RESUMO
Familial partial lipodystrophy 3 (FPLD3) is a rare genetic disorder caused by loss-of-function mutations in the PPARG gene, characterized by a selective absence of subcutaneous fat and associated metabolic complications. However, the molecular mechanisms of FPLD3 remain unclear. In this study, we recruited a 17-yr-old Chinese female with FPLD3 and her family, identifying a novel PPARG frameshift mutation (exon 4: c.418dup: p.R140Kfs*7) that truncates the PPARγ protein at the seventh amino acid, significantly expanding the genetic landscape of FPLD3. By performing next-generation sequencing of circular RNAs (circRNAs), microRNAs (miRNAs), and mRNAs in plasma exosomes, we discovered 59 circRNAs, 57 miRNAs, and 299 mRNAs were significantly altered in the mutation carriers compared with the healthy controls. Integration analysis highlighted that the circ_0001597-miR-671-5p pair and 18 mRNAs might be incorporated into the metabolic regulatory networks of the FPLD3 induced by the novel PPARG mutation. Functional annotation suggested that these genes were significantly enriched in glucose- and lipid metabolism-related pathways. Among the circRNA-miRNA-mRNA network, we identified two critical regulators, early growth response-1 (EGR1), a key transcription factor known for its role in insulin signaling pathways and lipid metabolism, and 1-acylglycerol-3-phosphate O-acyltransferase 3 (AGPAT3), which gets involved in the biosynthesis of triglycerides and lipolysis. Circ_0001597 regulates the expression of these genes through miR-671-5p, potentially contributing to the pathophysiology of FPLD3. Overall, this study clarified a circulating exosomal circRNA-miRNA-mRNA network in a FPLD3 family with a novel PPARG mutation, providing evidence for exploring promising biomarkers and developing novel therapeutic strategies for this rare genetic disorder.NEW & NOTEWORTHY Through the establishment of a ceRNA regulatory networks in a novel PPARG frameshift mutation c.418dup-induced FPLD3 pedigree, this study reveals that circ_0001597 may contribute to the pathophysiology of FPLD3 by sequestering miR-671-5p to regulate the expression of EGR1 and AGPAT3, pivotal genes situated in the triglyceride (TG) synthesis and lipolysis pathways. Current findings expand our molecular understanding of adipose tissue dysfunction, providing potential blood biomarkers and therapeutic avenues for lipodystrophy and associated metabolic complications.
Assuntos
Exossomos , Mutação da Fase de Leitura , Lipodistrofia Parcial Familiar , MicroRNAs , PPAR gama , RNA Circular , RNA Mensageiro , Humanos , Feminino , MicroRNAs/genética , MicroRNAs/sangue , PPAR gama/genética , RNA Circular/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Adolescente , Lipodistrofia Parcial Familiar/genética , Exossomos/genética , Exossomos/metabolismo , Linhagem , Redes Reguladoras de GenesRESUMO
AIM: To assess the disease burden of familial partial lipodystrophy (FPLD) caused by LMNA (FPLD2) and PPARG (FPLD3) variants to augment the knowledge of these rare disorders characterized by selective fat loss and metabolic complications. MATERIALS AND METHODS: An observational longitudinal study, including 157 patients (FPLD2: 139 patients, mean age 46 ± 17 years, 70% women; FPLD3: 18 patients, mean age: 44 ± 17 years, 78% women) from 66 independent families in two countries (83 from Turkey and 74 from Spain), was conducted. RESULTS: Patients were diagnosed at a mean age of 39 ± 19 years, 20 ± 16 years after the first clinical signs appeared. Men reported symptoms later than women. Symptom onset was earlier in FPLD2. Fat loss was less prominent in FPLD3. In total, 92 subjects (59%) had diabetes (age at diagnosis: 34 ± 1 years). Retinopathy was more commonly detected in FPLD3 (P < .05). Severe hypertriglyceridaemia was more frequent among patients with FPLD3 (44% vs. 17%, P = .01). Hepatic steatosis was detected in 100 subjects (66%) (age at diagnosis: 36 ± 2 years). Coronary artery disease developed in 26 patients (17%) and 17 (11%) suffered from a myocardial infarction. Turkish patients had a lower body mass index, a higher prevalence of hepatic steatosis, greater triglyceride levels and a tendency towards a higher prevalence of coronary artery disease. A total of 17 patients died, with a mean time to death of 75 ± 3 years, which was shorter in the Turkish cohort (68 ± 2 vs. 83 ± 4 years, P = .01). Cardiovascular events were a major cause of death. CONCLUSIONS: Our analysis highlights severe organ complications in patients with FPLD, showing differences between genotypes and Mediterranean countries. FPLD3 presents a milder phenotype than FPLD2, but with comparable or even greater severity of metabolic disturbances.
Assuntos
Lipodistrofia Parcial Familiar , Humanos , Feminino , Masculino , Lipodistrofia Parcial Familiar/genética , Lipodistrofia Parcial Familiar/epidemiologia , Lipodistrofia Parcial Familiar/complicações , Pessoa de Meia-Idade , Adulto , Espanha/epidemiologia , Turquia/epidemiologia , Estudos Longitudinais , Lamina Tipo A/genética , Estudos de Coortes , Hipertrigliceridemia/complicações , Hipertrigliceridemia/epidemiologiaRESUMO
The accumulation of farnesylated prelamin A has been suggested as one of the mechanisms responsible for the loss of fat in type 2 familial partial lipodystrophy due to variants in the LMNA gene. In this rare disease, fat loss appears in women after puberty, affecting sex-hormone-dependent anatomical areas. This study investigated the impact of 17-ß-estradiol on adipogenesis in murine preadipocytes subjected to a pharmacologically induced accumulation of farnesylated and non-farnesylated prelamin A. To induce the accumulation of non-farnesylated or farnesylated prelamin A, 3T3-L1 cells were treated with the farnesyltransferase inhibitor 277 or the methyltransferase inhibitor N-acetyl-S-farnesyl-l-cysteine methylester. Subsequently, the cells were induced to undergo adipocyte differentiation in the presence or absence of 17-ß-estradiol. Prelamin A accumulation was assessed through immunofluorescence, while real-time PCR and Western blot techniques were used to quantify several adipogenic genes and evaluate protein levels, respectively. The results showed that 17-ß-estradiol increased adipogenesis, although the combination of this hormone plus farnesylated prelamin A led to a reduction in the number of mature adipocytes and the expression of the different genes involved in adipogenesis. In conclusion, the influence of farnesylated prelamin A accumulation on adipogenesis manifested only in the presence of estradiol. These in vitro findings suggest a potential mechanism that could explain the characteristic phenotype in women suffering type 2 familial partial lipodystrophy.
Assuntos
Lamina Tipo A , Lipodistrofia Parcial Familiar , Humanos , Feminino , Camundongos , Animais , Lipodistrofia Parcial Familiar/genética , Lipodistrofia Parcial Familiar/metabolismo , Adipogenia , Células 3T3-L1 , Proteínas Nucleares/genética , Estradiol/farmacologiaRESUMO
Recent research into laminopathic lipodystrophies-rare genetic disorders caused by mutations in the LMNA gene-has greatly expanded our knowledge of their complex pathology and metabolic implications. These disorders, including Hutchinson-Gilford progeria syndrome (HGPS), Mandibuloacral Dysplasia (MAD), and Familial Partial Lipodystrophy (FPLD), serve as crucial models for studying accelerated aging and metabolic dysfunction, enhancing our understanding of the cellular and molecular mechanisms involved. Research on laminopathies has highlighted how LMNA mutations disrupt adipose tissue function and metabolic regulation, leading to altered fat distribution and metabolic pathway dysfunctions. Such insights improve our understanding of the pathophysiological interactions between genetic anomalies and metabolic processes. This review merges current knowledge on the phenotypic classifications of these diseases and their associated metabolic complications, such as insulin resistance, hypertriglyceridemia, hepatic steatosis, and metabolic syndrome, all of which elevate the risk of cardiovascular disease, stroke, and diabetes. Additionally, a range of published therapeutic strategies, including gene editing, antisense oligonucleotides, and novel pharmacological interventions aimed at addressing defective adipocyte differentiation and lipid metabolism, will be explored. These therapies target the core dysfunctional lamin A protein, aiming to mitigate symptoms and provide a foundation for addressing similar metabolic and genetic disorders.
Assuntos
Lamina Tipo A , Lipodistrofia , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Lipodistrofia/genética , Lipodistrofia/metabolismo , Lipodistrofia/terapia , Animais , Laminopatias/genética , Laminopatias/metabolismo , Progéria/genética , Progéria/metabolismo , Progéria/patologia , Mutação , Lipodistrofia Parcial Familiar/genética , Lipodistrofia Parcial Familiar/metabolismo , Lipodistrofia Parcial Familiar/terapia , Metabolismo dos Lipídeos/genética , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Resistência à Insulina/genética , Edição de GenesRESUMO
Familial partial lipodystrophy (FPLD) 3 is a rare genetic disorder caused by peroxisome proliferator-activated receptor γ gene (PPARG) mutations. Most cases have been reported in Western patients. Here, we describe a first pedigree of FPLD 3 in Japanese. The proband was a 51-year-old woman. She was diagnosed with fatty liver at age 32 years, dyslipidemia at age 37 years, and diabetes mellitus at age 41 years. Her body mass index was 18.5 kg/m2, and body fat percentage was 19.2%. On physical examination, she had less subcutaneous fat in the upper limbs than in other sites. On magnetic resonance imaging, atrophy of subcutaneous adipose tissue was seen in the upper limbs and lower legs. Fasting serum C-peptide immunoreactivity was high (3.4 ng/mL), and the plasma glucose disappearance rate was low (2.07%/min) on an insulin tolerance test, both suggesting apparent insulin resistance. The serum total adiponectin level was low (2.3 µg/mL). Mild fatty liver was seen on abdominal computed tomography. On genetic analysis, a P495L mutation in PPARG was identified. The same mutation was also seen in her father, who had non-obese diabetes mellitus, and FPLD 3 was diagnosed. Modest increases in body fat and serum total adiponectin were seen with pioglitazone treatment. Attention should be paid to avoid overlooking lipodystrophy syndromes even in non-obese diabetic patients if they show features of insulin resistance.
Assuntos
Diabetes Mellitus , Resistência à Insulina , Lipodistrofia Parcial Familiar , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Lipodistrofia Parcial Familiar/tratamento farmacológico , Lipodistrofia Parcial Familiar/genética , Lipodistrofia Parcial Familiar/diagnóstico , PPAR gama/genética , Pioglitazona/uso terapêutico , Resistência à Insulina/genética , Adiponectina , População do Leste Asiático , MutaçãoRESUMO
CONTEXT: Familial partial lipodystrophy type 2 (FPLD2) results from autosomal dominant mutations in the LMNA gene, causing lack of subcutaneous fat deposition and excess ectopic fat accumulation, leading to metabolic complications and reduced life expectancy. The rarity of the condition means that the natural history of FPLD2 throughout childhood is not well understood. We report outcomes in a cohort of 12 (5M) children with a genetic diagnosis of FPLD2, under the care of the UK National Severe Insulin Resistance Service (NSIRS) which offers multidisciplinary input including dietetic, in addition to screening for comorbidities. OBJECTIVE: To describe the natural history of clinical, biochemical and radiological outcomes of children with FPLD2. DESIGN: A retrospective case note review of children with a genetic diagnosis of FPLD2 who had been seen in the paediatric NSIRS was performed. PATIENTS: Twelve (5M) individuals diagnosed with FPLD2 via genetic testing before age 18 and who attended the NSIRS clinic were included. MEASUREMENTS: Relationships between metabolic variables (HbA1c, triglycerides, fasting insulin, fasting glucose and alanine transaminase [ALT]) across time, from first visit to most recent, were explored using a multivariate model, adjusted for age and gender. The age of development of comorbidities was recorded. RESULTS: Three patients (all female) developed diabetes between 12 and 19 years and were treated with Metformin. One female has hypertrophic cardiomyopathy and four (1M) patients developed mild hepatic steatosis at a median [range] age of 14(12-15) years. Three (1M) patients reported mental health problems related to lipodystrophy. There was no relationship between biochemical results and age. Patients with diabetes had higher concentrations of ALT than patients who did not have diabetes, adjusted for age, gender and body mass index standard deviation scores. CONCLUSIONS: Despite dietetic input, some patients, more commonly females, developed comorbidities after the age of 10. The absence of relationships between biochemical results and age likely reflects a small cohort size. We propose that, while clinical review and dietetic support are beneficial for children with FPLD2, formal screening for comorbidities before age 10 may not be of benefit. Clinical input from an multidisciplinary team including dietician, psychologist and clinician should be offered after diagnosis.
Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Lipodistrofia Parcial Familiar , Criança , Humanos , Feminino , Adolescente , Lipodistrofia Parcial Familiar/genética , Lipodistrofia Parcial Familiar/metabolismo , Estudos Retrospectivos , Lamina Tipo A/genética , Gordura Subcutânea/metabolismoRESUMO
PURPOSE OF REVIEW: Genetic or acquired lipodystrophies are characterized by selective loss of body fat along with predisposition towards metabolic complications of insulin resistance, such as diabetes mellitus, hypertriglyceridemia, hepatic steatosis, polycystic ovarian syndrome, and acanthosis nigricans. In this review, we discuss the various subtypes and when to suspect and how to diagnose lipodystrophy. RECENT FINDINGS: The four major subtypes are autosomal recessive, congenital generalized lipodystrophy (CGL); acquired generalized lipodystrophy (AGL), mostly an autoimmune disorder; autosomal dominant or recessive familial partial lipodystrophy (FPLD); and acquired partial lipodystrophy (APL), an autoimmune disorder. Diagnosis of lipodystrophy is mainly based upon physical examination findings of loss of body fat and can be supported by body composition analysis by skinfold measurements, dual-energy x-ray absorptiometry, and whole-body magnetic resonance imaging. Confirmatory genetic testing is helpful in the proband and at-risk family members with suspected genetic lipodystrophies. The treatment is directed towards the specific comorbidities and metabolic complications, and there is no treatment to reverse body fat loss. Metreleptin should be considered as the first-line therapy for metabolic complications in patients with generalized lipodystrophy and for prevention of comorbidities in children. Metformin and insulin therapy are the best options for treating hyperglycemia and fibrates and/or fish oil for hypertriglyceridemia. Lipodystrophy should be suspected in lean and muscular subjects presenting with diabetes mellitus, hypertriglyceridemia, non-alcoholic fatty liver disease, polycystic ovarian syndrome, or amenorrhea. Diabetologists should be aware of lipodystrophies and consider genetic varieties as an important subtype of monogenic diabetes.
Assuntos
Diabetes Mellitus , Hipertrigliceridemia , Lipodistrofia Generalizada Congênita , Lipodistrofia , Síndrome do Ovário Policístico , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/genética , Feminino , Humanos , Lipodistrofia/diagnóstico , Lipodistrofia/genética , Lipodistrofia Generalizada Congênita/complicações , Imageamento por Ressonância Magnética/efeitos adversos , Síndrome do Ovário Policístico/complicações , Síndrome do Ovário Policístico/diagnóstico , Síndrome do Ovário Policístico/genética , Imagem Corporal Total/efeitos adversosRESUMO
LMNA mutation is associated with type-2 familial partial lipodystrophy (FPLD2). The disease causes a disorder characterized by anomalous accumulation of body fat in humans. The dysfunction at the molecular level is triggered by a lamin A/C mutation, impairing the cell metabolism. In human fibroblasts and preadipocytes, a trend for ATP production, mainly supported by mitochondrial oxidative metabolism, is detected. Moreover, primary cell lines with FPLD2 mutation decrease the mitochondrial ATP production if compared with the control, even if no differences are observed in the oxygen consumption rate of bioenergetic parameters (i.e., basal and maximal respiration, spare respiratory capacity, and ATP turnover). Conversely, glycolysis is only inhibited in FPLD2 fibroblast cell lines. We notice that the amount of ATP produced in the fibroblasts is higher than in the preadipocytes, and likewise in the control, with respect to FPLD2, due to a more active oxidative phosphorylation (OXPHOS) and glycolysis. Moreover, the proton leak parameter, which characterizes the transformation of white adipose tissue to brown/beige adipose tissue, is unaffected by FPLD2 mutation. The metabolic profile of fibroblasts and preadipocytes is confirmed by the ability of these cell lines to increase the metabolic potential of both OXPHOS and glycolysis under energy required independently by the FPLD2 mutation.
Assuntos
Lipodistrofia Parcial Familiar , Trifosfato de Adenosina/metabolismo , Tecido Adiposo Marrom/metabolismo , Metabolismo Energético , Fibroblastos/metabolismo , Humanos , Lamina Tipo A/genética , Lipodistrofia Parcial Familiar/genética , Lipodistrofia Parcial Familiar/metabolismoRESUMO
BACKGROUND: Familial partial lipodystrophy (FPLD) is a rare disease characterized by selective loss of peripheral subcutaneous fat, associated with dyslipidemia and diabetes mellitus. Reductions in circulating levels of ANGPTL3 are associated with lower triglyceride and other atherogenic lipids, making it an attractive target for treatment of FPLD patients. This proof-of-concept study was conducted to assess the efficacy and safety of targeting ANGPTL3 with vupanorsen in patients with FPLD. METHODS: This was an open-label study. Four patients with FPLD (two with pathogenic variants in LMNA gene, and two with no causative genetic variant), diabetes (HbA1c ≥ 7.0 % and ≤ 12 %), hypertriglyceridemia (≥ 500 mg/dL), and hepatic steatosis (hepatic fat fraction, HFF ≥ 6.4 %) were included. Patients received vupanorsen subcutaneously at a dose of 20 mg weekly for 26 weeks. The primary endpoint was the percent change from baseline in fasting triglycerides at Week 27. Other endpoints analyzed at the same time point included changes in ANGPTL3, fasting lipids and lipoproteins, insulin secretion/sensitivity, postprandial lipids, and glycemic changes in response to a mixed meal test, HFF measured by MRI, and body composition measured by dual-energy absorptiometry (DEXA). RESULTS: Baseline mean ± SD fasting triglyceride level was 9.24 ± 4.9 mmol/L (817.8 ± 431.9 mg/dL). Treatment resulted in reduction in fasting levels of triglycerides by 59.9 %, ANGPTL3 by 54.7 %, and in several other lipoproteins/lipids, including very low-density lipoprotein cholesterol by 53.5 %, non-high-density lipoprotein cholesterol by 20.9 %, and free fatty acids (FFA) by 41.7 %. The area under the curve for postprandial triglycerides, FFA, and glucose was reduced by 60 %, 32 %, and 14 %, respectively. Treatment with vupanorsen also resulted in 55 % reduction in adipose tissue insulin resistance index, while other insulin sensitivity indices and HbA1c levels were not changed. Additional investigations into HFF and DEXA parameters suggested dynamic changes in fat partitioning during treatment. Adverse events observed were related to common serious complications associated with diabetes and FPLD. Vupanorsen was well tolerated, and there was no effect on platelet count. CONCLUSIONS: Although limited, these results suggest that targeting ANGPTL3 with vupanorsen could address several metabolic abnormalities in patients with FPLD.
Assuntos
Proteína 3 Semelhante a Angiopoietina , Hipolipemiantes , Lipodistrofia Parcial Familiar , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteína 3 Semelhante a Angiopoietina/metabolismo , Hipolipemiantes/uso terapêutico , Lipodistrofia Parcial Familiar/tratamento farmacológico , Lipoproteínas LDL/sangue , Estudo de Prova de Conceito , Triglicerídeos/sangueRESUMO
The transcription factor peroxisome proliferator-activated receptor gamma (PPARG) is essential for placental development, and alterations in its expression and/or activity are associated with human placental pathologies such as pre-eclampsia or IUGR. However, the molecular regulation of PPARG in cytotrophoblast differentiation and in the underlying mesenchyme remains poorly understood. Our main goal was to study the impact of mutations in the ligand-binding domain (LBD) of the PPARG gene on cytotrophoblast fusion (PPARGE352Q ) and on fibroblast cell migration (PPARGR262G /PPARGL319X ). Our results showed that, compared to cells with reconstituted PPARGWT , transfection with PPARGE352Q led to significantly lower PPARG activity and lower restoration of trophoblast fusion. Likewise, compared to PPARGWT fibroblasts, PPARGR262G /PPARGL319X fibroblasts demonstrated significantly inhibited cell migration. In conclusion, we report that single missense or nonsense mutations in the LBD of PPARG significantly inhibit cell fusion and migration processes.
Assuntos
Movimento Celular , Fibroblastos/patologia , Lipodistrofia Parcial Familiar/genética , Mutação/genética , PPAR gama/química , PPAR gama/genética , Trofoblastos/patologia , Animais , Fusão Celular , Fibroblastos/metabolismo , Humanos , Ligantes , Lipodistrofia Parcial Familiar/patologia , Camundongos , Modelos Moleculares , Células NIH 3T3 , PPAR gama/metabolismo , Domínios Proteicos , Trofoblastos/metabolismoRESUMO
Familial partial lipodystrophy type 2 (FPLD2) is characterized by insulin resistance, adipose atrophy of the extremities and central obesity. Due to the resemblance with Cushing's syndrome, we hypothesized a putative role of glucocorticoid in the pathogenesis of metabolic abnormalities in FPLD2. OBJECTIVE: To evaluate the phenotypic heterogeneity and glucocorticoid sensitivity in FPLD2 patients exhibiting the p.R482W or p.R644C LMNA mutations. DESIGN, PATIENTS AND MEASUREMENTS: Prospective study with FPLD2 patients (n = 24) and controls (n = 24), who underwent anthropometric, body composition, metabolic profile and adipokines/cytokine plasma measurements. Plasma and salivary cortisol were measured in basal conditions and after 0.25, 0.5 and 1.0 mg of dexamethasone (DEX) given at 23:00 hours. Glucocorticoid receptor (GR) and 11ßHSD isoforms expression were assessed by qPCR. RESULTS: Familial partial lipodystrophy type 2 individuals presented increased waist and neck circumferences, decreased hip circumference, peripheral skinfold thickness and fat mass. Patients presented increased HOMA-IR, triglycerides, TNF-α, IL-1ß, IL-6 and IL-10, and decreased adiponectin and leptin plasma levels. FPLD2 patients showed decreased ability to suppress the HPA axis compared with controls after 0.5 mg DEX. The phenotype was more pronounced in patients harbouring the p.R482W LMNA mutation. GRß overexpression in PBMC was observed in female patients compared with female controls. CONCLUSIONS: Familial partial lipodystrophy type 2 patients exhibited anthropometric, clinical and biochemical phenotypic heterogeneity related to LMNA mutation sites and to gender. LMNA mutations affecting both lamin A and lamin C lead to more severe phenotype. FPLD2 patients also showed blunted HPA axis response to DEX, probably due to the association of increased levels of proinflammatory cytokines with GRß overexpression leading to a more severe phenotype in female.
Assuntos
Glucocorticoides/farmacologia , Lipodistrofia Parcial Familiar/sangue , Lipodistrofia Parcial Familiar/metabolismo , Adiponectina/sangue , Composição Corporal/efeitos dos fármacos , Composição Corporal/fisiologia , Dexametasona/farmacologia , Feminino , Humanos , Hidrocortisona/sangue , Resistência à Insulina/genética , Interleucina-10/sangue , Interleucina-1beta/sangue , Interleucina-6/sangue , Lamina Tipo A/genética , Leptina/sangue , Lipodistrofia Parcial Familiar/genética , Masculino , Mutação/genética , Estudos Prospectivos , Isoformas de Proteínas/genética , Receptores de Glucocorticoides/genética , Fator de Necrose Tumoral alfa/sangueRESUMO
Lamins A and C are involved in many cellular functions, owing to its ability to bind chromatin and transcription factors and affect their properties. Mutations of the LMNA gene encoding lamin A/C affect differentiation capacity of stem cells. However, the signaling pathways involved in interactions with lamins during cellular differentiation remain unclear. Lipodystrophy associated with LMNA mutation R482L causes loss of fat tissue. In this study we investigated the role of LMNA mutation R482L in modulating Notch signaling activity in the adipogenic differentiation of mesenchymal stem cells. Notch was activated using lentiviral Notch intracellular domain. Activation of Notch was estimated through the expression of Notch-responsive genes by qPCR and by activation of a luciferase CSL-reporter construct. The effect of LMNA mutation on Notch activation and adipogenic differentiation was analyzed in cells bearing lentiviral LMNA WT or LMNA R482L. We show that, when Notch is activated, LMNA R482L contributes to down-regulation of Notch activation in undifferentiated and differentiated cells, and decreases adipogenic differentiation. Thus, lamin A/C interacts with Notch signaling, thereby influencing cellular differentiation, and point mutation in LMNA could halt this interaction.
Assuntos
Adipogenia/genética , Diferenciação Celular/genética , Lamina Tipo A/genética , Mutação/genética , Células-Tronco/metabolismo , Animais , Cromatina/metabolismo , Humanos , Lipodistrofia/genética , Células-Tronco Mesenquimais/metabolismo , Ratos , Receptores Notch/metabolismo , Transdução de Sinais/genéticaRESUMO
OBJECTIVE: Type 1 and type 2 familial partial lipodystrophies (FPLD) are characterized by the loss or increase in subcutaneous fat in certain body regions, as well as metabolic disorders. Higher muscle volume and mass have also been described. However, so far, possible bone involvement has not been studied. The aim of this study was to evaluate bone mineral density (BMD) in patients with type 1 and type 2 FPLD. METHODS: A total of 143 women were selected and distributed into three groups (17 women with FPLD2, 82 women with FPLD1 and 44 nonlipodystrophic obese female controls). A thorough history and physical examination were carried out on all subjects, as well as the measurement of anthropometric features. BMD along with fat and fat-free mass (FFM) were determined by DXA (dual-energy X-ray absorptiometry). Statistical analyses, primarily using the χ2 , ANOVA and ANCOVA tests, were performed, using age, height, fat and FFM as covariables. RESULTS: After eliminating the possible influences of age, height, fat and FFM, we observed that there were no significant differences in total BMD between patients with FPLD and the control group, showing total BMD values of 1.092 ± 0.037 g/cm2 in the FPLD2 group, 1.158 ± 0.013 g/cm2 in the FPLD1 group and 1.173 ± 0.018 g/cm2 in the control group (P = .194). Similarly, no significant differences were found in segmental BMD. CONCLUSIONS: Unlike in other types of laminopathy in which bone is affected, in the case of FPLD, there are no differences in BMD compared to nonlipodystrophic subjects.
Assuntos
Densidade Óssea , Lipodistrofia Parcial Familiar/fisiopatologia , Adulto , Antropometria , Estudos de Casos e Controles , Feminino , Humanos , Pessoa de Meia-Idade , ObesidadeRESUMO
BACKGROUND: Lipodystrophy syndromes are rare disorders of variable body fat loss associated with potentially serious metabolic complications. Familial partial lipodystrophy (FPLD) is mostly inherited as an autosomal dominant disorder. Renal involvement has only been reported in a limited number of cases of FPLD. Herein, we present a rare case of proteinuria associated with type 4 FPLD, which is characterized by a heterozygous mutation in PLIN1 and has not been reported with renal involvement until now. CASE PRESENTATION: A 15-year-old girl presented with insulin resistance, hypertriglyceridaemia, hepatic steatosis and proteinuria. Her glucose and glycated haemoglobin levels were within normal laboratory reference ranges. A novel heterozygous frameshift mutation in PLIN1 was identified in the patient and her mother. The kidney biopsy showed glomerular enlargement and focal segmental glomerulosclerosis under light microscopy; the electron microscopy results fit with segmental thickening of the glomerular basement membrane. Treatment with an angiotensin-converting enzyme inhibitor (ACEI) decreased 24-h protein excretion. CONCLUSIONS: We report the first case of proteinuria and renal biopsy in a patient with FPLD4. Gene analysis demonstrated a novel heterozygous frameshift mutation in PLIN1 in this patient and her mother. Treatment with ACEI proved to be beneficial.
Assuntos
Lipodistrofia Parcial Familiar/diagnóstico por imagem , Lipodistrofia Parcial Familiar/genética , Proteinúria/diagnóstico por imagem , Proteinúria/genética , Adolescente , Feminino , Mutação da Fase de Leitura/genética , Humanos , Resistência à Insulina/fisiologia , Lipodistrofia Parcial Familiar/sangue , Proteinúria/sangueRESUMO
BACKGROUND: Familial partial lipodystrophy of the Dunnigan type (FPLD 2) is a rare autosomal dominant disorder caused by the mutations of the lamin A/C gene leading to the defective adipogenesis, premature death of adipocytes and lipotoxicity. FPLD 2 is characterized by a progressive loss of subcutaneous adipose tissue in the limbs and trunk, and accumulation of body fat in the face and neck with accompanying severe metabolic derangements including insulin resistance, glucose intolerance, diabetes, dyslipidemia, steatohepatitis. Clinical presentation of FPLD 2 can often lead to misdiagnosis with metabolic syndrome, type 2 diabetes or Cushing syndrome. CASE PRESENTATION: We report a case of a 14-year-old girl admitted to the Department of Paediatrics due to chronic hypertransaminasemia. On physical examination the girl appeared to have athletic posture. She demonstrated the absence of subcutaneous adipose tissue in the extremities, sparing the face, neck and gluteal area, pseudo-hypertrophy of calves, prominent peripheral veins of limbs, massive acanthosis nigricans around the neck, in axillary and inguinal regions and natural skin folds, hepatosplenomegaly. Laboratory results revealed hypertransaminasemia, elevated γ-glutamyltranspeptydase, and dyslipidemia, hyperinsulinaemia with insulin resistance, impaired glucose tolerance, and hyperuricemia. Diffuse steatoheptitis in the liver biopsy was stated. Clinical suspicion of FPLD 2 was confirmed genetically. The pathogenic mutation, R482W (p.Arg482Trp), responsible for the FPLD 2 phenotype was identified in one allele of the LMNA gene. CONCLUSIONS: Presented case highlights the importance of the holistic approach to a patient and the need of accomplished collaboration between paediatricians and geneticists. FPLD 2 should be considered in the differential diagnosis of diabetes, dyslipidemia, steatohepatitis, acanthosis nigricans and polycystic ovary syndrome.
Assuntos
Lipodistrofia Parcial Familiar/diagnóstico , Adolescente , Diagnóstico Diferencial , Feminino , HumanosRESUMO
Familial partial lipodystrophy (FPL) type 1 is a syndrome characterized by loss of subcutaneous fat in arms and legs and an excess of body fat in face, neck, and torso. This rare syndrome is usually diagnosed when patients present cardiovascular complications or pancreatitis due to the severe metabolic abnormalities. Here we present the case of a 45 year old diabetic female without any pathological family history, a poor glycemic control (HbA1c 11.7%), hypertriglideridemia (3000 mg/dl), a body mass index (BMI) of 38, thin limbs, subcutaneous fat loss in gluteal area and ledge of fat above them, prominent veins in lower extremities, moon face, and acanthosis nigricans; as well as hypertension (150/100 mmHg) and subcutaneous folds measuring less than average were observed. Hypercortisolism was discarded and leptin levels were measured (16.8 mg/ml, VR: BMI > 30: 50 mg/ml). Due to these clinical and biochemical manifestations, and low leptin levels (16.8 mg/ml), Kobberling syndrome was suspected; however, LMNA mutation analysis was negative. Changes in lifestyle and treatment with fenofibrate, biphasic insulin 50/50, and enalapril were initiated showing a a significant metabolic improvement: HbA1c (7.8%) and TG (243 mg/dl). FPL type 1 is a familial disease, although there are spontaneous cases. No specific mutation is responsible for this syndrome. Due to its clinical manifestations, Cushing syndrome must be discarded.
Assuntos
Lipodistrofia Parcial Familiar/diagnóstico , Gordura Subcutânea/patologia , Acantose Nigricans/complicações , Braço , Nádegas , Diagnóstico Diferencial , Feminino , Humanos , Lipodistrofia Parcial Familiar/complicações , Pessoa de Meia-Idade , Doenças Raras/complicações , Doenças Raras/diagnósticoRESUMO
The peroxisome proliferator-activated receptors (PPARs) are transcription factors that regulate glucose and lipid metabolism. The role of PPARs in several chronic diseases such as type 2 diabetes, obesity and atherosclerosis is well known and, for this reason, they are the targets of antidiabetic and hypolipidaemic drugs. In the last decade, some rare mutations in human PPARγ that might be associated with partial lipodystrophy, dyslipidaemia, insulin resistance and colon cancer have emerged. In particular, the F360L mutant of PPARγ (PPARγ2 residue 388), which is associated with familial partial lipodystrophy, significantly decreases basal transcriptional activity and impairs stimulation by synthetic ligands. To date, the structural reason for this defective behaviour is unclear. Therefore, the crystal structure of PPARγ F360L together with the partial agonist LT175 has been solved and the mutant has been characterized by circular-dichroism spectroscopy (CD) in order to compare its thermal stability with that of the wild-type receptor. The X-ray analysis showed that the mutation induces dramatic conformational changes in the C-terminal part of the receptor ligand-binding domain (LBD) owing to the loss of van der Waals interactions made by the Phe360 residue in the wild type and an important salt bridge made by Arg357, with consequent rearrangement of loop 11/12 and the activation function helix 12 (H12). The increased mobility of H12 makes the binding of co-activators in the hydrophobic cleft less efficient, thereby markedly lowering the transactivation activity. The spectroscopic analysis in solution and molecular-dynamics (MD) simulations provided results which were in agreement and consistent with the mutant conformational changes observed by X-ray analysis. Moreover, to evaluate the importance of the salt bridge made by Arg357, the crystal structure of the PPARγ R357A mutant in complex with the agonist rosiglitazone has been solved.
Assuntos
Lipodistrofia Parcial Familiar/genética , Mutação , PPAR gama/química , Ativação Transcricional , Cristalização , Humanos , Mutagênese Sítio-Dirigida , PPAR gama/genéticaRESUMO
INTRODUCTION AND AIM: Type 3 Familial Partial Lipodystrophy (FPLD3) is a rare metabolic disease related to pathogenic PPARG gene variants. FPLD3 is characterized by a loss of fatty tissue in the upper and lower limbs, hips, and face. FPLD3 pathophysiology is usually associated with metabolic comorbidities such as type 2 diabetes, insulin resistance, hypertriglyceridemia, and liver dysfunction. Here, we clinically and molecularly characterized FPLD3 patients harboring novel PPARG pathogenic variants. MATERIALS AND METHODS: Lipodystrophy-suspected patients were recruited by clinicians from an Endocrinology Reference Center. Clinical evaluation was performed, biological samples were collected for biochemical analysis, and DNA sequencing was performed to define the pathogenic variants associated with the lipodystrophic phenotype found in our clinically diagnosed FPLD subjects. Bioinformatics predictions were conducted to characterize the novel mutated PPARγ proteins. RESULTS: We clinically described FPLD patients harboring two novel heterozygous PPARG variants in Brazil. Case 1 had the c.533T > C variant, which promotes the substitution of leucine to proline in position 178 (p.Leu178Pro), and cases 2 and 3 had the c.641 C > T variant, which results in the substitution of proline to leucine in the position 214 (p.Pro214Leu) at the PPARγ2 protein. These variants result in substantial conformational changes in the PPARγ2 protein. CONCLUSION: Two novel PPARG pathogenic variants related to FPLD3 were identified in a Brazilian FPLD cohort. These data will provide new epidemiologic data concerning FPLD3 and help understand the genotype-phenotype relationships related to the PPARG gene.
RESUMO
BACKGROUND: Familial Partial Lipodystrophy (FPLD) is a disease with wide clinical and genetic variation, with seven different subtypes described. Until genetic testing becomes feasible in clinical practice, non-invasive tools are used to evaluate body composition in lipodystrophic patients. This study aimed to analyze the different anthropometric parameters used for screening and diagnosis of FPLD, such as thigh skinfold thickness (TS), Köb index (Köbi), leg fat percentage (LFP), fat mass ratio (FMR) and leg-to-total fat mass ratio in grams (LTR), by dual-energy X-ray absorptiometry, focusing on determining cutoff points for TS and LFP within a Brazilian population. METHODS: Thirty-seven patients with FPLD and seventy-four healthy controls matched for body mass index, sex and age were studied. Data were collected through medical record review after signing informed consent. All participants had body fat distribution evaluated by skinfolds and DXA measures. Fasting blood samples were collected to evaluate glycemic and lipid profiles. Genetic studies were carried out on all patients. Two groups were categorized based on genetic testing and/or anthropometric characteristics: FPLD+ (positive genetic test) and FPLD1 (negative genetic testing, but positive clinical/anthropometric criteria for FPLD). RESULTS: Eighteen (48.6%) patients were classified as FPLD+, and 19 (51.4%) as FPLD1. Unlike what is described in the literature, the LMNA variant in codon 582 was the most common. Among the main diagnostic parameters of FPLD, a statistical difference was observed between the groups for, Köbi, TS, LFP, FMR, and LTR. A cutoff point of 20 mm for TS in FPLD women was found, which is lower than the value classically described in the literature for the diagnosis of FPLD. Additionally, an LFP < 29.6% appears to be a useful tool to aid in the diagnosis of these women. CONCLUSION: Combining anthropometric measurements to assess body fat distribution can lead to a more accurate diagnosis of FPLD. This study suggests new cutoff points for thigh skinfold and leg fat percentage in women with suspected FPLD in Brazil. Further studies are needed to confirm these findings.
RESUMO
Background: There is a lack of information on the clinical and molecular presentation of familial partial lipodystrophy (FPLD), a rare genetic disorder characterized by partial subcutaneous fat loss. Objective: This study aimed to provide a comprehensive assessment of the clinical, metabolic, and genetic features of FPLD in the Brazilian population. Methods: In a multicenter cross-sectional investigation we evaluated patients with FPLD across five Brazilian reference centers for lipodystrophies. Diagnosis of FPLD was made by clinical evaluation and genetic confirmation. Data on genetic, clinical, and metabolic characteristics were captured. Statistical analysis involved the utilization of the Kruskal-Wallis test to identify differences. Results: The study included 106 patients with genetic confirmation of FPLD. The mean age was 44 ± 15 years, and they were predominantly female (78.3%). LMNA pathogenic variants were identified in 85.8% of patients, PPARG in 10.4%, PLIN1 in 2.8%, and MFN2 in 0.9%. Diabetes mellitus (DM) was highly prevalent (57.5%), affecting 54 females (50.9%). Median triglycerides levels were 199 mg/dL (54-2724 mg/dL), severe hypertriglyceridemia (≥ 500 mg/dL) was found in 34.9% and pancreatitis in 8.5%. Metabolic-associated fatty liver disease (MAFLD) was observed in 56.6%, and cardiovascular disease in 10.4%. The overall mortality rate was 3.8%, due to cardiovascular events. Conclusion: This study presents an extensive cohort of Brazilian patients with FPLD, predominantly DM with several multisystem complications. A comprehensive characterization of lipodystrophy syndromes is crucial for effective patient management and care.