Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 243
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(24): 4526-4540.e18, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36347253

RESUMO

Low-molecular-weight (LMW) thiols are small-molecule antioxidants required for the maintenance of intracellular redox homeostasis. However, many host-associated microbes, including the gastric pathogen Helicobacter pylori, unexpectedly lack LMW-thiol biosynthetic pathways. Using reactivity-guided metabolomics, we identified the unusual LMW thiol ergothioneine (EGT) in H. pylori. Dietary EGT accumulates to millimolar levels in human tissues and has been broadly implicated in mitigating disease risk. Although certain microorganisms synthesize EGT, we discovered that H. pylori acquires this LMW thiol from the host environment using a highly selective ATP-binding cassette transporter-EgtUV. EgtUV confers a competitive colonization advantage in vivo and is widely conserved in gastrointestinal microbes. Furthermore, we found that human fecal bacteria metabolize EGT, which may contribute to production of the disease-associated metabolite trimethylamine N-oxide. Collectively, our findings illustrate a previously unappreciated mechanism of microbial redox regulation in the gut and suggest that inter-kingdom competition for dietary EGT may broadly impact human health.


Assuntos
Ergotioneína , Humanos , Ergotioneína/metabolismo , Antioxidantes/metabolismo , Oxirredução , Compostos de Sulfidrila , Peso Molecular
2.
J Biol Chem ; 300(1): 105539, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072054

RESUMO

L-ergothioneine is widely distributed among various microbes to regulate their physiology and pathogenicity within complex environments. One of the key steps in the ergothioneine-biosynthesis pathway, the C-S bond cleavage reaction, uses the pyridoxal 5'-phosphate dependent C-S lyase to produce the final product L-ergothioneine. Here, we present the crystallographic structure of the ergothioneine-biosynthesis C-S lyase EgtE from Mycobacterium smegmatis (MsEgtE) represents the first published structure of ergothioneine-biosynthesis C-S lyases in bacteria and shows the effects of active site residues on the enzymatic reaction. The MsEgtE and the previously reported ergothioneine-biosynthesis C-S lyase Egt2 from Neurospora crassa (NcEgt2) fold similarly. However, discrepancies arise in terms of substrate recognition, as observed through sequence and structure comparison of MsEgtE and NcEgt2. The structural-based sequence alignment of the ergothioneine-biosynthesis C-S lyase from fungi and bacteria shows clear distinctions among the recognized substrate residues, but Arg348 is critical and an extremely conserved residue for substrate recognition. The α14 helix is exclusively found in the bacteria EgtE, which represent the most significant difference between bacteria EgtE and fungi Egt2, possibly resulting from the convergent evolution of bacteria and fungi.


Assuntos
Ergotioneína , Liases , Mycobacterium , Ergotioneína/química , Ergotioneína/metabolismo , Fungos/metabolismo , Liases/química , Liases/metabolismo , Mycobacterium/metabolismo , Mycobacterium smegmatis/química , Mycobacterium smegmatis/enzimologia , Modelos Moleculares , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína
3.
Biochem Biophys Res Commun ; 726: 150269, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-38909533

RESUMO

Mitochondrial dysfunction is implicated in a wide range of human disorders including many neurodegenerative and cardiovascular diseases, metabolic diseases, cancers, and respiratory disorders. Studies have suggested the potential of l-ergothioneine (ET), a unique dietary thione, to prevent mitochondrial damage and improve disease outcome. Despite this, no studies have definitively demonstrated uptake of ET into mitochondria. Moreover, the expression of the known ET transporter, OCTN1, on the mitochondria remains controversial. In this study, we utilise mass spectrometry to demonstrate direct ET uptake in isolated mitochondria as well as its presence in mitochondria isolated from ET-treated cells and animals. Mitochondria isolated from OCTN1 knockout mice tissues, have impaired but still detectable ET uptake, raising the possibility of alternative transporter(s) which may facilitate ET uptake into the mitochondria. Our data confirm that ET can enter mitochondria, providing a basis for further work on ET in the prevention of mitochondrial dysfunction in human disease.


Assuntos
Ergotioneína , Camundongos Knockout , Mitocôndrias , Ergotioneína/metabolismo , Ergotioneína/farmacologia , Animais , Mitocôndrias/metabolismo , Humanos , Camundongos , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Proteínas de Transporte de Cátions Orgânicos/genética , Simportadores/metabolismo , Simportadores/genética
4.
Metab Eng ; 82: 29-40, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38224832

RESUMO

Yarrowia lipolytica is widely used in biotechnology to produce recombinant proteins, food ingredients and diverse natural products. However, unstable expression of plasmids, difficult and time-consuming integration of single and low-copy-number plasmids hampers the construction of efficient production pathways and application to industrial production. Here, by exploiting sequence diversity in the long terminal repeats (LTRs) of retrotransposons and ribosomal DNA (rDNA) sequences, a set of vectors and methods that can recycle multiple and high-copy-number plasmids was developed that can achieve stable integration of long-pathway genes in Y. lipolytica. By combining these sequences, amino acids and antibiotic tags with the Cre-LoxP system, a series of multi-copy site integration recyclable vectors were constructed and assessed using the green fluorescent protein (HrGFP) reporter system. Furthermore, by combining the consensus sequence with the vector backbone of a rapidly degrading selective marker and a weak promoter, multiple integrated high-copy-number vectors were obtained and high levels of stable HrGFP expression were achieved. To validate the universality of the tools, simple integration of essential biosynthesis modules was explored, and 7.3 g/L of L-ergothioneine and 8.3 g/L of (2S)-naringenin were achieved in a 5 L fermenter, the highest titres reported to date for Y. lipolytica. These novel multi-copy genome integration strategies provide convenient and effective tools for further metabolic engineering of Y. lipolytica.


Assuntos
Yarrowia , Yarrowia/genética , Yarrowia/metabolismo , Plasmídeos/genética , Engenharia Metabólica , Biotecnologia , Proteínas Recombinantes/genética
5.
Exp Eye Res ; 242: 109862, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38490292

RESUMO

The continual exposure of retinal tissues to oxidative stress leads to discernible anatomical and physiological alterations. Specifically, the onslaught of oxidative damage escalates the irreversible death of retinal pigmented epithelium (RPE) cells, pinpointed as the fundamental pathological event in dry age-related macular degeneration (AMD). There is a conspicuous lack of effective therapeutic strategies to counteract this degenerative process. This study screened a library of antioxidants for their ability to protect RPE cells against oxidative stress and identified L-ergothioneine (EGT) as a potent cytoprotective agent. L-ergothioneine provided efficient protection against oxidative stress-damaged RPE and maintained cell redox homeostasis and normal physiological functions. It maintained the normal structure of the retina in mice under oxidative stress conditions. Transcriptomic analysis revealed that EGT counteracted major gene expression changes induced by oxidative stress. It upregulated antioxidant gene expression and inhibited NRF2 translocation. The inhibition of NRF2 abolished EGT's protective effects, suggesting that NRF2 activation contributes to its mechanism of action. In conclusion, we identified EGT as a safe and effective small-molecule compound that is expected to be a novel antioxidative agent for treating AMD.


Assuntos
Antioxidantes , Ergotioneína , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Epitélio Pigmentado da Retina , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Animais , Ergotioneína/farmacologia , Antioxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Degeneração Macular/tratamento farmacológico , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Células Cultivadas , Humanos , Western Blotting , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
6.
Microb Cell Fact ; 23(1): 55, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368340

RESUMO

BACKGROUND: Pichia pastoris is a widely utilized host for heterologous protein expression and biotransformation. Despite the numerous strategies developed to optimize the chassis host GS115, the potential impact of changes in cell wall polysaccharides on the fitness and performance of P. pastoris remains largely unexplored. This study aims to investigate how alterations in cell wall polysaccharides affect the fitness and function of P. pastoris, contributing to a better understanding of its overall capabilities. RESULTS: Two novel mutants of GS115 chassis, H001 and H002, were established by inactivating the PAS_chr1-3_0225 and PAS_chr1-3_0661 genes involved in ß-glucan biosynthesis. In comparison to GS115, both modified hosts exhibited a looser cell surface and larger cell size, accompanied by faster growth rates and higher carbon-to-biomass conversion ratios. When utilizing glucose, glycerol, and methanol as exclusive carbon sources, the carbon-to-biomass conversion rates of H001 surpassed GS115 by 10.00%, 9.23%, and 33.33%, respectively. Similarly, H002 exhibited even higher increases of 32.50%, 12.31%, and 53.33% in carbon-to-biomass conversion compared to GS115 under the same carbon sources. Both chassis displayed elevated expression levels of green fluorescent protein (GFP) and human epidermal growth factor (hegf). Compared to GS115/pGAPZ A-gfp, H002/pGAPZ A-gfp showed a 57.64% higher GFP expression, while H002/pPICZα A-hegf produced 66.76% more hegf. Additionally, both mutant hosts exhibited enhanced biosynthesis efficiencies of S-adenosyl-L-methionine and ergothioneine. H001/pGAPZ A-sam2 synthesized 21.28% more SAM at 1.14 g/L compared to GS115/pGAPZ A-sam2, and H001/pGAPZ A-egt1E obtained 45.41% more ERG at 75.85 mg/L. The improved performance of H001 and H002 was likely attributed to increased supplies of NADPH and ATP. Specifically, H001 and H002 exhibited 5.00-fold and 1.55-fold higher ATP levels under glycerol, and 6.64- and 1.47-times higher ATP levels under methanol, respectively, compared to GS115. Comparative lipidomic analysis also indicated that the mutations generated richer unsaturated lipids on cell wall, leading to resilience to oxidative damage. CONCLUSIONS: Two novel P. pastoris chassis hosts with impaired ß-1,3-D-glucan biosynthesis were developed, showcasing enhanced performances in terms of growth rate, protein expression, and catalytic capabilities. These hosts exhibit the potential to serve as attractive alternatives to P. pastoris GS115 for various bioproduction applications.


Assuntos
Metanol , Pichia , Saccharomycetales , Humanos , Pichia/metabolismo , Metanol/metabolismo , Glicerol/metabolismo , Trifosfato de Adenosina/metabolismo , Carbono/metabolismo , Parede Celular/metabolismo , Polissacarídeos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
7.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34493657

RESUMO

Dementia is caused by factors that damage neurons. We quantified small molecular markers in whole blood of dementia patients, using nontargeted liquid chromatography-mass spectroscopy (LC-MS). Thirty-three metabolites, classified into five groups (A to E), differed significantly in dementia patients, compared with healthy elderly subjects. Seven A metabolites present in plasma, including quinolinic acid, kynurenine, and indoxyl-sulfate, increased. Possibly they act as neurotoxins in the central nervous system (CNS). The remaining 26 compounds (B to E) decreased, possibly causing a loss of support or protection of the brain in dementia. Six B metabolites, normally enriched in red blood cells (RBCs), all contain trimethylated ammonium moieties. These metabolites include ergothioneine and structurally related compounds that have scarcely been investigated as dementia markers, validating the examination of RBC metabolites. Ergothioneine, a potent antioxidant, is significantly decreased in various cognition-related disorders, such as mild cognitive impairment and frailty. C compounds also include some oxidoreductants and are normally abundant in RBCs (NADP+, glutathione, adenosine triphosphate, pantothenate, S-adenosyl-methionine, and gluconate). Their decreased levels in dementia patients may also contribute to depressed brain function. Twelve D metabolites contains plasma compounds, such as amino acids, glycerophosphocholine, dodecanoyl-carnitine, and 2-hydroxybutyrate, which normally protect the brain, but their diminution in dementia may reduce that protection. Seven D compounds have been identified previously as dementia markers. B to E compounds may be critical to maintain the CNS by acting directly or indirectly. How RBC metabolites act in the CNS and why they diminish significantly in dementia remain to be determined.


Assuntos
Envelhecimento , Biomarcadores/sangue , Encéfalo/metabolismo , Demência/patologia , Metaboloma , Idoso , Estudos de Casos e Controles , Demência/sangue , Humanos , Testes Neuropsicológicos , Transdução de Sinais
8.
J Basic Microbiol ; 64(4): e2300705, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38253966

RESUMO

Ergothioneine (EGT) is a rare thiohistidine derivative with exceptional antioxidant properties. The blood level of EGT is considered highly reliable predictors for cardiovascular diseases and mortality, yet animals lack the ability to synthesize this compound. Free plasmids have been previously used to overexpress genes involved in the EGT biosynthetic pathway of Mycolicibacterium neoaurum. Here, we tentatively introduced a putative transporter gene mfsT1 into high-copy plasmids and sharply increased the ratio of extracellular EGT concentration from 18.7% to 44.9%. Subsequently, an additional copy of egtABCDE, hisG, and mfsT1 was inserted into the genome with a site-specific genomic integration tool of M. neoaurum, leading a 2.7 times increase in EGT production. Co-enhancing the S-adenosyl-L-methionine regeneration pathway, or alternatively, the integration of three copies of egtABCDE, hisG and mfsT1 into the genome further increased the total EGT yield by 16.1% (64.6 mg/L) and 21.7% (67.7 mg/L), respectively. After 168-h cultivation, the highest titer reached 85.9 mg/L in the latter strain with three inserted copies. This study provided a solid foundation for genome engineering to increase the production of EGT in M. neoaurum.


Assuntos
Ergotioneína , Mycobacteriaceae , Animais , Ergotioneína/genética , Ergotioneína/metabolismo , Antioxidantes/metabolismo
9.
Int J Mol Sci ; 25(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38255777

RESUMO

The red microalga Galdieria sp. is an extremophile that inhabits acidic hot sulphur springs and grows heterotrophically to a high cell density. These characteristics make Galdieria suitable for commercial applications as stable mass production is the key to success in the algae business. Galdieria has great potential as a precious metal adsorbent to provide a sustainable, efficient and environmentally benign method for urban mining and artisanal small-scale gold mining. The efficiency and selectivity in capturing precious metals, gold and palladium from metal solutions by a Galdieria-derived adsorbent was assessed relative to commercially used adsorbents, ion exchange resin and activated charcoal. As it is only the surface of Galdieria cells that affect metal adsorption, the cell content was analysed to determine the manner of utilisation of those metabolites. Galdieria was shown to be protein-rich and contain beneficial metabolites, the levels of which could shift depending on the growth conditions. Separating the cell content from the adsorbent could improve the adsorption efficiency and reduce CO2 emissions during the metal collection process. The commercial applications of Galdieria appear promising: growth is quick and dense; the precious metal adsorption capacity is highly efficient and selective in acidic conditions, especially at low metal concentrations; and the cell content is nutrient-rich.


Assuntos
Microalgas , Ouro , Adsorção , Carvão Vegetal , Comércio
10.
Int J Mol Sci ; 25(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38338809

RESUMO

The modification of the replicative lifespan (RLS) of fibroblasts is of interest both from a knowledge point of view and for the attenuation of skin aging. The effect of six antioxidants at a concentration of 1 µM on the replicative lifespan of human dermal fibroblasts was studied. The nitroxide 4-hydroxy-TEMPO (TEMPOL), ergothioneine, and Trolox extended the replicative lifespan (RLS) (40 ± 1 population doublings (PD)) by 7 ± 2, 4 ± 1, and 3 ± 1 PD and lowered the expression of p21 at late passages. Coumaric acid, curcumin and resveratrol did not affect the RLS . The level of reactive oxygen species (ROS) was decreased or not affected by the antioxidants although TEMPOL and coumaric acid decreased the level of glutathione. Only ergothioneine and resveratrol decreased the level of protein carbonylation. The antioxidants that could prolong the RLS elevated the mitochondrial membrane potential. Protecting the activity of mitochondria seems to be important for maintaining the replicative capacity of fibroblasts.


