Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Br J Nutr ; 118(1): 17-29, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28735572

RESUMO

The present study investigated nutritional programming in Atlantic salmon to improve utilisation of a vegetable-based diet. At first exogenous feeding, fry were fed either a marine-based diet (Diet Mstimulus, 80% fishmeal (FM)/4% fish oil (FO)) or a vegetable-based diet (Diet Vstimulus, 10% FM/0% FO) for 3 weeks. Subsequently, all fish were then fed under the same conditions with a commercial, marine-based, diet for 15 weeks and thereafter challenged with a second V diet (Diet Vchallenge, 10% FM/0% FO) for 6 weeks. Diploid and triploid siblings were run in parallel to examine ploidy effects. Growth performance, feed intake, nutrient utilisation and intestinal morphology were monitored. Fish initially given Diet Vstimulus (V-fish) showed 24 % higher growth rate and 23 % better feed efficiency compared with M-fish when later challenged with Diet Vchallenge. There was no difference in feed intake between nutritional histories, but increased nutrient retentions highlighted the improved utilisation of a V diet in V-fish. There were generally few significant effects of nutritional history or ploidy on enteritis scores in the distal intestine after the challenge phase as only V-triploids showed a significant increase (P<0·05) in total score. The data highlighted that the positive effects were most likely a result of nutritional programming and the ability to respond better when challenged later in life may be attributed to physiological and/or metabolic changes induced by the stimulus. This novel study showed the potential of nutritional programming to improve the use of plant raw material ingredients in feeds for Atlantic salmon.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Dieta , Estado Nutricional , Preparações de Plantas/farmacologia , Ploidias , Salmo salar , Verduras , Ração Animal , Animais , Animais Recém-Nascidos , Aquicultura , Diploide , Ingestão de Energia , Crescimento , Intestinos/efeitos dos fármacos , Triploidia
2.
Br J Nutr ; 117(2): 187-199, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28112058

RESUMO

Nutritional strategies are currently developed to produce farmed fish rich in n-3 long-chain PUFA (LC-PUFA) whilst replacing fish oil by plant-derived oils in aquafeeds. The optimisation of such strategies requires a thorough understanding of fish lipid metabolism and its nutritional modulation. The present study evaluated the fatty acid bioconversion capacity of rainbow trout (Oncorhynchus mykiss) fry previously depleted in n-3 PUFA through a 60-d pre-experimental feeding period with a sunflower oil-based diet (SO) followed by a 36-d experimental period during which fish were fed either a linseed oil-based diet (LO) (this treatment being called SO/LO) or a fish oil-based diet (FO) (this treatment being called SO/FO). These treatments were compared with fish continuously fed on SO, LO or FO for 96 d. At the end of the 36-d experimental period, SO/LO and SO/FO fish recovered >80 % of the n-3 LC-PUFA reported for LO and FO fish, respectively. Fish fed on LO showed high apparent in vivo elongation and desaturation activities along the n-3 biosynthesis pathway. However, at the end of the experimental period, no impact of the fish n-3 PUFA depletion was observed on apparent in vivo elongation and desaturation activities of SO/LO fish as compared with LO fish. In contrast, the fish n-3 PUFA depletion negatively modulated the n-6 PUFA bioconversion capacity of fish in terms of reduced apparent in vivo elongation and desaturation activities. The effects were similar after 10 or 36 d of the experimental period, indicating the absence of short-term effects.


Assuntos
Dieta , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Óleo de Semente do Linho/metabolismo , Desnutrição/metabolismo , Oncorhynchus mykiss/metabolismo , Óleos de Plantas/metabolismo , Ração Animal , Animais , Aquicultura , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Ômega-3/administração & dosagem , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-6/administração & dosagem , Ácidos Graxos Ômega-6/farmacologia , Óleos de Peixe/metabolismo , Óleos de Peixe/farmacologia , Óleo de Semente do Linho/farmacologia , Metabolismo dos Lipídeos , Oncorhynchus mykiss/crescimento & desenvolvimento , Óleos de Plantas/farmacologia , Óleo de Girassol
3.
Br J Nutr ; 117(1): 67-82, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28098047

RESUMO

The present study investigated the effects of dietary vitamin A on immune function in the proximal intestine (PI), mid intestine (MI) and distal intestine (DI) of young grass carp (Ctenopharyngodon idella). Fish were fed graded levels of dietary vitamin A for 10 weeks, and then a challenge test using an injection of Aeromonas hydrophila was conducted for 14 d. The results showed that, compared with the optimum vitamin A level, vitamin A deficiency significantly decreased fish growth performance, increased enteritis morbidity, decreased intestinal innate humoral immune response and aggravated intestinal inflammation. However, liver-expressed antimicrobial peptide 2A/B mRNA in the DI and IL-6, IL-17D, IL-10, transforming growth factor (TGF)-ß1 and TGF-ß2 mRNA in the PI were not affected by vitamin A levels. Meanwhile, vitamin A deficiency disturbed inflammatory cytokines in the PI, MI and DI, which might be partly linked to p38 mitogen-activated protein kinase (p38MAPK) signalling and NF-κB canonical signalling pathway (IκB kinase ß (IKKß), IKKγ, inhibitor of κBα, NF-κB p65 and c-Rel) rather than NF-κB non-canonical signalling pathway (NF-κB p52 and IKKα). However, the signalling molecules NF-κB p65 and p38MAPK did not participate in regulating cytokines in the PI. These results suggested that vitamin A deficiency decreased fish growth and impaired intestinal immune function, and that different immune responses in the PI, MI and DI were mediated partly by NF-κB canonical signalling and p38MAPK signalling pathways. On the basis of percentage of weight gain, to protect fish against enteritis morbidity and acid phosphatase activity, the optimum dietary vitamin A levels were estimated to be 0·664, 0·707 and 0·722 mg /kg, respectively.


Assuntos
Carpas , Doenças dos Peixes/metabolismo , Intestinos/imunologia , NF-kappa B/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Aeromonas hydrophila , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta/veterinária , Enterite/microbiologia , Enterite/patologia , Enterite/veterinária , Doenças dos Peixes/microbiologia , Doenças dos Peixes/patologia , Regulação da Expressão Gênica , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/patologia , Infecções por Bactérias Gram-Negativas/veterinária , Mucosa Intestinal/metabolismo , Intestinos/patologia , NF-kappa B/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/fisiologia , Deficiência de Vitamina A , Proteínas Quinases p38 Ativadas por Mitógeno/genética
4.
Br J Nutr ; 118(2): 92-108, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28820083

RESUMO

This study aimed to investigate the impacts of dietary threonine on intestinal immunity and inflammation in juvenile grass carp. Six iso-nitrogenous semi-purified diets containing graded levels of threonine (3·99-21·66 g threonine/kg) were formulated and fed to fishes for 8 weeks, and then challenged with Aeromonas hydrophila for 14 d. Results showed that, compared with optimum threonine supplementation, threonine deficiency (1) decreased the ability of fish against enteritis, intestinal lysozyme activities (except in the distal intestine), acid phosphatase activities, complement 3 (C3) and C4 contents and IgM contents (except in the proximal intestine (PI)), and it down-regulated the transcript abundances of liver-expressed antimicrobial peptide (LEAP)-2A, LEAP-2B, hepcidin, IgZ, IgM and ß-defensin1 (except in the PI) (P<0·05); (2) could up-regulate intestinal pro-inflammatory cytokines TNF-α, IL-1ß, IL-6, IL-8 and IL-17D mRNA levels partly related to NF-κB signalling; (3) could down-regulate intestinal anti-inflammatory cytokine transforming growth factor (TGF)-ß1, TGF-ß2, IL-4/13A (not IL-4/13B) and IL-10 mRNA levels partly by target of rapamycin signalling. Finally, on the basis of the specific growth rate, against the enteritis morbidity and IgM contents, the optimum threonine requirements were estimated to be 14·53 g threonine/kg diet (4·48 g threonine/100 g protein), 15.05 g threonine/kg diet (4·64 g threonine/100 g protein) and 15·17 g threonine/kg diet (4·68 g threonine/100 g protein), respectively.


Assuntos
Carpas/microbiologia , Doenças dos Peixes/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária , Intestinos/imunologia , Serina-Treonina Quinases TOR/metabolismo , Treonina/deficiência , Aeromonas hydrophila , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Proteínas Sanguíneas , Carpas/imunologia , Citocinas/genética , Citocinas/metabolismo , Dieta/veterinária , Regulação para Baixo/efeitos dos fármacos , Enterite/veterinária , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Hepcidinas , Imunoglobulina M , Intestinos/enzimologia , Muramidase/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/fisiologia , Treonina/administração & dosagem , Regulação para Cima/efeitos dos fármacos
5.
Proc Nutr Soc ; 75(3): 242-6, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27087253

RESUMO

Selective breeding and improved nutritional management over the past 20-30 years has resulted in dramatic improvements in growth efficiency for pigs and poultry, particularly lean tissue growth. However, this has been achieved using high-quality feed ingredients, such as wheat and soya that are also used for human consumption and more recently biofuels production. Ruminants on the other hand are less efficient, but are normally fed poorer quality ingredients that cannot be digested by human subjects, such as grass or silage. The challenges therefore are to: (i) maintain the current efficiency of growth of pigs and poultry, but using more ingredients not needed to feed the increasing human population or for the production of biofuels; (ii) improve the efficiency of growth in ruminants; (iii) at the same time produce animal products (meat, milk and eggs) of equal or improved quality. This review will describe the use of: (a) enzyme additives for animal feeds, to improve feed digestibility; (b) known growth promoting agents, such as growth hormone, ß-agonists and anabolic steroids, currently banned in the European Union but used in other parts of the world; (c) recent transcriptomic studies into molecular mechanisms for improved growth efficiency via low residual feed intake. In doing so, the use of genetic manipulation in animals will also be discussed.


Assuntos
Ração Animal/análise , Criação de Animais Domésticos/métodos , Fenômenos Fisiológicos da Nutrição Animal , Qualidade dos Alimentos , Carne/análise , Animais , Aves Domésticas , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA