly lower survival rate compared to the general leukemia population, even those with complex chromosomal karyotypes. Among the 55 identified ecDNA amplicons, 268 genes were detected, of which 38 are known cancer-related genes exhibiting significantly increased copy numbers. By integrating RNA-Seq data, we discovered that the increased copy number, resulting in a higher amount of available DNA templates, indeed leads to the elevated expression of genes encoded on ecDNA. Additionally, through the integration of H3K4me3/H3K27ac chromatin immunoprecipitation sequencing, assay for transposase-accessible chromatin with sequencing, and high-throughput chromosome conformation capture data, we identified that ecDNA amplifications can also facilitate efficient, copy number-independent amplification of oncogenes. This process is linked to active histone modifications, improved chromatin accessibility, and enhancer hijacking, all of which are effects of ecDNA amplification. Mechanistically, chromothripsis and dysfunction of the DNA repair pathway can, to some extent, explain the origin of ecDNA.


Assuntos
Amplificação de Genes , Neoplasias Hematológicas , Humanos , Neoplasias Hematológicas/genética , Variações do Número de Cópias de DNA
8.
Elife ; 132024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38231024

RESUMO

A central goal of evolutionary developmental biology is to decipher the evolutionary pattern of gene regulatory networks (GRNs) that control embryonic development, and the mechanism underlying GRNs evolution. The Nodal signaling that governs the body axes of deuterostomes exhibits a conserved GRN orchestrated principally by Nodal, Gdf1/3, and Lefty. Here we show that this GRN has been rewired in cephalochordate amphioxus. We found that while the amphioxus Gdf1/3 ortholog exhibited nearly no embryonic expression, its duplicate Gdf1/3-like, linked to Lefty, was zygotically expressed in a similar pattern as Lefty. Consistent with this, while Gdf1/3-like mutants showed defects in axial development, Gdf1/3 mutants did not. Further transgenic analyses showed that the intergenic region between Gdf1/3-like and Lefty could drive reporter gene expression as that of the two genes. These results indicated that Gdf1/3-like has taken over the axial development role of Gdf1/3 in amphioxus, possibly through hijacking Lefty enhancers. We finally demonstrated that, to compensate for the loss of maternal Gdf1/3 expression, Nodal has become an indispensable maternal factor in amphioxus and its maternal mutants caused axial defects as Gdf1/3-like mutants. We therefore demonstrated a case that the evolution of GRNs could be triggered by enhancer hijacking events. This pivotal event has allowed the emergence of a new GRN in extant amphioxus, presumably through a stepwise process. In addition, the co-expression of Gdf1/3-like and Lefty achieved by a shared regulatory region may have provided robustness during body axis formation, which provides a selection-based hypothesis for the phenomena called developmental system drift.


Assuntos
Redes Reguladoras de Genes , Anfioxos , Feminino , Animais , Anfioxos/genética , Animais Geneticamente Modificados , DNA Intergênico , Desenvolvimento Embrionário , Fator de Crescimento Transformador beta
9.
HGG Adv ; 5(4): 100352, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39257002

RESUMO

The aim of this work was to identify the underlying genetic cause in a four-generation family segregating an unusual phenotype comprising a severe form of skeletal Class II malocclusion with gingival hyperplasia. SNP array identified a copy number gain on chromosome 1 (chr1); however, this chromosomal region did not segregate correctly in the extended family. Exome sequencing also failed to identify a candidate causative variant but highlighted co-segregating genetic markers on chr17 and chr19. Short- and long-read genome sequencing allowed us to pinpoint and characterize at nucleotide-level resolution a chromothripsis-like complex rearrangement (CR) inserted into the chr17 co-segregating region at the KCNJ2-SOX9 locus. The CR involved the gain of five different regions from chr1 that are shuffled, chained, and inserted as a single block (∼828 kb) at chr17q24.3. The inserted sequences contain craniofacial enhancers that are predicted to interact with KCNJ2/KCNJ16 through neo-topologically associating domain (TAD) formation to induce ectopic activation. Our findings suggest that the CR inserted at chr17q24.3 is the cause of the severe skeletal Class II malocclusion with gingival hyperplasia in this family and expands the panoply of phenotypes linked to variation at the KCNJ2-SOX9 locus. In addition, we highlight a previously overlooked potential role for misregulation of the KCNJ2/KCNJ16 genes in the pathomechanism of gingival hyperplasia associated with deletions and other rearrangements of the 17q24.2-q24.3 region (MIM 135400).

10.
Front Oncol ; 13: 1221611, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37576901

RESUMO

Introduction: Medulloblastoma is the most common type of malignant pediatric brain tumor with group 4 medulloblastomas (G4 MBs) accounting for 40% of cases. However, the molecular mechanisms that underlie this subgroup are still poorly understood. Point mutations are detected in a large number of genes at low incidence per gene while the detection of complex structural variants in recurrently affected genes typically requires the application of long-read technologies. Methods: Here, we applied linked-read sequencing, which combines the long-range genome information of long-read sequencing with the high base pair accuracy of short read sequencing and very low sample input requirements. Results: We demonstrate the detection of complex structural variants and point mutations in these tumors, and, for the first time, the detection of extrachromosomal DNA (ecDNA) with linked-reads. We provide further evidence for the high heterogeneity of somatic mutations in G4 MBs and add new complex events associated with it. Discussion: We detected several enhancer-hijacking events, an ecDNA containing the MYCN gene, and rare structural rearrangements, such a chromothripsis in a G4 medulloblastoma, chromoplexy involving 8 different chromosomes, a TERT gene rearrangement, and a PRDM6 duplication.

11.
Cell Rep ; 42(7): 112778, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37453058

RESUMO

The regulatory effect of non-coding large-scale structural variations (SVs) on proto-oncogene activation remains unclear. This study investigated SV-mediated gene dysregulation by profiling 3D cancer genome maps from 40 patients with colorectal cancer (CRC). We developed a machine learning-based method for spatial characterization of the altered 3D cancer genome. This revealed a frequent establishment of "de novo chromatin contacts" that can span multiple topologically associating domains (TADs) in addition to the canonical TAD fusion/shuffle model. Using this information, we precisely identified super-enhancer (SE)-hijacking and its clonal characteristics. Clonal SE-hijacking genes, such as TOP2B, are recurrently associated with cell-cycle/DNA-processing functions, which can potentially be used as CRC prognostic markers. Oncogene activation and increased drug resistance due to SE-hijacking were validated by reconstructing the patient's SV using CRISPR-Cas9. Collectively, the spatial and clonality-resolved analysis of the 3D cancer genome reveals regulatory principles of large-scale SVs in oncogene activation and their clinical implications.


Assuntos
Neoplasias Colorretais , Genoma , Humanos , Prognóstico , Cromatina , DNA , Neoplasias Colorretais/genética
12.
Hum Pathol ; 127: 86-91, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35700750

RESUMO

Acinic cell carcinoma (AciCC) may pose a diagnostic challenge, particularly on small biopsies and fine needle aspiration (FNA) because of its variable histology including potential high-grade transformation and its mimickers. Immunoreactivity with circumferential membranous staining for DOG1 can support the diagnosis of AciCC but is not entirely specific. A novel rearrangement t(4;9)(q13;q31) leading to up-regulation of nuclear receptor subfamily 4 group A member 3 (NR4A3) has been described in AciCC, is potentially detectable by fluorescence in situ hybridization (FISH) and may be useful in the evaluation for AciCC. Using NR4A3 Dual Color Break Apart Probe (ZytoVision, Germany) FISH was performed on AciCCs from 3 large academic institutions. NR4A3 rearrangement was defined as positive signal patterns in 15% of tissue interphase nuclei. Fifty-two AciCCs including 47 resections and 5 FNAs (including 5 paired FNA/resections) were analyzed. Five non-AciCC salivary gland tumors and 2 sialadenitis cases were used as controls. Eight AciCCs (15%; 8/52) failed FISH testing. FISH was positive in 23 AciCCs (sensitivity 59%, 23/39) with 100% concordance between 5 matched resection/FNAs (3 were positive for FISH and 2 were negative). FISH was negative in all non-AciCCs (specificity: 100%, 0/7). NR4A3 FISH has a sensitivity of 59% and specificity of 100% in detecting AciCC, which suggests that NR4A3 rearrangement-driven up-regulation is a recurrent, specific oncogenic event in AciCC, consistent with prior results. Hundred percent concordance between matched FNA/resection samples validates its potential utility on cytology samples.


Assuntos
Carcinoma de Células Acinares , Receptores de Esteroides , Neoplasias das Glândulas Salivares , Biópsia por Agulha Fina , Carcinoma de Células Acinares/diagnóstico , Carcinoma de Células Acinares/genética , Carcinoma de Células Acinares/cirurgia , Aberrações Cromossômicas , Proteínas de Ligação a DNA/genética , Humanos , Hibridização in Situ Fluorescente/métodos , Receptores de Esteroides/genética , Receptores dos Hormônios Tireóideos/genética , Neoplasias das Glândulas Salivares/patologia
13.
Cells ; 11(2)2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-35053311

RESUMO

Hematological malignancies affecting either the lymphoid or the myeloid lineages involve epigenetic mutations or dysregulation in the majority of cases. These epigenetic abnormalities can affect regulatory elements in the genome and, particularly, enhancers. Recently, large regulatory elements known as super-enhancers, initially identified for their critical roles in cell-type specific expression regulation of genes controlling cell identity, have been shown to also be involved in tumorigenesis in many cancer types and hematological malignancies via the regulation of numerous oncogenes, including MYC. In this review, we highlight the existing links between super-enhancers and hematological malignancies, with a particular focus on acute myeloid leukemia, a clonal hematopoietic neoplasm with dismal outcomes, resulting in an uncontrolled proliferation of myeloblasts, abnormally blocked during differentiation and accumulating within the patient's bone marrow. We report recent works, performed during the last few years, treating this subject and consider the possibility of targeting oncogenic regulatory elements, as well as the effectiveness and limitations reported so far for such strategies.


Assuntos
Elementos Facilitadores Genéticos , Neoplasias Hematológicas/genética , Carcinogênese/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hematológicas/terapia , Humanos , Regiões Promotoras Genéticas/genética
14.
Comput Struct Biotechnol J ; 20: 2685-2698, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35685367

RESUMO

The emergence and progression of cancers is accompanied by a dysregulation of transcriptional programs. The three-dimensional (3D) organization of the human genome has emerged as an important multi-level mediator of gene transcription and regulation. In cancer cells, this organization can be restructured, providing a framework for the deregulation of gene activity. The CTCF protein, initially identified as the product from a tumor suppressor gene, is a jack-of-all-trades for the formation of 3D genome organization in normal cells. Here, we summarize how CTCF is involved in the multi-level organization of the human genome and we discuss emerging insights into how perturbed CTCF function and DNA binding causes the activation of oncogenes in cancer cells, mostly through a process of enhancer hijacking. Moreover, we highlight non-canonical functions of CTCF that can be relevant for the emergence of cancers as well. Finally, we provide guidelines for the computational identification of perturbed CTCF binding and reorganized 3D genome structure in cancer cells.

15.
Best Pract Res Clin Haematol ; 34(4): 101329, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34865701

RESUMO

Acute leukemias of ambiguous lineage (ALAL), including mixed phenotype acute leukemia (MPAL) and related entities such as early T-cell precursor acute leukemia (ETP-ALL), remain diagnostic and clinical challenges due to limited understanding of pathogenesis, reliance of immunophenotyping to classify disease, and the lack of a rational approach to guide selection of appropriate therapy. Recent studies utilizing genomic sequencing and complementary approaches have provided key insights that are changing the way in which such leukemias are classified, and potentially, treated. Several recurrent genomic alterations define leukemias that straddle immunophenotypic entities, such as ZNF384-rearranged childhood B-ALL and B/myeloid MPAL, and BCL11B-rearranged T/myeloid MPAL, ETP-ALL and AML. In contrast, some cases of MPAL represent canonical ALL/AML entities exhibiting lineage aberrancy. For many cases of ALAL, experimental approaches indicate lineage aberrancy arises from acquisition of a founding genetic alteration into a hematopoietic stem or progenitor cell. Determination of optimal therapeutic approach requires genomic characterization of uniformly treated ALAL patients in prospective studies, but several approaches, including kinase inhibitors and BH3 mimetics may be efficacious in subsets of ALAL.


Assuntos
Genômica , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Humanos , Imunofenotipagem , Estudos Prospectivos , Proteínas Repressoras , Proteínas Supressoras de Tumor
16.
Cancers (Basel) ; 12(9)2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32867110

RESUMO

Acinic cell carcinoma (AcCC) is a morphologically distinctive salivary gland malignancy often associated with chromosome rearrangements leading to overexpression of the NR4A3 transcription factor. However, little is known about how NR4A3 contributes to AcCC biology. Detailed RNA-sequencing of 21 archived AcCC samples revealed fusion reads arising from recurrent t(4;9), t(9;12), t(8;9) or t(2;4) chromosomal translocations, which positioned highly active enhancers adjacent to the promoter of the NR4A3 gene or the closely related NR4A2 gene, resulting in their aberrant overexpression. Transcriptome analyses revealed several distinct subgroups of AcCC tumors, including a subgroup that overexpressed both NR4A3 and MSANTD3. A poor survival subset of the tumors with high-grade transformation expressed NR4A3 and POMC as well as MYB, an oncogene that is the major driver in a different type of salivary gland tumor, adenoid cystic carcinoma. The combination of NR4A3 and MYB showed cooperativity in regulating a distinct set of genes. In addition, the ligand binding domain of NR4A3 directly bound the Myb DNA binding domain. Transformation assays indicated that, while overexpressed NR4A3 was sufficient to generate transformed colonies, the combination of NR4A3 plus Myb was more potent, leading to anchorage-independent growth and increased cellular invasiveness. The results confirm that NR4A3 and NR4A2 are the main driver genes of AcCC and suggest that concurrent overexpression of NR4A3 and MYB defines a subset of AcCC patients with high-grade transformation that display exceptionally poor outcome.

17.
Genome Biol ; 21(1): 166, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32631391

RESUMO

BACKGROUND: Gene fusions have been studied extensively, as frequent drivers of tumorigenesis as well as potential therapeutic targets. In many well-known cases, breakpoints occur at two intragenic positions, leading to in-frame gene-gene fusions that generate chimeric mRNAs. However, fusions often occur with intergenic breakpoints, and the role of such fusions has not been carefully examined. RESULTS: We analyze whole-genome sequencing data from 268 patients to catalog gene-intergenic and intergenic-intergenic fusions and characterize their impact. First, we discover that, in contrast to the common assumption, chimeric oncogenic transcripts-such as those involving ETV4, ERG, RSPO3, and PIK3CA-can be generated by gene-intergenic fusions through splicing of the intervening region. Second, we find that over-expression of an upstream or downstream gene by a fusion-mediated repositioning of a regulatory sequence is much more common than previously suspected, with enhancers sometimes located megabases away. We detect a number of recurrent fusions, such as those involving ANO3, RGS9, FUT5, CHI3L1, OR1D4, and LIPG in breast; IGF2 in colon; ETV1 in prostate; and IGF2BP3 and SIX2 in thyroid cancers. CONCLUSION: Our findings elucidate the potential oncogenic function of intergenic fusions and highlight the wide-ranging consequences of structural rearrangements in cancer genomes.


Assuntos
DNA Intergênico , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Fusão Oncogênica , Proteínas de Homeodomínio/metabolismo , Humanos , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Ligação a RNA/metabolismo
18.
Pharmacol Ther ; 199: 129-138, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30885876

RESUMO

Cancer is fueled by the aberrant activity of oncogenic and tumor suppressive pathways. Transcriptional dysregulation of these pathways play a major role both in the genesis and development of cancer. Dysregulation of transcriptional programs can be mediated by genetic and epigenetic alterations targeting both protein coding genes and non-coding regulatory elements like enhancers and super-enhancers. Super-enhancers, characterized as large clusters of enhancers in close proximity, have been identified as essential oncogenic drivers required for the maintenance of cancer cell identity. As a result, cancer cells are often addicted to the super-enhancer driven transcriptional programs. Furthermore, pharmacological inhibitors targeting key components of super-enhancer assembly and activation have shown great promise in reducing tumor growth and proliferation in several pre-clinical tumor models. This article reviews the current understanding of super-enhancer assembly and activation, the different mechanisms by which cancer cells acquire oncogenic super-enhancers and, finally, the potential of targeting super-enhancers as future therapeutics.


Assuntos
Carcinogênese/genética , Elementos Facilitadores Genéticos , Neoplasias/genética , Animais , Genes myc , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA