Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(2): 2676-2684, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35933529

RESUMO

The influence of the combined application of chemical fertilizer with green manure on the stabilization of organic carbon (C) was explored in the organo-mineral complexes of paddy soil. The organo-mineral complexes were isolated from paddy soil treated with no fertilizer, chemical fertilizer alone, and chemical fertilizer combined with increasing amounts of Chinese milk vetch (CMV). The stability (reflected by mineralizable carbon proportion), the content and chemical composition of organic C, the Fe/Al oxides and their associated organic C in the organo-mineral complexes were investigated. The application of chemical fertilizer in combination with CMV significantly improved the stability of organic C in the organo-mineral complexes. The combined application of chemical fertilizer with CMV slightly decreased the proportion of O-alkyl C (easily decomposed) yet somewhat increased the proportions of carbonyl C and aromatic C (difficultly decomposed) and aromaticity index in the organo-mineral complexes. The treatments of chemical fertilizer combined with CMV showed more Fe oxides and Fe/Al-associated organic C and higher proportion of Fe/Al-associated organic C in the total organic C of the organo-mineral complexes. The mineralizable carbon proportion displayed significantly negative correlations with carbonyl C and Fe/Al oxide-associated organic C in the organo-mineral complexes. The Fe/Al oxides were likely to be preferentially bound with the aromatic C and carbonyl C in the organo-mineral complexes. Overall, the combined application of chemical fertilizer with CMV facilitated the association of difficultly decomposed carbon and Fe/Al oxides, which significantly improved the stabilization of organic C in the organo-mineral complexes of paddy soil.


Assuntos
Infecções por Citomegalovirus , Solo , Humanos , Solo/química , Carbono/química , Esterco , Fertilizantes , Minerais/química , Óxidos , Agricultura
2.
Environ Sci Pollut Res Int ; 29(45): 68680-68691, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35543790

RESUMO

Lead (Pb) is one of the top metal pollutants worldwide, and its distribution between liquid and solid phases of soils is strongly controlled by its adsorption on minerals, organic matter, and their composites. This paper presented the effect of fulvic acid (FA) coexistence on the distribution of Pb(II) at the solid-liquid interface of four minerals, which provided reference for how to use humic substances to remove toxic Pb(II) in soils. The free Pb2+ of suspensions, measured by Pb ion selective electrode, was used to characterize the complexation of FA with Pb2+ at various pH. The adsorption isotherms of Pb(II) by montmorillonite, kaolinite, goethite, and gibbsite with and without FA were studied with batch experiments. Results indicated that the free Pb2+ decreased and complexed Pb(II) increased with the increase of FA concentration in Pb(II)-FA solutions, whether the initial concentration of Pb(II) was 0.1 or 1 mM. Pb2+ hydrolysis was low and the free Pb2+ concentration in pure lead solution without FA was generally unchanged with increasing solution pH at pH < 6.0. But free Pb2+ decreased with the increase of pH in the presence of FA, suggesting that the complexation ability of FA with Pb2+ increased with the increase of solution pH. The adsorption of Pb(II) by the minerals without FA followed the order: montmorillonite > kaolinite ≈ goethite > gibbsite at pH5.0. The Pb(II) adsorption by montmorillonite and kaolinite significantly enhanced with 1 g/L FA, while significantly inhibited with 3 g/L FA at low initial Pb(II) concentration. However, the effect of FA on Pb(II) adsorption by montmorillonite was greater than that of kaolinite, which was mainly related to the crystal layer structure, adsorption area, and cation exchange capacity of the minerals. The Pb(II) adsorption by goethite and gibbsite was significantly enhanced by the addition of both 1 g/L and 3 g/L FA, and the enhancement was more evident in goethite system. The effect of FA on the distribution of Pb(II) between solid and liquid phases of the minerals was determined by the factors such as the initial concentration ratio of FA to Pb(II), the adsorption capacity of minerals for FA, and the number of soluble complexes of FA with Pb2+. Therefore, the distribution of FA between solid and liquid of four minerals affected the distribution of Pb(II) between solid and liquid phases of the minerals greatly. The results can provide an important reference for understanding the distribution of Pb(II) and the dynamics and mobility of active components in polluted soils.


Assuntos
Compostos de Ferro , Poluentes do Solo , Adsorção , Bentonita/química , Benzopiranos , Cátions , Substâncias Húmicas , Concentração de Íons de Hidrogênio , Compostos de Ferro/química , Caulim/química , Chumbo , Minerais/química , Solo , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA