Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; : 129948, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39236793

RESUMO

KAT6, a histone acetyltransferase from the MYST family, has emerged as an attractive oncology target due to its role in regulating genes that control cell cycle progression and cellular senescence. Amplification of the KAT6A gene has been seen among patients with worse clinical outcome in ER+ breast cancers. Although multiple inhibitors have been reported, no KAT6 inhibitors have been approved to date. Here, we report the fragment-based discovery of a series of N-(1-phenyl-1H-1,2,3-triazol-4-yl)benzenesulfonamide KAT6 inhibitors and early hit-to-lead efforts to improve the KAT6 potency.

2.
Bioorg Chem ; 143: 107027, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38096682

RESUMO

The ongoing research in cancer treatment underscores the significance of dual epidermal growth factor receptor (EGFR) kinase inhibitors targeting both mutant and wild-type variants. In this study, employing in silico fragment-based drug design (FBDD) and computational analysis, we have successfully developed a novel chemical series of 2-(pyrimidin-4-yl)oxazole-4-carboxamide (16a-j) derivatives designed as dual EGFR kinase inhibitors. A comparative in vitro anticancer profile of the newly synthesized compounds (16a-j) was tested against a panel of five human cancer cell lines like prostate cancer (PC3 & DU-145), lung cancer (A549), human liver cancer (HEPG2), and breast cancer (MDA-MB-468) by employing MTT method. In this experiment a well-known anticancer agent, Etoposide was used as positive control. Most of the derivatives demonstrated significant cytotoxicity, ranging from excellent to moderate levels. The IC50 values for the synthesized compounds observed between 0.10 ± 0.052 to 9.83 ± 5.96 µM, while the positive control exhibited a range of 1.97 ± 0.45 µM to 3.08 ± 0.135 µM. These results indicate that the synthesized compounds demonstrate higher cytotoxic potency in comparison to the reference compound. Furthermore, all these compounds underwent screening against normal Vero cell lines to assess their cytotoxicity. In each case, the observed cytotoxicity values (IC50) were higher than 22 µM, affirming the compounds selectivity for cancer cell lines. Among the compounds investigated, three compounds (16a, 16e, and 16i) exhibited notable cytotoxicity, while two compounds (16g and 16h) demonstrated exceptional cytotoxicity. The selectivity index of the tested compounds indicates a pronounced preference for targeting cancer cell lines over normal cells. Furthermore, all the compounds 16a-j underwent assessment for their EGFR kinase inhibitory activity against both EGFRWT and mutated EGFRT790M. The results unveiled the potential eligibility of this new series of compounds as effective EGFR inhibitors. Moreover, compound 16h underwent additional testing for cell cycle analysis, revealing its capability to arrest the cell cycle in the G2/M phase and induce apoptosis at the IC50 concentration.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Humanos , Receptores ErbB , Estrutura Molecular , Relação Estrutura-Atividade , Proliferação de Células , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores de Proteínas Quinases , Mutação , Antineoplásicos/química , Simulação de Acoplamento Molecular
3.
J Biol Chem ; 298(6): 102003, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35504355

RESUMO

Aspergillus fumigatus is the causative agent of invasive aspergillosis, an infection with mortality rates of up to 50%. The glucan-rich cell wall of A. fumigatus is a protective structure that is absent from human cells and is a potential target for antifungal treatments. Glucan is synthesized from the donor uridine diphosphate glucose, with the conversion of glucose-6-phosphate to glucose-1-phosphate by the enzyme phosphoglucomutase (PGM) representing a key step in its biosynthesis. Here, we explore the possibility of selectively targeting A. fumigatus PGM (AfPGM) as an antifungal treatment strategy. Using a promoter replacement strategy, we constructed a conditional pgm mutant and revealed that pgm is required for A. fumigatus growth and cell wall integrity. In addition, using a fragment screen, we identified the thiol-reactive compound isothiazolone fragment of PGM as targeting a cysteine residue not conserved in the human ortholog. Furthermore, through scaffold exploration, we synthesized a para-aryl derivative (ISFP10) and demonstrated that it inhibits AfPGM with an IC50 of 2 µM and exhibits 50-fold selectivity over the human enzyme. Taken together, our data provide genetic validation of PGM as a therapeutic target and suggest new avenues for inhibiting AfPGM using covalent inhibitors that could serve as tools for chemical validation.


Assuntos
Aspergilose , Aspergillus fumigatus , Antifúngicos/farmacologia , Aspergilose/tratamento farmacológico , Aspergilose/microbiologia , Aspergillus fumigatus/enzimologia , Aspergillus fumigatus/genética , Glucanos/metabolismo , Humanos , Fosfoglucomutase/genética , Fosfoglucomutase/metabolismo
4.
J Biomol NMR ; 77(1-2): 39-53, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36512150

RESUMO

Fragment-based drug discovery (FBDD) and validation of small molecule binders using NMR spectroscopy is an established and widely used method in the early stages of drug discovery. Starting from a library of small compounds, ligand- or protein-observed NMR methods are employed to detect binders, typically weak, that become the starting points for structure-activity relationships (SAR) by NMR. Unlike the more frequently used ligand-observed 1D NMR techniques, protein-observed 2D 1H-15N or 1H-13C heteronuclear correlation (HSQC or HMQC) methods offer insights that include the mechanism of ligand engagement on the target and direct binding affinity measurements in addition to routine screening. We hereby present the development of a set of software tools within the MestReNova (Mnova) package for analyzing 2D NMR for FBDD and hit validation purposes. The package covers three main tasks: (1) unsupervised profiling of raw data to identify outlier data points to exclude in subsequent analyses; (2) batch processing of single-point spectra to identify and rank binders based on chemical shift perturbations or spectral peak intensity changes; and (3) batch processing of multiple titration series to derive binding affinities (KD) by tracing the changes in peak locations or measuring global spectral changes. Toward this end, we implemented and evaluated a set of algorithms for automated peak tracing, spectral binning, and variance analysis by PCA, and a new tool for spectral data intensity comparison using ECHOS. The accuracy and speed of the tools are demonstrated on 2D NMR binding data collected on ligands used in the development of potential inhibitors of the anti-apoptotic MCL-1 protein.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Ligantes , Ressonância Magnética Nuclear Biomolecular , Descoberta de Drogas
5.
Mol Divers ; 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37268742

RESUMO

Influenza is a seasonal respiratory illness that kills hundreds of thousands of people every year. Currently, neuraminidase inhibitors and endonuclease inhibitors are used in antiviral therapy. However, both drug types have encountered drug-resistant influenza strains in the human body. Fortunately, there is currently no resistance to endonuclease inhibitors in wild strains of influenza. We obtained the molecules with endonuclease inhibitor activity independent of the existing drug-resistant strains through computer-aided drug design, and we hope the obtained results can lay a theoretical foundation for the development of high-activity endonucleases. Combining a traditional fragment-based drug discovery approach with AI-directed fragment growth, we selected and designed a compound that achieved antiviral activity on drug-resistant strains by avoiding mutable residues and drug-resistant residues. We predicted the related properties using an ADMET model. Finally, we obtained a compound similar to baloxavir in terms of binding free energy but not affected by baloxavir resistance.

6.
Int J Mol Sci ; 24(18)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37762631

RESUMO

Protein-fragment complex structures are particularly sought after in medicinal chemistry to rationally design lead molecules. These structures are usually derived using X-ray crystallography, but the failure rate is non-neglectable. NMR is a possible alternative for the calculation of weakly interacting complexes. Nevertheless, the time-consuming protein signal assignment step remains a barrier to its routine application. NMR Molecular Replacement (NMR2) is a versatile and rapid method that enables the elucidation of a protein-ligand complex structure. It has been successfully applied to peptides, drug-like molecules, and more recently to fragments. Due to the small size of the fragments, ca < 300 Da, solving the structures of the protein-fragment complexes is particularly challenging. Here, we present the expected performances of NMR2 when applied to protein-fragment complexes. The NMR2 approach has been benchmarked with the SERAPhic fragment library to identify the technical challenges in protein-fragment NMR structure calculation. A straightforward strategy is proposed to increase the method's success rate further. The presented work confirms that NMR2 is an alternative method to X-ray crystallography for solving protein-fragment complex structures.


Assuntos
Benchmarking , Imageamento por Ressonância Magnética , Química Farmacêutica , Cristalografia por Raios X , Biblioteca Gênica
7.
Anal Bioanal Chem ; 414(17): 4803-4807, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35660938

RESUMO

We have previously established a selection system to obtain a solvatochromic protein binder from a peptidic fluoroprobe library via the extended T7 phage display. Here, we use the peptidic binder as a fluororeporter in this proof-of-concept study of fragment-based screening approach to drug discovery. The binder is released from the target protein on mixing with an appropriate lead compound, thereby altering its fluorescence color/intensity under 365 nm ultraviolet wavelength irradiation. By this instant screening outcome, the affinity of the lead compound is apparent to the naked eye, and quantified with a portable microvolume fluorophotometer. We envision that our simple and affordable screening system will provide opportunities for early stage drug discovery, especially for non-experts in academia and education because expensive hardware is not required for qualifying the measurements.


Assuntos
Técnicas de Visualização da Superfície Celular , Descoberta de Drogas , Bacteriófago T7 , Biblioteca de Peptídeos , Peptídeos
8.
Int J Mol Sci ; 23(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35409221

RESUMO

Glycogen synthase kinase 3 beta (GSK-3ß) is an evolutionarily conserved serine-threonine kinase dysregulated in numerous pathologies, such as Alzheimer's disease and cancer. Even though GSK-3ß is a validated pharmacological target most of its inhibitors have two main limitations: the lack of selectivity due to the high homology that characterizes the ATP binding site of most kinases, and the toxicity that emerges from GSK-3ß complete inhibition which translates into the impairment of the plethora of pathways GSK-3ß is involved in. Starting from a 1D 19F NMR fragment screening, we set up several biophysical assays for the identification of GSK-3ß inhibitors capable of binding protein hotspots other than the ATP binding pocket or to the ATP binding pocket, but with an affinity able of competing with a reference binder. A phosphorylation activity assay on a panel of several kinases provided selectivity data that were further rationalized and corroborated by structural information on GSK-3ß in complex with the hit compounds. In this study, we identified promising fragments, inhibitors of GSK-3ß, while proposing an alternative screening workflow that allows facing the flaws that characterize the most common GSK-3ß inhibitors through the identification of selective inhibitors and/or inhibitors able to modulate GSK-3ß activity without leading to its complete inhibition.


Assuntos
Doença de Alzheimer , Trifosfato de Adenosina/metabolismo , Doença de Alzheimer/metabolismo , Sítios de Ligação , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Fosforilação
9.
Int J Mol Sci ; 23(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36142582

RESUMO

The emergence of drug-resistant mycobacteria, including Mycobacterium tuberculosis (Mtb) and non-tuberculous mycobacteria (NTM), poses an increasing global threat that urgently demands the development of new potent anti-mycobacterial drugs. One of the approaches toward the identification of new drugs is fragment-based drug discovery (FBDD), which is the most ingenious among other drug discovery models, such as structure-based drug design (SBDD) and high-throughput screening. Specialized techniques, such as X-ray crystallography, nuclear magnetic resonance spectroscopy, and many others, are part of the drug discovery approach to combat the Mtb and NTM global menaces. Moreover, the primary drawbacks of traditional methods, such as the limited measurement of biomolecular toxicity and uncertain bioavailability evaluation, are successfully overcome by the FBDD approach. The current review focuses on the recognition of fragment-based drug discovery as a popular approach using virtual, computational, and biophysical methods to identify potent fragment molecules. FBDD focuses on designing optimal inhibitors against potential therapeutic targets of NTM and Mtb (PurC, ArgB, MmpL3, and TrmD). Additionally, we have elaborated on the challenges associated with the FBDD approach in the identification and development of novel compounds. Insights into the applications and overcoming the challenges of FBDD approaches will aid in the identification of potential therapeutic compounds to treat drug-sensitive and drug-resistant NTMs and Mtb infections.


Assuntos
Infecções por Mycobacterium , Mycobacterium tuberculosis , Cristalografia por Raios X , Desenho de Fármacos , Descoberta de Drogas/métodos , Humanos , Micobactérias não Tuberculosas
10.
Bioorg Med Chem ; 44: 116283, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34274549

RESUMO

A fragment-based lead discovery approach was applied to Pyruvate Dehydrogenase Kinases (PDHKs) to discover inhibitors against the ATP binding site with novel chemotypes. X-ray fragment screening toward PDHK4 provided a fragment hit 1 with a characteristic interaction in a deep pocket of the ATP binding site. While known inhibitors utilize several water molecules in a deep pocket to form water-mediated hydrogen bond interactions, the fragment hit binds deeper in the pocket with a hydrophobic group. Displacement of a remaining water molecule in the pocket led to the identification of lead compound 7 with a notable improvement in inhibition potency. This lead compound possessed high ligand efficiency (LE) and showed decent selectivity profile. Two additional lead compounds 10 and 13 with new scaffolds with tricyclic and bicyclic cores were generated by merging structural information of another fragment hit 2. The characteristic interaction of these novel inhibitors in a deep pocket provides new structural insights about PDHKs ATP binding site and opens a novel direction for the development of PDHKs inhibitors.


Assuntos
Trifosfato de Adenosina/antagonistas & inibidores , Descoberta de Drogas , Indóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Piruvato Desidrogenase Quinase de Transferência de Acetil/antagonistas & inibidores , Trifosfato de Adenosina/metabolismo , Sítios de Ligação/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Indóis/síntese química , Indóis/química , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Relação Estrutura-Atividade
11.
Molecules ; 26(3)2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499337

RESUMO

During the past decades, solution nuclear magnetic resonance (NMR) spectroscopy has demonstrated itself as a promising tool in drug discovery. Especially, fragment-based drug discovery (FBDD) has benefited a lot from the NMR development. Multiple candidate compounds and FDA-approved drugs derived from FBDD have been developed with the assistance of NMR techniques. NMR has broad applications in different stages of the FBDD process, which includes fragment library construction, hit generation and validation, hit-to-lead optimization and working mechanism elucidation, etc. In this manuscript, we reviewed the current progresses of NMR applications in fragment-based drug discovery, which were illustrated by multiple reported cases. Moreover, the NMR applications in protein-protein interaction (PPI) modulators development and the progress of in-cell NMR for drug discovery were also briefly summarized.


Assuntos
Descoberta de Drogas/métodos , Espectroscopia de Ressonância Magnética/métodos , Animais , Fenômenos Biofísicos , Células/efeitos dos fármacos , Células/metabolismo , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Humanos , Ligantes , Mapas de Interação de Proteínas , Bibliotecas de Moléculas Pequenas
12.
J Biomol NMR ; 74(10-11): 501-508, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32306215

RESUMO

Recently, there has been increasing interest in new modalities such as therapeutic antibodies and gene therapy at a number of pharmaceutical companies. Moreover, in small-molecule drug discovery at such companies, efforts have focused on hard-to-drug targets such as inhibiting protein-protein interactions. Biomolecular NMR spectroscopy has been used in drug discovery in a variety of ways, such as for the reliable detection of binding and providing three-dimensional structural information for structure-based drug design. The advantages of using NMR spectroscopy have been known for decades (Jahnke in J Biomol NMR 39:87-90, (2007); Gossert and Jahnke in Prog Nucl Magn Reson Spectrosc 97:82-125, (2016)). For tackling hard-to-drug targets and increasing the success in discovering drug molecules, in-depth analysis of drug-target protein interactions performed by biophysical methods will be more and more essential. Here, we review the advantages of NMR spectroscopy as a key technology of biophysical methods and also discuss issues such as using cutting-edge NMR spectrometers and increasing the demand of utilizing conformational dynamics information for promoting small-molecule drug discovery.


Assuntos
Descoberta de Drogas/métodos , Ressonância Magnética Nuclear Biomolecular/métodos , Varredura Diferencial de Calorimetria , Cristalografia por Raios X , Desenho de Fármacos , Ensaios de Triagem em Larga Escala , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica , Relação Quantitativa Estrutura-Atividade , Bibliotecas de Moléculas Pequenas
13.
J Biomol NMR ; 74(10-11): 555-563, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32533387

RESUMO

Fragment-based screening has evolved as a remarkable approach within the drug discovery process both in the industry and academia. Fragment screening has become a more structure-based approach to inhibitor development, but also towards development of pathway-specific clinical probes. However, it is often witnessed that the availability, immediate and long-term, of a high quality fragment-screening library is still beyond the reach of most academic laboratories. Within iNEXT (Infrastructure for NMR, EM and X-rays for Translational research), a EU-funded Horizon 2020 program, a collection of 782 fragments were assembled utilizing the concept of "poised fragments" with the aim to facilitate downstream synthesis of ligands with high affinity by fragment ligation. Herein, we describe the analytical procedure to assess the quality of this purchased and assembled fragment library by NMR spectroscopy. This quality assessment requires buffer solubility screening, comparison with LC/MS quality control and is supported by state-of-the-art software for high throughput data acquisition and on-the-fly data analysis. Results from the analysis of the library are presented as a prototype of fragment progression through the quality control process.


Assuntos
Descoberta de Drogas/métodos , Ressonância Magnética Nuclear Biomolecular/métodos , Bibliotecas de Moléculas Pequenas/química , Cromatografia Líquida , Ligantes , Espectrometria de Massas , Ligação Proteica , Controle de Qualidade , Relação Quantitativa Estrutura-Atividade , Software , Solubilidade
14.
J Biomol NMR ; 74(10-11): 565-577, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32638146

RESUMO

Fragment-based drug discovery or FBDD is one of the main methods used by industry and academia for identifying drug-like candidates in early stages of drug discovery. NMR has a significant impact at any stage of the drug discovery process, from primary identification of small molecules to the elucidation of binding modes for guiding optimisations. The essence of NMR as an analytical tool, however, requires the processing and analysis of relatively large amounts of single data items, e.g. spectra, which can be daunting when managed manually. One bottleneck in FBDD by NMR is a lack of adequate and well-integrated resources for NMR data analysis that are freely available to the community. Thus, scientists typically resort to manually inspecting large datasets and relying predominantly on subjective interpretations. In this manuscript, we present CcpNmr AnalysisScreen, a software package that provides computational tools for automated analysis of FBDD data by NMR. We outline how the quality of collected spectra can be evaluated quickly, and how robust workflows can be optimised for reliable and rapid hit identification. With an intuitive graphical user interface and powerful algorithms, AnalysisScreen enables easy analysis of the large datasets needed in the early process of drug discovery by NMR.


Assuntos
Química Computacional/métodos , Descoberta de Drogas/métodos , Ressonância Magnética Nuclear Biomolecular/métodos , Algoritmos , Ligantes , Software , Interface Usuário-Computador , Fluxo de Trabalho
15.
J Biomol NMR ; 74(10-11): 579-594, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32556806

RESUMO

Fluorine NMR has recently gained high popularity in drug discovery as it allows efficient and sensitive screening of large numbers of ligands. However, the positive hits found in screening must subsequently be ranked according to their affinity in order to prioritize them for follow-up chemistry. Unfortunately, the primary read-out from the screening experiments, namely the increased relaxation rate upon binding, is not proportional to the affinity of the ligand, as it is polluted by effects such as exchange broadening. Here we present the method CSAR (Chemical Shift-anisotropy-based Affinity Ranking) for reliable ranking of fluorinated ligands by NMR, without the need of isotope labeled protein, titrations or setting up a reporter format. Our strategy is to produce relaxation data that is directly proportional to the binding affinity. This is achieved by removing all other contributions to relaxation as follows: (i) exchange effects are efficiently suppressed by using high power spin lock pulses, (ii) dipolar relaxation effects are approximately subtracted by measuring at two different magnetic fields and (iii) differences in chemical shift anisotropy are normalized using calculated values. A similar ranking can be obtained with the simplified approach FastCSAR that relies on a measurement of a single relaxation experiment at high field (preferably > 600 MHz). An affinity ranking obtained in this simple way will enable prioritizing ligands and thus improve the efficiency of fragment-based drug design.


Assuntos
Descoberta de Drogas/métodos , Flúor/química , Espectroscopia de Ressonância Magnética/métodos , Proteínas/química , Anisotropia , Teoria da Densidade Funcional , Desenho de Fármacos , Ligantes , Campos Magnéticos
16.
J Biomol NMR ; 74(10-11): 613-631, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32347447

RESUMO

The substrate- or cofactor-based fluorine NMR screening, also known as n-FABS (n fluorine atoms for biochemical screening), represents a powerful method for performing a direct functional assay in the search of inhibitors or enhancers of an enzymatic reaction. Although it suffers from the intrinsic low sensitivity compared to other biophysical techniques usually applied in functional assays, it has some distinctive features that makes it appealing for tackling complex chemical and biological systems. Its strengths are represented by the easy set-up, robustness, flexibility, lack of signal interference and rich information content resulting in the identification of bona fide inhibitors and reliable determination of their inhibitory strength. The versatility of the n-FABS allows its application to either purified enzymes, cell lysates or intact living cells. The principles, along with theoretical, technical and practical aspects, of the methodology are discussed. Furthermore, several applications of the technique to pharmaceutical projects are presented.


Assuntos
Descoberta de Drogas/métodos , Inibidores Enzimáticos/química , Enzimas/química , Flúor/química , Ressonância Magnética Nuclear Biomolecular/métodos , Amidoidrolases/química , Catálise , Células HEK293 , Halogenação , Humanos , Concentração Inibidora 50 , Peptídeos/química , Proteínas Proto-Oncogênicas c-akt/química , Tripsina/química
17.
J Biomol NMR ; 74(10-11): 595-611, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32761504

RESUMO

The presence of suitable cavities or pockets on protein structures is a general criterion for a therapeutic target protein to be classified as 'druggable'. Many disease-related proteins that function solely through protein-protein interactions lack such pockets, making development of inhibitors by traditional small-molecule structure-based design methods much more challenging. The 22 kDa bacterial thiol oxidoreductase enzyme, DsbA, from the gram-negative bacterium Burkholderia pseudomallei (BpsDsbA) is an example of one such target. The crystal structure of oxidized BpsDsbA lacks well-defined surface pockets. BpsDsbA is required for the correct folding of numerous virulence factors in B. pseudomallei, and genetic deletion of dsbA significantly attenuates B. pseudomallei virulence in murine infection models. Therefore, BpsDsbA is potentially an attractive drug target. Herein we report the identification of a small molecule binding site adjacent to the catalytic site of oxidized BpsDsbA. 1HN CPMG relaxation dispersion NMR measurements suggest that the binding site is formed transiently through protein dynamics. Using fragment-based screening, we identified a small molecule that binds at this site with an estimated affinity of KD ~ 500 µM. This fragment inhibits BpsDsbA enzymatic activity in vitro. The binding mode of this molecule has been characterized by NMR data-driven docking using HADDOCK. These data provide a starting point towards the design of more potent small molecule inhibitors of BpsDsbA.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Proteína Dissulfeto Redutase (Glutationa)/química , Animais , Sítios de Ligação , Burkholderia pseudomallei/enzimologia , Burkholderia pseudomallei/patogenicidade , Domínio Catalítico , Ligantes , Camundongos , Oxirredução , Ligação Proteica , Conformação Proteica , Proteína Dissulfeto Redutase (Glutationa)/genética , Relação Quantitativa Estrutura-Atividade , Proteínas Recombinantes , Bibliotecas de Moléculas Pequenas/química , Solubilidade , Tiazóis/química
18.
J Biomol NMR ; 73(12): 675-685, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31541395

RESUMO

Protein-based NMR spectroscopy has proven to be a very robust method for finding fragment leads to protein targets. However, one limitation of protein-based NMR is that the data acquisition and analysis can be time consuming. In order to streamline the scoring of protein-based NMR fragment screening data and the determination of ligand affinities using 2D NMR experiments we have developed a data analysis workflow based on principal component analysis (PCA) within the TREND NMR Pro software package. We illustrate this using four different proteins and sets of ligands which interact with these proteins over a range of affinities. Also, these PCA-based methods can be successfully applied even to systems where ligand binding to target proteins is in intermediate or even slow exchange on the NMR time scale. Finally, these methods will work for scoring of fragment binding data using protein spectra that are either highly overlapped or lower in resolution.


Assuntos
Descoberta de Drogas/métodos , Ressonância Magnética Nuclear Biomolecular/métodos , Análise de Componente Principal/métodos , Ligantes , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Ligação Proteica
19.
Bioorg Med Chem Lett ; 29(6): 821-825, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30691925

RESUMO

Netherton syndrome (NS) is a rare and debilitating severe autosomal recessive genetic skin disease with high mortality rates particularly in neonates. NS is caused by loss-of-function SPINK5 mutations leading to unregulated kallikrein 5 (KLK5) and kallikrein 7 (KLK7) activity. Furthermore, KLK5 inhibition has been proposed as a potential therapeutic treatment for NS. Identification of potent and selective KLK5 inhibitors would enable further exploration of the disease biology and could ultimately lead to a treatment for NS. This publication describes how fragmentation of known trypsin-like serine protease (TLSP) inhibitors resulted in the identification of a series of phenolic amidine-based KLK5 inhibitors 1. X-ray crystallography was used to find alternatives to the phenol interaction leading to identification of carbonyl analogues such as lactam 13 and benzimidazole 15. These reversible inhibitors, with selectivity over KLK1 (10-100 fold), provided novel starting points for the guided growth towards suitable tool molecules for the exploration of KLK5 biology.


Assuntos
Benzamidinas/química , Calicreínas/antagonistas & inibidores , Inibidores de Serina Proteinase/química , Animais , Benzamidinas/síntese química , Benzamidinas/metabolismo , Domínio Catalítico , Desenho de Fármacos , Calicreínas/metabolismo , Síndrome de Netherton/tratamento farmacológico , Ligação Proteica , Salicilamidas/síntese química , Salicilamidas/química , Salicilamidas/metabolismo , Inibidores de Serina Proteinase/síntese química , Inibidores de Serina Proteinase/metabolismo , Spodoptera/genética
20.
Adv Exp Med Biol ; 1163: 253-278, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31707707

RESUMO

Deregulation of protein kinase activity has been linked to many diseases ranging from cancer to AIDS and neurodegenerative diseases. Not surprisingly, drugging the human kinome - the complete set of kinases encoded by the human genome - has been one of the major drug discovery pipelines. Majority of the approved clinical kinase inhibitors target the ATP binding site of kinases. However, the remarkable sequence and structural similarity of ATP binding pockets of kinases make selective inhibition of kinases a daunting task. To circumvent these issues, allosteric inhibitors that target sites other than the orthosteric ATP binding pocket have been developed. The structural diversity of the allosteric sites allows these inhibitors to have higher selectivity, lower toxicity and improved physiochemical properties and overcome drug resistance associated with the use of conventional kinase inhibitors. In this chapter, we will focus on the allosteric inhibitors of selected serine/threonine kinases, outline the benefits of using these inhibitors and discuss the challenges and future opportunities.


Assuntos
Inibidores de Proteínas Quinases , Proteínas Serina-Treonina Quinases , Regulação Alostérica/efeitos dos fármacos , Sítio Alostérico , Humanos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA