RESUMO
Enhancer-gene communication is dependent on topologically associating domains (TADs) and boundaries enforced by the CCCTC-binding factor (CTCF) insulator, but the underlying structures and mechanisms remain controversial. Here, we investigate a boundary that typically insulates fibroblast growth factor (FGF) oncogenes but is disrupted by DNA hypermethylation in gastrointestinal stromal tumors (GISTs). The boundary contains an array of CTCF sites that enforce adjacent TADs, one containing FGF genes and the other containing ANO1 and its putative enhancers, which are specifically active in GIST and its likely cell of origin. We show that coordinate disruption of four CTCF motifs in the boundary fuses the adjacent TADs, allows the ANO1 enhancer to contact FGF3, and causes its robust induction. High-resolution micro-C maps reveal specific contact between transcription initiation sites in the ANO1 enhancer and FGF3 promoter that quantitatively scales with FGF3 induction such that modest changes in contact frequency result in strong changes in expression, consistent with a causal relationship.
Assuntos
Cromatina , Elementos Facilitadores Genéticos , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Cromatina/genética , Oncogenes , DNA/químicaRESUMO
The gill slits of fishes develop from an iterative series of pharyngeal endodermal pouches that contact and fuse with surface ectoderm on either side of the embryonic head. We find in the skate (Leucoraja erinacea) that all gill slits form via a stereotypical sequence of epithelial interactions: 1) endodermal pouches approach overlying surface ectoderm, with 2) focal degradation of ectodermal basement membranes preceding endoderm-ectoderm contact; 3) endodermal pouches contact and intercalate with overlying surface ectoderm, and finally 4) perforation of a gill slit occurs by epithelial remodelling, without programmed cell death, at the site of endoderm-ectoderm intercalation. Skate embryos express Fgf8 and Fgf3 within developing pharyngeal epithelia during gill slit formation. When we inhibit Fgf signalling by treating skate embryos with the Fgf receptor inhibitor SU5402 we find that endodermal pouch formation, basement membrane degradation and endodermal-ectodermal intercalation are unaffected, but that epithelial remodelling and gill slit perforation fail to occur. These findings point to a role for Fgf signalling in epithelial remodelling during gill slit formation in the skate and, more broadly, to an ancestral role for Fgf signalling during pharyngeal pouch epithelial morphogenesis in vertebrate embryos.
Assuntos
Ectoderma , Brânquias , Animais , Endoderma , Vertebrados , MorfogêneseRESUMO
Though initially discovered as a proto-oncogene in virally induced mouse mammary tumors, FGF3 is primarily active in prenatal stages, where it is found at various sites at specific times. FGF3 is crucial during development, as its roles include tail formation, inner ear development and hindbrain induction and patterning. FGF3 expression and function are highly conserved in vertebrates, while it also interacts with other FGFs in various developmental processes. Intriguingly, while it is classified as a classical paracrine signaling factor, murine FGF3 was uniquely found to also act in an intracrine manner, depending on alternative translation initiation sites. Corresponding with its conserved role in inner ear morphogenesis, mutations in FGF3 in humans are associated with LAMM syndrome, a disorder that include hearing loss and inner ear malformations. While recent studies indicate of some FGF3 presence in post-natal stages, emerging evidences of its upregulation in various human tumors and cariogenic processes in mouse models, highlights the importance of its close regulation in adult tissues. Altogether, the broad and dynamic expression pattern and regulation of FGF3 in embryonic and adult tissues together with its link to congenital malformations and cancer, calls for further discoveries of its diverse roles in health and disease.
RESUMO
The thalamus plays a crucial role in ensuring the faithful transfer of sensory information, except olfactory signals, to corresponding cortical areas. However, thalamic function is not simply restricted to relaying information to and from the cerebral cortex. The ability to modulate the flow of sensory information is supported by a second abundant neuronal type in the prethalamus, the inhibitory gamma-aminobutyric acid (GABAergic) neurons, which project inhibitory GABAergic axons to dorsal thalamic glutamatergic neurons. Interestingly, during the trajectory of pioneer prethalamic axons, morphogen fibroblast growth factor (FGF)-3 is expressed in the ventral chick hypothalamus. Using in vitro analyses in chick explants, we identify a chemorepellent effect of FGF3 on nearby prethalamic GABAergic axons. Furthermore, inhibition of FGF3 guidance functions indicates that FGF3 signaling is necessary to navigate prethalamic axons correctly. Gene expression analyses and loss of function studies demonstrate that FGF3 mediates prethalamic axonal guidance through the downstream pathway of the FGF receptor (FGFR)-1. Together, these results suggest that FGF3 expressed in the hypothalamus functions as a chemorepellent molecule to direct the pathway selection of neighboring GABAergic axons.
Assuntos
Axônios , Tálamo , Axônios/metabolismo , Tálamo/metabolismo , Córtex Cerebral , Neurônios , HipotálamoRESUMO
Clear cell sarcoma of the kidney (CCSK) is a rare pediatric renal tumor with a worse prognosis than Wilms' tumor. Although recently, BCOR internal tandem duplication (ITD) has been found as a driver mutation in more than 80% of cases, a deep molecular characterization of this tumor is still lacking, as well as its correlation with the clinical course. The aim of this study was to investigate the differential molecular signature between metastatic and localized BCOR-ITD-positive CCSK at diagnosis. Whole-exome sequencing (WES) and whole-transcriptome sequencing (WTS) were performed on six localized and three metastatic BCOR-ITD-positive CCSKs, confirming that this tumor carries a low mutational burden. No significant recurrences of somatic or germline mutations other than BCOR-ITD were identified among the evaluated samples. Supervised analysis of gene expression data showed enrichment of hundreds of genes, with a significant overrepresentation of the MAPK signaling pathway in metastatic cases (p < 0.0001). Within the molecular signature of metastatic CCSK, five genes were highly and significantly over-expressed: FGF3, VEGFA, SPP1, ADM, and JUND. The role of FGF3 in the acquisition of a more aggressive phenotype was investigated in a cell model system obtained by introducing the ITD into the last exon of BCOR by Crispr/Cas9 gene editing of the HEK-293 cell line. Treatment with FGF3 of BCOR-ITD HEK-293 cell line induced a significant increase in cell migration versus both untreated and scramble cell clone. The identification of over-expressed genes in metastatic CCSKs, with a particular focus on FGF3, could offer new prognostic and therapeutic targets in more aggressive cases.
Assuntos
Neoplasias Renais , Sarcoma de Células Claras , Tumor de Wilms , Humanos , Sarcoma de Células Claras/genética , Sarcoma de Células Claras/patologia , Células HEK293 , Proteínas Repressoras/genética , Neoplasias Renais/patologia , Rim/metabolismoRESUMO
Thalamus is an important sensory relay station: afferent sensory information, except olfactory signals, is transmitted by thalamocortical axons (TCAs) to the cerebral cortex. The pathway choice of TCAs depends on diverse diffusible or substrate-bound guidance cues in the environment. Not only classical guidance cues (ephrins, slits, semaphorins, and netrins), morphogens, which exerts patterning effects during early embryonic development, can also help axons navigate to their targets at later development stages. Here, expression analyses reveal that morphogen Fibroblast growth factor (FGF)-3 is expressed in the chick ventral diencephalon, hypothalamus, during the pathfinding of TCAs. Then, using in vitro analyses in chick explants, we identify a concentration-dependent effect of FGF3 on thalamic axons: attractant 100 ng/mL FGF3 transforms to a repellent at high concentration 500 ng/mL. Moreover, inhibition of FGF3 guidance functions indicates that FGF3 signaling is necessary for the correct navigation of thalamic axons. Together, these studies demonstrate a direct effect for the member of FGF7 subfamily, FGF3, in the axonal pathfinding of TCAs.
Assuntos
Orientação de Axônios/fisiologia , Fator 3 de Crescimento de Fibroblastos/metabolismo , Hipotálamo/metabolismo , Vias Neurais/embriologia , Animais , Córtex Cerebral/embriologia , Embrião de Galinha , Tálamo/embriologiaRESUMO
Gastrointestinal stromal tumors (GIST) lacking mutations in KIT/PDGFRA or RAS pathways and retaining an intact SDH complex are usually referred to as KIT/PDGFRA/SDH/RAS-P WT GIST or more simply quadruple WT GIST (~5% of all GIST). Despite efforts made, no recurrent genetic event in quadruple WT GIST has been identified so far. To further investigate this disease, we performed high throughput copy number analysis on quadruple WT GIST specimens identifying a recurrent focal gain in band 11q13.3 (involving FGF3/FGF4) in 6/8 cases. This event was not found in the other molecular GIST subgroups. FGF3/FGF4 duplication was associated with high expression of FGF4, both at mRNA and protein level, a growth factor normally not expressed in adult tissues or in KIT/PDGFRA-mutated GIST. FGFR1 was found to be the predominant FGF receptor expressed and phosphorylation of AKT was detected, suggesting that a FGF4-FGFR1 autocrine loop could stimulate downstream signaling in quadruple WT GIST. Together with the recent reports of quadruple WT cases carrying FGFR1 activating alterations, these findings strengthen the hypothesis of a potential involvement of FGFR pathway deregulation in quadruple WT GIST, which may represent a rationale for novel therapeutic approaches.
Assuntos
Fator 4 de Crescimento de Fibroblastos/genética , Neoplasias Gastrointestinais/genética , Tumores do Estroma Gastrointestinal/genética , Duplicação Gênica , Adulto , Idoso , Cromossomos Humanos Par 11/genética , Variações do Número de Cópias de DNA , Feminino , Fator 3 de Crescimento de Fibroblastos/genética , Fator 3 de Crescimento de Fibroblastos/metabolismo , Fator 4 de Crescimento de Fibroblastos/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas c-kit/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Succinato Desidrogenase/genética , Proteínas ras/genéticaRESUMO
Wnts and Fgfs regulate various tissues development in vertebrates. However, how regional Wnt or Fgf activities are established and how they interact in any given developmental event is elusive. Here, we investigated the Wnt-mediated craniofacial cartilage development in zebrafish and found that fgf3 expression in the pharyngeal pouches is differentially reduced along the anteroposterior axis in wnt5b mutants and wntless (wls) morphants, but its expression is normal in wnt9a and wnt11 morphants. Introducing fgf3 mRNAs rescued the cartilage defects in Wnt5b- and Wls-deficient larvae. In wls morphants, endogenous Wls expression is not detectable but maternally deposited Wls is present in eggs, which might account for the lack of axis defects in wls morphants. Secretion of endogenous Wnt5b but not Wnt11 was affected in the pharyngeal tissue of Wls morphants, indicating that Wls is not involved in every Wnt secretion event. Furthermore, cell proliferation but not apoptosis in the developing jaw was affected in Wnt5b- and Wls-deficient embryos. Therefore, Wnt5b requires Wls for its secretion and regulates the proliferation of chondrogenic cells through fine-tuning the expression of fgf3 during jaw cartilage development.
Assuntos
Cartilagem/crescimento & desenvolvimento , Proliferação de Células , Condrogênese/fisiologia , Fator 3 de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Wnt/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Apoptose , Cartilagem/metabolismo , Células Cultivadas , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário , Técnicas Imunoenzimáticas , Hibridização In Situ , Morfolinos/farmacologia , Proteína Wnt-5a , Peixe-Zebra/metabolismoRESUMO
The fibroblast growth factor (FGF) family consists of 22 ligands in mice and humans. FGF signaling is vital for embryogenesis and, when dysregulated, can cause disease. Loss-of-function genetic analysis in the mouse has been crucial for understanding FGF function. Such analysis has revealed that multiple Fgfs sometimes function redundantly. Exploring such redundancy between Fgf3 and Fgf4 is currently impossible because both genes are located on chromosome 7, about 18.5 kb apart, making the frequency of interallelic cross-over between existing mutant alleles too infrequent to be practicable. Therefore, we retargeted Fgf3 and Fgf4 in cis, generating an Fgf3 null allele and a conditional Fgf4 allele, subject to Cre inactivation. To increase the frequency of cis targeting, we used an F1 embryonic stem cell line that contained 129/SvJae (129) and C57BL/6J (B6) chromosomes and targeting constructs isogenic to the 129 chromosome. We confirmed cis targeting by assaying for B6/129 allele-specific single-nucleotide polymorphisms. We demonstrated the utility of the Fgf3(Δ)-Fgf4(flox)-cis mouse line by showing that the caudal axis extension defects found in the Fgf3 mutants worsen when Fgf4 is also inactivated. This Fgf3(Δ)-Fgf4(flox)-cis line will be useful to study redundancy of these genes in a variety of tissues and stages in development.
Assuntos
Linhagem Celular , Fator 3 de Crescimento de Fibroblastos/genética , Fator 4 de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/fisiologia , Animais , Células-Tronco Embrionárias , Marcação de Genes , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Here, we describe two congenitally deaf male siblings with the same compound heterozygotic, likely pathogenic mutations in the FGF3 gene, associated with the labyrinthine aplasia, microtia and microdontia (LAMM) syndrome. Both children had bilateral cochleovestibular aplasia, precluding cochlear implantation. The elder brother received an auditory brainstem implant (ABI) with very limited auditory responses. During the ABI-surgery of the younger subject, it was discovered that excellent auditory responses could be obtained when the electrode array was placed considerably more caudally and more medially than standard. It was observed that the foramen of Luschka, the entrance to the lateral recess of the fourth ventricle was located more caudally. In view of this observation the good auditory development of the latter child, it was decided to give the older child a contralateral ABI. Again, it turned out that the anatomy of the brainstem was abnormal with a more caudal location of the foramen of Luschka and the cochlear nucleus, and this child is showing good progress with his auditory development. It is concluded that one should be aware of the anatomical differences at the level of the brainstem when placing an ABI in children with this genetic disorder (and most likely also in the LAMM syndrome). This also underpins the need of a multidisciplinary approach with closely collaborating team members and good family guidance when diagnosing and treating children with rare deafness.
Deviant surgical anatomy for auditory brainstem implants with FGF3 gene defects, associated with LAMM syndrome This case series describes three placements of Auditory Brainstem Implants (ABIs) in two congenitally deaf brothers with a gene defect associated with the Labyrinthine Aplasia, Microtia and Microdontia (LAMM) syndrome. In line with this syndrome, they both had no inner ears and no hearing nerves and therefore couldn't be helped with a cochlear implant. The only option was an ABI, with a mesh electrode positioned on the cochlear nucleus, the first relay station of the hearing system in the brainstem. The first ABI electrode in the elder brother was placed in the classical position and did not yield much benefit. During the ABI surgery in the younger sibling, it was discovered that the location of the cochlear nucleus (the target site for an ABI) was located further down and the electrode had to be inserted deeper. This child showed a good auditory development, and it was decided to give the older child an ABI at the other side. Again, it turned out that the anatomy of the brainstem was abnormal with a lower location of the cochlear nucleus. With this second implant, this child's auditory development is showing good progress. It is concluded that one should be aware of the anatomical differences at the level of the brainstem when placing an ABI in children with this genetic disorder (and most likely also in the LAMM syndrome).
RESUMO
Vagal nerve stimulation has emerged as a promising modality for treating a wide range of chronic conditions, including metabolic disorders. However, the cellular and molecular pathways driving these clinical benefits remain largely obscure. Here, we demonstrate that fibroblast growth factor 3 (Fgf3) mRNA is upregulated in the mouse vagal ganglia under acute metabolic stress. Systemic and vagal sensory overexpression of Fgf3 enhanced glucose-stimulated insulin secretion (GSIS), improved glucose excursion, and increased energy expenditure and physical activity. Fgf3-elicited insulinotropic and glucose-lowering responses were recapitulated when overexpression of Fgf3 was restricted to the pancreas-projecting vagal sensory neurons. Genetic ablation of Fgf3 in pancreatic vagal afferents exacerbated high-fat diet-induced glucose intolerance and blunted GSIS. Finally, electrostimulation of the vagal afferents enhanced GSIS and glucose clearance independently of efferent outputs. Collectively, we demonstrate a direct role for the vagal afferent signaling in GSIS and identify Fgf3 as a vagal sensory-derived metabolic factor that controls pancreatic ß-cell activity.
RESUMO
BACKGROUND: To date, over 400 syndromes with hearing impairment have been identified which altogether constitute almost 30% of hereditary hearing loss (HL) cases around the globe. Manifested as complete or partial labyrinthine aplasia (severe malformations of the inner ear structure), type I microtia (smaller outer ear with shortened auricles), and microdontia (small and widely spaced teeth), labyrinthine aplasia, microtia, and microdontia (LAMM) syndrome (OMIM 610706) is an extremely rare autosomal recessive condition caused by bi-allelic mutations in the FGF3 gene. METHODS: Using the whole-exome sequencing (WES) data of the proband, we analyzed a consanguineous Iranian family with three affected members presenting with congenital bilateral HL, type I microtia, and microdontia. RESULTS: We discovered the homozygous deletion c.45delC in the first exon of the FGF3 gene, overlapping a 38.72 Mb homozygosity region in chromosome 11. Further investigations using Sanger sequencing revealed that this variant co-segregated with the phenotype observed in the family. CONCLUSION: Here, we report the first identified case of LAMM syndrome in Iran, and by identifying a frameshift variant in the first exon of the FGF3 gene, our result will help better clarify the phenotype-genotype relation of LAMM syndrome.
Assuntos
Microtia Congênita , Surdez , Orelha Interna , Humanos , Microtia Congênita/genética , Surdez/genética , Orelha Interna/anormalidades , Mutação da Fase de Leitura , Homozigoto , Irã (Geográfico) , Deleção de Sequência , SíndromeRESUMO
Somatic copy number gains are pervasive across cancer types, yet their roles in oncogenesis are insufficiently evaluated. This inadequacy is partly due to copy gains spanning large chromosomal regions, obscuring causal loci. Here, we employed organoid modeling to evaluate candidate oncogenic loci identified via integrative computational analysis of extreme copy gains overlapping with extreme expression dysregulation in The Cancer Genome Atlas. Subsets of "outlier" candidates were contextually screened as tissue-specific cDNA lentiviral libraries within cognate esophagus, oral cavity, colon, stomach, pancreas, and lung organoids bearing initial oncogenic mutations. Iterative analysis nominated the kinase DYRK2 at 12q15 as an amplified head and neck squamous carcinoma oncogene in p53-/- oral mucosal organoids. Similarly, FGF3, amplified at 11q13 in 41% of esophageal squamous carcinomas, promoted p53-/- esophageal organoid growth reversible by small molecule and soluble receptor antagonism of FGFRs. Our studies establish organoid-based contextual screening of candidate genomic drivers, enabling functional evaluation during early tumorigenesis.
Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Oncogenes , Transformação Celular Neoplásica/genética , Neoplasias/genética , Carcinogênese/genética , Amplificação de GenesRESUMO
Long noncoding RNAs (lncRNAs) have been suggested as important regulators in neuropathic pain. Our study aims to explore the possible molecular mechanism underlying the role of long non-coding RNA (lncRNA) Gm14376 in neuropathic pain in mice by high-throughput transcriptome sequencing. A mouse model of spared nerve injury (SNI) was constructed for mechanical, thermal and spontaneous pain testing. Transcriptomic changes in lncRNAs and mRNAs in the dorsal root ganglion (DRG) of SNI mice were analyzed using RNA-sequencing techniques in conjunction with public data analysis. AAV5 viral vector was constructed to assess the effect of Gm14376 on SNI-induced pain hypersensitivity and inflammatory response. Cis-target genes of Gm14376 were obtained and the functions of Gm14376 were analyzed by GO and KEGG pathway enrichment analyses. Results from bioinformatic analysis identified a conserved Gm14376, which was up-regulated in the DRG of SNI mice, specifically in response to nerve injury. Overexpression of Gm14376 in DRG induced neuropathic pain-like symptoms in mice. Furthermore, the functions of Gm14376 were related to the phosphatidylinositol 3-kinase (PI3K)/Akt pathway and fibroblast growth factor 3 (Fgf3) was identified as the cis-target gene of Gm14376. Gm14376 could directly up-regulate Fgf3 expression to activate the PI3K/Akt pathway, which alleviated pain hypersensitivity to mechanical and thermal stimuli and reduced the release of inflammatory factors in SNI mice. From our data, we conclude that SNI-induced up-regulation of Gm14376 expression in DRG activates the PI3K/Akt pathway through up-regulation of Fgf3 expression, thereby promoting the development of neuropathic pain in mice.
Assuntos
Neuralgia , Traumatismos dos Nervos Periféricos , RNA Longo não Codificante , Camundongos , Animais , Transcriptoma , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Neuralgia/genética , Neuralgia/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Gânglios Espinais/metabolismoRESUMO
Non-small cell lung carcinoma (NSCLC) patients who initially received tyrosine kinase inhibitor (TKI) therapy often acquired resistance via multiple complex mechanisms. The amplification of FGF3/4/19/CCND1 on chromosome 11q13 was found in many cancers with TKI resistance. However, the role of these amplifications in TKI-resistant NSCLC remains uncovered. Here, we generated the FGF3/4/19/CCND1 amplification model in the NSCLC cell lines PC-9 and HCC827. Upregulation of FGF3/4/19/CCND1 strongly promoted cell proliferation and gefitinib resistance in NSCLC cells. To find out the potential therapeutic strategies, we screened the combination of inhibitors against the FGF/FGFR signaling pathway and the CCND1/CDK4 complex and revealed that gefitinib combined with LY2874455 and abemaciclib exhibited the most effective inhibition of resistance in vitro and in vivo. Mechanistically, FGFs/CCND1 activated the MAPK pathway, which was abolished by the combination drugs. Our study provides a rationale for clinical testing of dual targeting FGFR and CCND1 with LY2874455 and abemaciclib in NSCLC patients who harbored FGF3/4/19/CCND1 amplification.
RESUMO
Complete labyrinthine aplasia (CLA) is a rare inner ear anomaly. The only identified genetic cause of CLA with severe sensorineural hearing loss is labyrinthine aplasia, microtia, and microdontia (LAMM) syndrome. Here we reported a child who presented with syndromic hearing loss and was diagnosed with LAMM syndrome. Genetic evaluation provided the family with confirmation of the diagnosis, provision of the prognosis, genetic counselling, and prenatal diagnosis. This report highlighted that CLA should be recognized as a unique sign to diagnose LAMM syndrome, to analyze FGF3 gene mutation, and also demonstrated the utility of genetic testing in patients with suspected LAMM syndrome to provide exact diagnosis and further management.
RESUMO
In a recent study, Chen and colleagues demonstrated that zebrafish spinal cord radial glia differentiate into cells that are similar to mammalian astrocytes. This study highlights the validity of the zebrafish model for discovering molecular mechanisms governing astrocyte function.
Assuntos
Astrócitos , Peixe-Zebra , Animais , Morfogênese , Medula Espinal , Proteínas de Peixe-ZebraRESUMO
The Muenke syndrome (MS) is characterized by unicoronal or bicoronal craniosynostosis, midfacial hypoplasia, ocular hypertelorism, and a variety of minor abnormalities associated with a mutation in the fibroblast growth factor receptor 3 (FGFR3) gene. The birth prevalence is approximately one in 10,000 live births, accounting for 8-10% of patients with coronal synostosis. Although MS is a relatively common diagnosis in patients with craniosynostosis syndromes, with autosomal dominant inheritance, there has been no report of MS, in an affected Korean family with typical cephalo-facial morphology that has been confirmed by molecular studies. Here, we report a familial case of MS in a female patient with a Pro250Arg mutation in exon 7 (IgII-IGIII linker domain) of the FGFR3 gene. This patient had mild midfacial hypoplasia, hypertelorism, downslanting palpebral fissures, a beak shaped nose, plagio-brachycephaly, and mild neurodevelopmental delay. The same mutation was confirmed in the patient's mother, two of the mother's sisters and the maternal grandfather. The severity of the cephalo-facial anomalies was variable among these family members.
Assuntos
Povo Asiático/genética , Craniossinostoses/genética , Mutação , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Crânio/anormalidades , Adulto , Pré-Escolar , Craniossinostoses/cirurgia , Análise Mutacional de DNA , Feminino , Humanos , Hipertelorismo/genética , Coreia (Geográfico) , Masculino , Linhagem , Fenótipo , Crânio/cirurgia , Síndrome , Resultado do TratamentoRESUMO
Pharyngeal arches are derived from all three germ layers and molecular interactions among the tissue types are required for proper development of subsequent pharyngeal cartilages; however, the mechanisms underlying this process are not fully described. Here we report that in zebrafish, Pax1a and Pax1b have overlapping and essential functions in pharyngeal pouch morphogenesis and subsequent ceratobranchial cartilage development. Both pax1a and pax1b are co-expressed in pharyngeal pouches, and time-lapse imaging of a novel Tg(pax1b:eGFP) enhancer trap line further revealed the sequential segmental development of pharyngeal pouches. Zebrafish pax1a-/-; pax1b-/- double mutant embryos generated by CRISPR-Cas9 mutagenesis exhibit unsegmented pharyngeal pouches 2-5 with small outpocketings. Endodermal expression of fgf3, tbx1 and edn1 is also absent in pharyngeal pouches 2-5 at 36 h post fertilization (hpf). Loss of ceratobranchial cartilage 1-4 and reduced or absent expression of dlx2a and hand2 in the pharyngeal arches 3-6 are observed in CRISPR mutant and morphant embryos that are deficient in both zebrafish pax1a and pax1b at 96 or 36 hpf. These results suggest that zebrafish Pax1a and Pax1b both regulate pharyngeal pouch morphogenesis by modulating expression of fgf3 and tbx1. Furthermore, our data support a model wherein endodermal Pax1a and Pax1b act through Fgf3 and Tbx-Edn1 signaling to non-autonomously regulate the development of ceratobranchial cartilage via expression of dlx2a and hand2.
Assuntos
Região Branquial/embriologia , Cartilagem/embriologia , Morfogênese/genética , Fatores de Transcrição Box Pareados/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Animais , Endoderma/embriologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Mutação/genética , Transdução de Sinais/genéticaRESUMO
Sonic hedgehog (Shh) in dental epithelium regulates tooth morphogenesis by epithelial-mesenchymal signaling transduction. However, the action of Shh signaling regulation in this process is not well understood. Here we find that mesenchymal Suppressor of Fused (Sufu), a major negative regulator of Shh signaling, plays an important role in modulating the tooth germ morphogenesis during the bud-to-cap stage transition. Deletion of Sufu in dental mesenchyme by Dermo1-Cre mice leads to delayed development of mandibular molar into cap stage with defect of primary enamel knot (EK) formation. We show the disruption of cell proliferation and programmed cell death in dental epithelium and mesenchyme in Sufu mutants. Epithelial-specific adhesion molecule E-cadherin is evidently reduced in the bilateral basal cells of tooth germ at E14.5. The cells in the presumptive EK, predominantly expressing P-cadherin, appear stratified but fail to condense. Moreover, the transcripts of primary EK marker genes, including Shh, Fgf4, and p21, are significantly decreased compared to controls. In contrast, we find that deficiency of Sufu results in elevation of Shh signaling in mesenchyme, indicated by the significant upregulation of Gli1 and Ptch1. Meanwhile, the expression of Bmp4 and Fgf3, the critical factors of mesenchymal-epithelial induction, is significantly inhibited in dental mesenchyme. Furthermore, the expression of Runx2 experiences a transient decrease at the bud stage. Taken together, these data suggest that mesenchymal Sufu is necessary for tuning the Shh signaling, which may act as an upstream modulator of Bmp4 and Fgf3 to coordinate the interplay between the dental mesenchyme and epithelium of tooth germ.