Assuntos
Antioxidantes , Óxidos N-Cíclicos , Ergotioneína , Marcadores de Spin , Humanos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Ergotioneína/metabolismo , Resveratrol/farmacologia , Resveratrol/metabolismo , Ácidos Cumáricos/farmacologia , Fibroblastos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo
11.
J Sci Food Agric ; 104(7): 4050-4057, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38353320

RESUMO

BACKGROUND: Ergothioneine (EGT) is a high-value food functional factor that cannot be synthesized by humans and other vertebrates, and the low yield limits its application. RESULTS: In this study, the optimal fermentation temperature, fermentation time, initial pH, inoculum age, and inoculation ratio on EGT biosynthesis of Rhodotorula mucilaginosa DL-X01 were optimized. In addition, the effects of three key precursor substances - histidine, methionine, and cysteine - on fungal EGT synthesis were verified. The optimal conditions were further obtained by response surface optimization. The EGT yield of R. mucilaginosa DL-X01 under optimal fermentation conditions reached 64.48 ± 2.30 mg L-1 at shake flask fermentation level. Finally, the yield was increased to 339.08 ± 3.31 mg L-1 (intracellular) by fed-batch fermentation in a 5 L bioreactor. CONCLUSION: To the best of our knowledge, this is the highest EGT yield ever reported in non-recombinant strains. The fermentation strategy described in this study will promote the efficient biosynthesis of EGT in red yeast and its sustainable production in the food industry. © 2024 Society of Chemical Industry.


Assuntos
Ergotioneína , Monascus , Rhodotorula , Humanos , Animais , Rhodotorula/genética , Rhodotorula/metabolismo , Antioxidantes/metabolismo , Histidina , Fermentação , Monascus/metabolismo
12.
Angew Chem Int Ed Engl ; 63(8): e202318445, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38095354

RESUMO

Ergothioneine is a sulfur-containing metabolite that is produced by bacteria and fungi, and is absorbed by plants and animals as a micronutrient. Ergothioneine reacts with harmful oxidants, including singlet oxygen and hydrogen peroxide, and may therefore protect cells against oxidative stress. Herein we describe two enzymes from actinobacteria that cooperate in the specific oxidative degradation of ergothioneine. The first enzyme is an iron-dependent thiol dioxygenase that produces ergothioneine sulfinic acid. A crystal structure of ergothioneine dioxygenase from Thermocatellispora tengchongensis reveals many similarities with cysteine dioxygenases, suggesting that the two enzymes share a common mechanism. The second enzyme is a metal-dependent ergothioneine sulfinic acid desulfinase that produces Nα-trimethylhistidine and SO2 . The discovery that certain actinobacteria contain the enzymatic machinery for O2 -dependent biosynthesis and O2 -dependent degradation of ergothioneine indicates that these organisms may actively manage their ergothioneine content.


Assuntos
Dioxigenases , Ergotioneína , Animais , Ergotioneína/metabolismo , Dioxigenases/metabolismo , Cisteína Dioxigenase/metabolismo , Oxirredução , Catálise
13.
Biochem Biophys Res Commun ; 682: 163-173, 2023 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-37816300

RESUMO

Ergothioneine, a natural derivative of histidine with a thiol/thine tautomeric structure, exhibits exceptional antioxidant properties and inhibition activities on tyrosinase. In this study, enzyme kinetics experiments and chromatographic spectral analysis revealed that ergothioneine inhibited tyrosinase in a reversible and non-competitive manner, with an inhibition constant of 0.554 mg/mL (2.41 mM). As the concentration of ergothioneine increased, the extremely flexible loop structure of tyrosinase extended from 40.1 % to 41.0 %, effectively covering the active center or binding site. Theoretical molecular docking simulation results show that ergothioneine forms complexes with tyrosinase through hydrogen bonding and salt bridges in the active center of Cu ions. Additionally, it was observed that ergothioneine's antioxidant had a stronger reducing impact on dopaquinone, an intermediate in melanin production, than the effect of ascorbic acid at an equivalent concentration (0.5 mg/mL). Ergothioneine reduced the intracellular reactive oxygen species to lower levels than the control group without UVA radiation and regulated the proliferation and differentiation in B16-F10 melanocytes. Clinical trials have shown that a 0.1 % concentration of ergothioneine can effectively suppress melanin production in irradiated skin. The significant reduction in melanin index and an increase in the individual type angle (ITA°) degree were measured after 4 weeks. These results collectively suggest that ergothioneine may be a promising inhibitor of natural antioxidant tyrosinase. Furthermore, due to its safety and efficacy, ergothioneine could be considered one of the bioactive substances for further study on diseases related to melanin production and tyrosinase activity which is of great significance for the cosmetics, medicine and food industries.


Assuntos
Antioxidantes , Ergotioneína , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Melaninas/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Simulação de Acoplamento Molecular , Inibidores Enzimáticos/química
14.
Crit Rev Food Sci Nutr ; : 1-12, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36891762

RESUMO

Ergothioneine (EGT) is a high-value natural sulfur-containing amino acid and has been shown to possess extremely potent antioxidant and cytoprotective activities. At present, EGT has been widely used in food, functional food, cosmetics, medicine, and other industries, but its low yield is still an urgent problem to overcome. This review briefly introduced the biological activities and functions of EGT, and expounded its specific applications in food, functional food, cosmetic, and medical industries, introduced and compared the main production methods of EGT and respective biosynthetic pathways in different microorganisms. Furthermore, the use of genetic and metabolic engineering methods to improve EGT production was discussed. In addition, the incorporation of some food-derived EGT-producing strains into fermentation process will allow the EGT to act as a new functional factor in the fermented foods.

15.
Br J Nutr ; 129(1): 104-114, 2023 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-38018890

RESUMO

Ergothioneine is a naturally occurring amino acid and thiol antioxidant found in high amounts in mushrooms and fermented foods. Humans and animals acquire ergothioneine from the diet through the pH-dependent activity of a membrane transporter, the large solute carrier 22A member 4 (SLC22A4), expressed on the apical membrane of the small intestine. The SLC22A4 transporter also functions in the renal reabsorption of ergothioneine in the kidney, with avid absorption and retention of ergothioneine from the diet observed in both animals and humans. Ergothioneine is capable of scavenging a diverse range of reactive oxygen and nitrogen species, has metal chelation properties, and is predicted to directly regulate nuclear factor erythroid 2-related factor 2 (Nrf2) activity. Although not lethal, the genetic knockout of the SLC22A4 gene in multiple organisms increases susceptibility to oxidative stress, damage and inflammation; in agreement with a large body of preclinical data suggesting the physiological function of ergothioneine is as a cellular antioxidant and cytoprotectant agent. In humans, blood levels of ergothioneine decline after the age of 60 years, and lower levels of ergothioneine are associated with more rapid cognitive decline. Conversely, high plasma ergothioneine levels have been associated with significantly reduced cardiovascular mortality and overall mortality risks. In this horizon's manuscript, we review evidence suggesting critical roles for dietary ergothioneine in healthy ageing and the prevention of cardiometabolic disease. We comment on some of the outstanding research questions in the field and consider the question of whether or not ergothioneine should be considered a conditionally essential micronutrient.


Assuntos
Ergotioneína , Envelhecimento Saudável , Simportadores , Humanos , Animais , Pessoa de Meia-Idade , Ergotioneína/metabolismo , Antioxidantes/metabolismo , Proteínas de Transporte de Cátions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Simportadores/genética , Dieta
16.
Anal Bioanal Chem ; 415(29-30): 7259-7267, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37914954

RESUMO

Ergothioneine and selenoneine are structurally related dietary antioxidants and cytoprotectants that may help prevent several chronic diseases associated with inflammation and aging. Both compounds share pharmacokinetic characteristics such as cellular uptake through the ergothioneine transporter, accumulation in red blood cells, and biotransformation to methylated metabolites. A rapid, sensitive, specific, precise, and cost-effective analytical method is required to further investigate the potential health benefits of these compounds, individually or combined, in large epidemiological studies. We developed and validated an isotope-dilution liquid chromatography tandem mass spectrometry (ID-LC-MS/MS) method for the simultaneous specific quantification of these analytes in human blood following a simple sample preparation consisting of dilution in aqueous dithiothreitol followed by centrifugal filtration. Chromatographic separation of the analytes is achieved using a reversed-phase chromatography within an 8-min run. Analyte detection is performed using triple quadrupole mass spectrometry in multiple reaction monitoring mode. Each analyte is quantified against its corresponding isotopically labeled internal standard either commercially available or synthesized in-house (77Se-labeled selenoneine compounds). The validated method demonstrates excellent linearity and very good precision (all CV < 10%). Matrix effects are minimal, suggesting that this method could easily be adapted to other matrices. Freeze/thaw cycles have little effect on methylated metabolites but significantly reduced concentrations of the parent compounds. The method was successfully applied to a small set of volunteer blood samples containing low levels of the analytes. The developed ID-LC-MS/MS method opens new avenues for exploring the roles of these bioactive compounds and their metabolites in human health and disease.


Assuntos
Ergotioneína , Humanos , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Isótopos , Reprodutibilidade dos Testes , Cromatografia Líquida de Alta Pressão/métodos
17.
J Biochem Mol Toxicol ; 37(4): e23301, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36644941

RESUMO

This study investigates the therapeutic effect and the underlying mechanisms of ergothioneine (EGT) on the testicular damage caused by varicocele (VC) in vivo, in vitro, and in silico. This preclinical study combines a series of biological experiments and network pharmacology analyses. A total of 18 Sprague Dawley (SD) male rats were randomly and averagely divided into three groups: the sham-operated, VC model, and VC model with EGT treatment (VC + EGT) groups. The left renal vein of the VC model and the VC + EGT groups were half-ligated for 4 weeks. Meanwhile, the VC + EGT group was intragastrically administrated with EGT (10 mg/kg). GC1 and GC2 cells were exposed to H2 O2 with or without EGT treatment to re-verify the conclusion. The structure disorder of seminiferous tubules ameliorated the apoptosis decrease in the VC rats receiving EGT. EGT can also increase the sperm quality of the VC model rats (p < 0.05). The exposure to H2 O2 decreased proliferation and increased apoptosis of GC1 and GC2 cells, which was revisable by adding EGT to the plates (p < 0.05). The network pharmacology and molecular docking were conducted to explore the potential targets of EGT in VC, and HSP90AA1 was identified as the pivotal gene, which was validated by western blot, immunohistochemistry, and RT-qPCR both in vivo and in vitro (p < 0.05). Overall, EGT attenuates the testicular injury in the VC model both in vivo and in vitro by potentially potentiating the expression of HSP90AA1.


Assuntos
Ergotioneína , Varicocele , Humanos , Ratos , Masculino , Animais , Ergotioneína/farmacologia , Ratos Sprague-Dawley , Varicocele/tratamento farmacológico , Varicocele/metabolismo , Simulação de Acoplamento Molecular , Sêmen/metabolismo , Testículo/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP90/uso terapêutico
18.
Appl Microbiol Biotechnol ; 107(16): 5257-5267, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37405431

RESUMO

The engineered probiotic Escherichia coli Nissle 1917 (EcN) is expected to be employed in the diagnosis and treatment of various diseases. However, the introduced plasmids typically require antibiotics to maintain genetic stability, and the cryptic plasmids in EcN are usually eliminated to avoid plasmid incompatibility which may change the inherent probiotic characteristics. Here, we provided a simple design to minimize the genetic change of probiotics by eliminating native plasmids and reintroducing the recombinants carrying functional genes. Specific insertion sites in the vectors showed significant differences in the expression of fluorescence proteins. Selected integration sites were applied in the de novo synthesis of salicylic acid, leading to a titer of 142.0 ± 6.0 mg/L in a shake flask with good production stability. Additionally, the design successfully realized the biosynthesis of ergothioneine (45 mg/L) by one-step construction. This work expands the application scope of native cryptic plasmids to the easy construction of functional pathways. KEY POINTS: • Cryptic plasmids of EcN were designed to express exogenous genes • Insertion sites with different expression intensities in cryptic plasmids were provided • Target products were stably produced by engineering cryptic plasmids.


Assuntos
Antibacterianos , Probióticos , Antibacterianos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Plasmídeos/genética
19.
BMC Vet Res ; 19(1): 27, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36717851

RESUMO

BACKGROUND: Exercise-induced oxidative stress is a challenge in equine sports. This study aims at determining the effects of ergothioneine on heat shock protein-70 (HSP-70) following the stress of an endurance exercise of 30 km by Arabian stallions. Molecular docking was also done to investigate the interaction between the ligand ergothioneine and heat shock protein-70 using sulfogalactosylceramide and sulfogalactoglycerolipid as standards. The study involved a total of 18 clinically healthy stallions, with an average age of 6.7 ± 2.4 years and an average weight of 411.54 ± 12.46 kg. Only clinically healthy stallions were selected as subjects. The stallions were divided into two groups of nine stallions each. Group I (ERGX) was administered ergothioneine at a dose of 0.02 mg/kg once daily orally for four weeks while group II (ERGN) was not administered ergothioneine. The activities of the antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase were determined in the two groups before and post-exercise. The concentrations of malondialdehyde and HSP-70 were also determined. RESULTS: The results obtained showed that the activities of the antioxidant enzymes and concentration of HSP-70 were higher (P < 0.05) in the ERGX group compared to the ERGN group. The concentration of malondialdehyde was however lower in the ERGX group. Following molecular docking, ergothioneine and the selected standards have common amino acids at the site of interaction with the target protein (HSP-70) suggesting that ergothioneine may have a modulatory effect on the synthesis of HSP-70. CONCLUSION: The results obtained indicated that ergothioneine modulated the synthesis of HSP-70 and the biomarkers of oxidative stress. It was therefore concluded that ergothioneine may be beneficial to horses subjected to endurance exercise.


Assuntos
Ergotioneína , Proteínas de Choque Térmico HSP70 , Animais , Masculino , Antioxidantes/metabolismo , Ergotioneína/farmacologia , Cavalos , Proteínas de Choque Térmico HSP70/metabolismo , Malondialdeído , Simulação de Acoplamento Molecular , Estresse Oxidativo , Superóxido Dismutase/metabolismo
20.
Biosci Biotechnol Biochem ; 87(4): 411-419, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36694933

RESUMO

In our previous study, ertABC genes encoding ergothionase, thiourocanate hydratase, and 3-(5-oxo-2-thioxoimidazolidin-4-yl) propionic acid desulfhydrase were identified, all of which may be involved in ergothioneine utilization of Burkholderia sp. HME13. In this study, we identify the ertD gene encoding metal-dependent hydantoin-5-propionic acid amidohydrolase in this strain. Mn2+-containing ErtD showed maximum activity at 45 °C and pH 8.5 and was stable at temperatures up to 45 °C. The Km and Vmax values of Mn2+-containing ErtD for hydantoin-5-propionic acid were 2.8 m m and 16 U/mg, respectively. Real-time polymerase chain reaction (PCR) revealed that ertD expression levels in Burkholderia sp. HME13 cells cultivated in ergothioneine medium were 3.3-fold higher than those in cells cultivated in Luria-Bertani (LB) medium. ErtD activity in the crude extract from Burkholderia sp. HME13 cells cultured in ergothioneine medium was 0.018 U/mg, whereas that in LB medium was not detected. Accordingly, we suggest that ErtD is involved in ergothioneine utilization in this strain.


Assuntos
Burkholderia , Ergotioneína , Hidantoínas , Amidoidrolases/metabolismo , Burkholderia/genética , Burkholderia/metabolismo , Hidantoínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA